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Spin-wave control using dark modes in chiral magnonic resonators
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We modeled, both analytically and numerically, the magnitude and phase of spin waves propagating in thin
magnetic films and scattered from mesoscale chiral magnonic resonators. Our calculations reveal a remarkably
strong chiral scattering of propagating spin waves from magnon dark modes hosted by the resonator, exceeding

in strength the scattering from its quasiuniform mode. We formulate conditions for the waveguide-resonator
system to be used as an efficient spin-wave diode and as a phase shifter. Both these applications are found to be
feasible when using the available ferromagnetic materials for the resonators.
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I. INTRODUCTION

The resonant scattering of spin waves—propagating pre-
cessional excitations of the magnetic order [1]—may prove
essential for miniaturization of data and signal processing de-
vices of magnonics [2,3]. In general, the resonant scattering’s
strength is determined by the coupling between the incident
waves and the discrete modes of the scatterer. The effect of the
coupling is maximized when the frequencies of the incident
and discrete modes match. Resonant scattering emerges, e.g.,
in the theory of spin waves in monomode magnonic waveg-
uides with dangling branches [4] and in two-dimensional
arrays of magnetic dots [5], as well as in the theory of
spin-wave induced motion of magnetic domain walls [6,7].
Experimentally, similar ideas were exploited for spin-wave
control in one-dimensional arrays of magnetic stripes [8]
and dots [9], as well as in continuous magnonic microcon-
duits [10].

The most important practically and fascinating fundamen-
tally aspect of the resonant scattering of spin waves is its
chirality or “handedness,” whereby the scattering is nonre-
ciprocal. Although chirality is inherent to magnetism and
magnetic phenomena, only recently have its manifestations
in magnonics started to be actively explored and exploited.
In Refs. [11,12], Au et al. used micromagnetic simulations
to demonstrate chirality of the coupling between spin waves
propagating in a stripe magnonic waveguide and preces-
sional modes of a nanomagnet placed nearby. The scattering
enabled by this chiral coupling was shown to lead to a ro-
bust nonreciprocal modulation of the spin-wave amplitude
and phase, controlled by flipping the direction of the nano-
magnet’s magnetization [11]. The spin-wave frequency in
Ref. [11] was equal to the value at which the same sys-
tem acted optimally as a chiral microwave to spin wave
transducer [12], i.e., a device concentrating the power of
incident microwaves [13] and converting it into unidirection-
ally propagating spin waves [14]. The scattering in Ref. [11]
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was presumed to be resonant, and its strength and charac-
ter were shown to depend nonmonotonically both on the
damping coefficient in the nanomagnetic resonator and on
its spacing from the waveguide. The nonreciprocity of the
spin-wave modulation [11] and transduction [12] functionali-
ties was attributed to the chirality of the magnetic precession
and associated dynamic stray magnetic field, leading to the
magnetization-momentum locking [11].

Here, we use micromagnetic simulations and a phe-
nomenological model to elucidate the resonant character
of the chiral scattering of spin waves propagating in thin
magnetic films from mesoscale magnonic resonators placed
nearby [Fig. 1(a)]. We use the simulated data to calculate
both the magnitude and phase of the magnonic transmission
and reflection coefficients as a function of the spin-wave
frequency and incidence direction and the film-resonator spac-
ing. The transmission is efficiently modulated only for one
direction of spin-wave incidence, and this direction is switch-
able by switching the magnetization of the nanomagnet. Our
simulations reveal a remarkably strong chiral scattering of
propagating spin waves from magnon dark modes hosted by
the resonator, exceeding the scattering from the quasiuniform
mode in both strength and chirality. The results of the simula-
tions are interpreted with the help of the phenomenological
model, in which the coupling between the spin wave and
the resonator is characterized by two contributions to the
resonator’s radiative linewidths, for the forward and backward
emission. In particular, the model predicts the drop in trans-
mission when the forward linewidth is equal to the sum of
the backward and dissipative contributions. The transmitted
wave’s phase shift of 7 at resonance is shown to be a signa-
ture of an even stronger and more chiral coupling (when the
forward radiative linewidth exceeds the sum of the dissipative
and backward radiative linewidths). The scattering line shapes
obtained from the simulations are rather symmetric, and the
reflection is weak and reciprocal. The model shows that these
features are consistent with the chirality of the scattering and
the weakness of nonresonant contributions to the scattering.
Our simulations are run for spin waves propagating along the
direction of the magnetization of the thin film, but the model
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FIG. 1. (a) The geometry of the problem is shown schematically.
The nanomagnet plays the role of a chiral nanomagnet resonator
(mode ¢) for spin waves propagating in the waveguide to the left
(mode ) and to the right (mode ). The strengths of coupling
between the modes are ¢ (Y. and ¥Rr), Ar (¢ and Yr), and AL (¢
and ). (b) The dispersion relation of spin waves in the waveguide
is shown, as computed from the results of the micromagnetic simula-
tions. The brighter color corresponds to higher spin-wave amplitude.
(c) The FFT spectrum of the stand-alone chiral resonator’s average
response to uniform excitation is shown on a log scale. The rect-
angular boxes in panels (b,c) show the spectral range addressed in
this paper. The two arrows in panel (c) indicate where absorption
peaks were observed in scattering simulations. The inset shows the
spatial distribution [in the resonator’s (x, z) cross section] of the FFT
amplitude (by gray scale with black and white corresponding to zero
and maximum, respectively) and phase (color scale shown) at the
frequency of the only peak in the spectrum. Both the FFT spectrum
and the mode profile were calculated from the z component of the
dynamic magnetization.

and its conclusions are expected to be valid for other spin-
wave geometries [15-20]. The same concerns the observation
of the chiral scattering from the magnon dark mode of the
resonator.

The paper is organized as follows. In Sec. II, we describe
the methods and main results of our numerical micromagnetic
simulations. In Sec. III, we describe the phenomenological
model and main results of its application to the analysis of
the micromagnetic simulations. Sections IV and V are then
devoted to discussing the origin of the chiral coupling and to
conclusions, respectively.

II. NUMERICAL MICROMAGNETIC SIMULATIONS
A. Methods

Micromagnetic simulations are performed for the sys-
tem shown in Fig. 1(a), using MUMAX3 software [21]. The
resonator is represented by a magnetic stripe with x x z
cross-section dimensions of 50 x 20nm?. It is placed un-
der a thin-film magnonic waveguide with x x z cross-section
dimensions of 10240 x 20nm?. The edge to edge spacing
between the resonator and waveguide is varied from 5 to
20 nm in steps of 5 nm. Both the resonator and waveguide

are considered infinite in the y direction, which is achieved by
applying periodic boundary conditions to an 80 nm long por-
tion of the sample. The sample is discretized into cubic cells
of 5 nm size. Both the waveguide and resonator have identi-
cal magnetic parameters: the saturation magnetization of 800
kA/m, the exchange constant of 13 pJ/m, the Gilbert damping
constant of 0.005, and zero magnetocrystalline anisotropy; the
default value of the gyromagnetic ratio is used. The stripe is
magnetized in the y direction due to its shape anisotropy (no
bias field). The thin-film waveguide is magnetized along the x
direction by a bias magnetic field of 0.1 T, confined to the thin
film only. In practice, the orthogonal magnetization of the res-
onator and waveguide can be achieved by combining materials
with different coercivities [17] or by patterning the waveguide
to give it a shape anisotropy [11]. In the dynamic simula-
tions, the sample is excited by a dynamic magnetic field & || Z
with a spatiotemporal profile to suit the aim of each specific
numerical experiment [22], while ensuring that only linear
spin waves are excited. To calculate the spin-wave dispersion,
the stand-alone waveguide is excited by a dynamic field that
has a sinc-function profile both in time (cutoff frequency 25
GHz) and along the x direction (cutoff wave number 0.27
rad/nm). The dynamic field is uniform in the z direction. For
each pair of (y, z) values in the waveguide’s cross section, we
apply two-dimensional (2D) fast Fourier transform (FFT) in
the time domain and x direction to the simulated data. By
summing the calculated FFT amplitudes over the waveguide’s
(v, z) cross section for each pair of frequency f and wave
number k, values, we obtain the f(k,) dispersion depicted
in Fig. 1(b). This dispersion has a shape characteristic for
backward volume spin waves, as in in Ref. [11]. Figure 1(c)
shows the spectrum of the stand-alone resonator excited by a
dynamic field uniform in space and having the sinc-function
profile in time. The spectrum shows the only resonance peak
at 12.8 GHz, due to the quasiuniform mode [see the inset in
Fig. 1(c) for its spatial profile].

To study the scattering of propagating spin waves from the
resonator, we launch spin waves toward the resonator and then
compute the FFT amplitude and phase for the transmitted and
reflected waves [Fig. 1(a)]. The spin waves are launched as
wave packets using a dynamic magnetic field of the form [23]

(x £ x0)? i|ex |:_ (t—to)*

2 2
20 20;

h = hpexp |:— i|cos(j:k0x— 27 fot),

ey

where the spatial and temporal envelopes are chosen so as to
excite a narrow band of frequencies and wave numbers around
the desired central values while also being able to define and
trace the packets’ positions in time and space. Specifically, fy
is the central frequency of the wave packet and k) is the corre-
sponding wave number, obtained from the dispersion relation
shown in Fig. 1(b). The initial distance between the packet
and the resonator is xo = 1.75 um, while its time position
relative to the beginning of the simulation is 7o = 5.5 ns. The
plus and minus signs in front of the wave number, +kg, in
Eq. (1) correspond to wave packets incident on the resonator
from the left- and right-hand sides, respectively, and launched
at Fxo. The incident and scattered wave packets are sampled
at 1 um from the nanomagnet. The size and duration of the
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FIG. 2. The simulated scattering and absorption coefficients of the right- and left-going spin waves are shown as a function of their
frequency f; for different values (indicated for each column) of the edge to edge separation between the waveguide and resonator. The top two
rows show the magnitude and phase of the transmission coefficients tr.). The third row compares the absorbance Ag(.), and reflectance Rg,).
The reflectance curves for the counterpropagating waves lie on top of each other. The bottom row shows the transmission coefficient in the
complex plane, plotted using fj as a parameter with the arrow indicating the direction in which f; increases.

wave packet are defined by parameters o, = 0.35 um and
o; = 0.9 ns, which yield the full width at half maximum of
about 0.82 um along x and just over 2 ns in the time domain,
respectively.

The simulations and associated analyses are performed for
wave packets with different central frequencies and propa-
gation directions. Throughout the paper, subscripts R and L
denote quantities corresponding to the right- and left-going
spin waves, incident on the resonator from the left and from
the right, respectively. The change of the incidence direction is
equivalent to flipping the magnetization of the resonator [11].
To exclude the effect of propagation decay, the complex trans-
mission, Tre), (reflection, rrq)) coefficients are evaluated
at each frequency as a ratio of the transmitted (reflected)
complex FFT amplitudes obtained from simulations with the
resonator and the transmitted complex amplitude from a ref-
erence simulation without the resonator. In each case, the
compared reflected and/or transmitted waves travel the same
distance and therefore experience the same propagation de-
cay and phase delay. The reflected and incident waves are
separated in the reciprocal space [23]. The absorbance and re-
flectance are calculated as Ary = 1 — |tray|* — |7/ry|? and
Rray = |rra,y|?. The results of the calculations are shown in
Fig. 2. Evidently, our method of analysis works well, except

for the frequencies below 11 GHz at which the transmission
coefficient’s magnitude exceeds unity. The latter is attributed
to a combined effect of numerical error and magnetic nonlin-
earity. Figure 3 shows a selection of spatial profiles, calculated
using standard procedures [22], of the amplitude and phase of
the dynamic magnetization in the resonators excited by the
incident spin-wave packets.

B. Numerical results

We focus on the chiral modulation of the transmitted
spin waves’ amplitude and phase, which are most relevant
to perceived spin-wave devices of magnonics. The numer-
ically calculated frequency dependence of the magnitude
of the transmission coefficient for right-going spin waves
(Fig. 2, top row) shows two pronounced dips at 13.5 and 17.4
GHz. The dips are associated with modes that have quasi-
uniform (13.5 GHz) and nonuniform (17.4 GHz) profiles in
the resonator (Fig. 3). The quasiuniform mode’s frequency is
somewhat higher than the value of 12.7 GHz found for the
stand-alone resonator [Fig. 1(c)], with the difference decreas-
ing with increasing of the resonator to waveguide spacing.
This mode is similar to that responsible for the spin-wave
amplitude and phase modulation reported in Ref. [11]. The
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FIG. 3. The (x, z) distributions of the Fourier amplitude and phase calculated from the simulated z component of the dynamic magnetization
in the resonator excited by right- and left-going spin waves (as indicated) are shown for the stated values of the excitation frequency and of the
edge to edge separation between the waveguide and resonator. The frequencies correspond to the dips in the spin-wave transmission in Fig. 2.
Black and white in the amplitude profiles correspond to zero and maximum amplitude, respectively; the different gray scales are normalized

by different factors, as indicated.

nonuniform mode (not observed in Ref. [11]) represents a
“dark mode,” i.e., a mode that cannot be excited by a uniform
dynamic magnetic field [Fig. 1(c)]. In the case of Fig. 2, its ex-
citation is enabled by the nonuniformity of the stray magnetic
field due to the incident propagating spin wave. The transmis-
sion amplitude dip at 13.5 GHz is drastically shallower for
left-going spin waves, while the dark mode appears to cause
no effect on their transmission at all. Similarly, the phase
of the transmission coefficient (Fig. 2, second row) is barely
affected for left-going waves. For right-going waves, a phase
shift of 27 is accumulated as the spin-wave frequency crosses
each of the resonator’s modes at spacings of 5 and 10 nm; a
phase shift of 7 is found at resonance, when the frequencies of
the propagating and resonator’s modes match. In contrast, for
15 and 20 nm spacings, the phase remains relatively close to
Zero.

The dependence of the magnitude and phase of the trans-
mission coefficient on the resonator-waveguide separation is
best visualized when it is plotted in the complex plane, us-
ing the spin-wave frequency as a parameter (Fig. 2, bottom
row). The complex transmission coefficient makes counter-
clockwise loops at each resonance. For right-going waves,
the loop size decreases as the resonator-waveguide separation
increases. For left-going waves, the loops shrink almost to
a point at 7;, = 1 (not shown). This observation prompts us
to associate the loop size with the strength of the interac-
tion between the waveguide and resonator. Surprisingly, the
strongest interaction in our system is found for the dark mode
resonance at 5 nm separation. The depth of modulation of the
transmitted wave’s amplitude increases as the loop approaches
the origin. The character of modulation of the transmitted
wave’s phase differs qualitatively depending on whether the
origin is contained by the loop. At last, we note that the en-
hanced apparent width of the dip and the slowed down phase
variation seen at 5 nm separation are signatures of the loop’s
size becoming especially large. When this occurs, the loop
center approaches the origin, and the frequency variation does

not lead to any significant variation of the transmitted wave’s
amplitude.

In addition to the distinction between the quasiuniform and
dark modes noted earlier, the profiles shown in Fig. 3 reveal
that the precession amplitude in the resonator is consistently
higher for its excitation by right-going waves as compared to
the left-going ones: by a factor of 3—4 for the quasiuniform
mode and 20-50 for the dark mode. This is consistent with
the chirality of the frequency dependence of the spin-wave
scattering coefficients shown in Fig. 2. The precession am-
plitude does not, however, vary monotonically as the spacing
between the resonator and waveguide increases. This points
to a resonant origin of the scattering, as discussed in the
following section.

III. PHENOMENOLOGICAL MODEL

A. Assumptions and the key relations

The salient features of the chiral resonant scattering of spin
waves in our system [Fig. 1(a)] are captured by the following
model. The resonator (located at x = 0) affects the propagat-
ing plane-wave modes in two ways. Firstly, there could be
nonresonant scattering between the waves propagating to the
right, Yr(f, x), and to the left, ¢ (¢, x), with group velocity
v. We characterize this scattering by the coupling constants
¢ and ¢*, where the asterisk denotes complex conjugation.
Secondly, the resonator’s mode, ¢(t), can hybridize with the
propagating modes, which we describe using its complex
coupling strengths to the right, Ag, and left, Ay, propagating
modes. These coupling strengths depend on, among other fac-
tors, the resonator size, the resonant mode character, and the
propagating mode wavelength. Their calculation is, however,
beyond the scope of this paper. Both resonant and off-resonant
scattering processes can be described as reemission of scat-
tered waves by pointlike source terms proportional to the delta
function &(x). Mathematically, this is encompassed by the
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FIG. 4. The magnitude and phase of the transmission coefficient given by Eq. (5) for the right-going waves are shown as a function of
their frequency, f = w/27, in panels (a,b), respectively. The values of the radiative linewidths I'r and 'y, are indicated as fractions of the
resonator’s dissipative linewidth 'y = 27 x 0.5 GHz, while its resonance frequency is ¢ = 27 x 15 GHz. (c) The dependences from (a,b)
are plotted in the complex plane, using f as a parameter with the arrow indicating the direction in which f increases.

following system of scalar differential equations:

OYr(t, x) AYr(t, x)
+v
ot ox
Pt x) ; oYL, x)
dt ox
dp(t)

Jt

= —i6()[E YL, 0) + Ar @(1)],

= —i8()[C" Yr(,0) + ALp()],

+i(Qo — iTo)p(t) = —i[Af Y(t,0) + Ag Yr(, 0)],
@)

where € and I'y are the angular frequency and dissipative
linewidth of the scatterer; and in the small frequency region
around the resonance, we treat the dispersion as linear and
define the angular frequency w and wave number k of the
plane waves relative to their resonance values, i.e.,

@ = Qo+ vk — ko), 3
where ky is the wave number corresponding to €2y.

Integrating Eq. (2), we obtain the following system of al-
gebraic equations connecting the plane waves on the opposite
sides from the scatterer:

+iv [Yr] = ¢(YL) + Aro,
—iv [YL] = " (Yr) + AL,
(w— Qo +iTo)p = AL (Y1) + Af(Yr), “4)

where [Yra)] = Yra)(+0) — Yra)(—0) denotes the dis-
continuity of the plane-wave solutions at x =0, at
which we have regularized the solution as (Yrw)) =
SWR(H0) + Yra)(=0)]. In our case, [yr]=1tr — I,
(Y] = —rr, (Yr) = 3(1 4+ r), and (Y1) = Srg for right-
propagating waves (incident from the left) and [Yr] = ri,
[Vl =1—1, (Yr) = 31, and (Yo) = $(1 + 7) for left-
propagating waves (incident from the right). The resulting
equations are readily solved to yield the reflection, rgr(.), and
transmission, g, coefficients, as well as absorbance Rg(r,
and reflectance Ag(y). For the case of dominant resonant scat-

tering ¢ = 0 we obtain

w— 8 +i(lg—Tr+TL)

TR

’

o — Q0 + il
i ARAL
IR =—"—>"""<""""»
v — 2+ il
4T'rTp
AR = =3 Q)
(@ — Qo) + Iy,

where I'rq) = |AR(L)|2 /(2v) are the radiative linewidths into
the right- (left-) propagating plane waves, and I'y,y = g +
I'r + I'L is the total linewidth of the resonator. The corre-
sponding expressions for the left-going waves are obtained
from Eq. (5) by swapping the subscripts R and L.

B. Application to analysis of the numerical results

Figure 4 presents the frequency dependence of the com-
plex transmission coefficient calculated using Eq. (5). We find
that the phenomenological model supports fully the quali-
tative conclusions made earlier based on the results of the
numerical simulations (Fig. 2). In addition, the theory reveals
the key role played by the chirality of the coupling between
the propagating spin waves and the resonator’s modes. Both
Eq. (5) and Fig. 3 show that, although reciprocal (nonchiral,
i.e., 'r = I'L) resonators can lead to a significant modulation
of the transmission, they fall short of the performance of
chiral resonators. For instance, zero transmission can only
be achieved when the condition I'g = 'y + I'L is fulfilled.
The device in this regime was tagged a “spin-wave valve” in
Ref. [11], but it may be also appropriate to call it a magnonic
diode [24-26]. Our simulations suggest that this behavior can
be achieved using chiral resonators with relatively high damp-
ing, e.g., as that in metallic ferromagnets. At the damping
constant of 0.005, the coupling strength required for our sys-
tem to behave as a good magnonic diode is achieved already
at the waveguide-resonator spacings of 10 and 15 nm. The
dissipative linewidth of the resonator can be controlled further
using spin currents [27].
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FIG. 5. The dissipative, Iy, and radiative, I'g(), linewidths ex-
tracted from the fitting of the numerical data to Eq. (5) are presented
for the quasiuniform and dark modes as a function of the resonator
to waveguide spacing and the direction of spin-wave incidence.

According to Eq. (5), the use of the resonator as a w phase
shifter imposes much stricter requirements on its chirality,
damping, and coupling strength (Fig. 4). This is because the
reduction of the transmitted amplitude is a parasitic effect
in this case. Nonetheless, the dark mode at 5 nm sepa-
ration enables at least half of the spin-wave power to go
through while shifting the phase by m. This is comparable
to the result achieved in the “spin-wave phase shifter” from
Ref. [11], using a stripe waveguide and a “pointed” resonator.
Potentially, even better performance could be achieved using
an antiparallelly magnetized waveguide and resonator in the
Damon-Eshbach geometry [18]. However, the magnetization
of the waveguide in the direction of the spin-wave propagation
exploited here and in Ref. [11] better suits the goal of cre-
ation of bias-free magnonic circuitry [11]. Such phase shifters
placed in the two arms of a Mach-Zehnder interferometer
yield an XNOR gate, as presented in Ref. [28] and reproduced
in Ref. [27]. By placing two resonators on the same straight
magnonic waveguide, a magnonic NAND gate is formed [28].

Equation (5) predicts that the reflectance from a chiral
resonator (with, e.g., ['g > ') must be both weak and re-
ciprocal. The numerical simulations confirm this prediction.
Indeed, the third row of Fig. 2 shows that most of the in-
cident spin-wave power not transmitted by the resonator is

absorbed rather than reflected. This resonant absorption of the
spin-wave energy was observed in the “spin-wave valve” in
Ref. [11] and labeled “magnon trapping” in Ref. [18].

The scattering line shapes shown in both Figs. 2 and 4
are rather symmetric relative to the resonant frequency. The
theory shows that this is consistent with the weakness of the
nonresonant contributions to the scattering between the right-
and left-going waves. Allowing the nonresonant coupling con-
stants ¢ and ¢* to have finite values, one would recover the
Fano resonance and its characteristic asymmetric line shapes.

Figure 5 and Table I present results of fitting the numerical
transmission coefficient and absorbance from Fig. 2 to Eq. (5),
augmented with additional background (see Supplemental
Material [29]) to offset (at least, partly) spurious backgrounds
whose origins are not captured by the model. The fitted values
of the radiative linewidths exhibit a strong chirality for all
resonator to waveguide spacings, which is also reflected in the
value of the nonreciprocity parameter 1, defined as [17]

'k = I'L
'k +TL

The nonreciprocity parameter consistently approaches
100% for the dark mode, albeit remaining at about 80% for
the quasiuniform mode. The radiative linewidths and therefore
the coupling strength consistently decrease as the spacing
increases. This dependence is stronger for the dark mode,
as expected due to its nonuniformity. Remarkably, the dark
mode at 5 nm spacing outperforms the quasiuniform mode
in terms of both the coupling strength and chirality, which is
consistent with our observations made from Fig. 2 earlier. The
variation of the resonance frequency and dissipative linewidth
as a function of the spacing are due to reasons not captured by
our model and will be investigated elsewhere.

n= x 100%. 6)

IV. ORIGIN OF THE CHIRAL COUPLING

Our simulations and their analysis via the model provide
a strong evidence for the chirality of the coupling between
the resonator and spin-wave modes in the film. However,
the model merely postulates the chiral coupling and shows
how this chirality explains our numerical results. Hence, we
now discuss the origin of the chiral coupling between the
resonator’s modes and propagating spin waves. This can be

TABLE I. The computer fitted values of the resonance frequencies; dissipative, I'y, and radiative, ', linewidths; and nonreciprocity
parameter n are shown for the quasiuniform and dark modes and different values of the resonator to waveguide spacing. Each column
corresponds to a separate independent fit. In some cases, the value of I'r was too small for automated fitting and therefore had to be adjusted
manually and fixed prior to the computerized finding values of the other parameters.

Quasiuniform mode Dark mode
Spacing 5 nm 10 nm 15 nm 20 nm 5 nm 10 nm 15 nm 20 nm
%2 (GHz) 13.56 13.26 13.07 12.97 17.49 17.25 17.11 17.08
zr—]‘; (GHz) 0.13 0.13 0.12 0.12 0.09 0.09 0.13 0.12
2—7‘: (GHz) 0.21 0.18 0.11 0.06 0.52 0.20 0.07 0.028
% (GHz) 0.024 0.019 0.010 0.004 0.0003 0.00008 0.00004 0.000008
Fixed Fixed Fixed Fixed Fixed Fixed
n 79.1% 81.2% 84.8% 87.7% 99.9% 99.9% 99.9% 99.9%
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FIG. 6. The real and reciprocal space distributions of the stray magnetic field at frequencies of 13 and 17.3 GHz are shown for the resonator
to waveguide spacing of 15 nm. At each frequency, the left and right columns correspond to excitation by right- and left-going spin-wave
packets, respectively. The top and middle rows show real-space distributions of the field’s Fourier amplitude and phase, respectively. The
bottom row shows the corresponding reciprocal space distribution of the Fourier amplitude, calculated for the whole structure rather than just
its part shown above. The dashed and solid outlines show the waveguide’s (20 nm thickness) and resonator’s (20 nm x 50 nm) cross sections,
respectively. The yellow arrows in the bottom row point to the vertical features due to the field from the incident spin waves.

done in either of two ways: (i) one may consider the Zee-
man energy of spin waves’ dynamical magnetization in the
resonator’s dynamic stray field. Equivalently, the coupling is
given by (ii) the energy of the resonator’s magnetization in
the spin waves’ stray field, which coincides with (i) due to
the magnetic reciprocity theorem [30]. Here, we use approach
(i), also implemented, e.g., in Refs. [11,12], while we refer
the reader to Refs. [17,18,31] for a systematic discussion
of approach (ii). To elucidate the origin of the chirality in
the stray field induced in the waveguide by the resonator,
it is helpful to Fourier transform the field. The coupling of
the field to a propagating spin-wave mode is proportional to
the field’s Fourier amplitude for a wave number coinciding,
both in magnitude and sign, with that of the propagating
mode. A chiral coupling then manifests itself as an asymmet-
ric distribution of the field’s Fourier amplitude for opposite
signs of the wave number [11]. This distribution is reversed
relative to the k, = 0 axis when the magnetization of the
resonator and therefore the chirality of its precession are
reversed.

Figure 6 shows, in the real and reciprocal space, the Fourier
amplitudes of the A, component of the stray magnetic field
from the resonator driven by spin waves with frequencies
corresponding to the absorption peaks due to the quasiuni-
form (left two columns) and dark (right two columns) modes.

In addition, the distributions include contributions from the
field due to the incident spin waves themselves. To evaluate
the chirality, we need to compare the field distributions for
excitation by right- and left-going spin waves, shown in the
left and right columns, respectively, at each frequency. In the
real space, the amplitude plots (top row) show the expected
asymmetry between the two incidence directions, with the
right-going waves exciting the resonators drastically more
efficiently. This asymmetry can be explained by considering
the field’s phase variation (middle row). In the space below
the resonator, the direction of this phase variation is domi-
nated by the chirality of the resonator’s precession, which is
always the same. In the space between the waveguide and
resonator, the fields from the spin waves and resonator mix,
making up a more complex distribution. Yet, for excitation by
right-going waves, this distribution is dominated by the res-
onator’s field, and we see that the phase variation is opposite
to that below the resonator. Hence, the strong coupling occurs
when, in the waveguide, this phase variation matches that in
the incident spin waves, which is the case for excitation by
right-going waves. In contrast, the coupling of the resonator’s
field to the left-going waves is weak since the directions of
the phase variation of the field and the spin waves do not
match. The argument is even more evident when considered
in the reciprocal space (bottom row). The Fourier amplitude
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FIG. 7. (a) The FFT spectrum of the resonator’s response to uniform excitation is shown for the resonator to waveguide spacings of 5 and
20 nm. (b) The spectra of spin waves emitted in the two opposite directions as a result of the excitation in (a) are shown.

of the resonator’s field is concentrated in the negative (posi-
tive) half of the reciprocal space below (above) the resonator.
Hence, the stronger coupling occurs when the wave number
of the spin waves is positive, i.e., for the right-going spin
waves.

The pattern seen in Fig. 6 can be explained via the fol-
lowing argument. Let ¢ (x, z) be the Fourier harmonic of the
magnetostatic potential induced by an individual magnetic
charge within the resonator, and k its wave number along
the waveguide, i.e., k = k,. Away from the point charge,
the harmonic obeys Laplace’s equation, and so its profile
is given by ¢ (x, z) = ¢ exp(ikx F |k|z), with negative sign
for z > 0 and positive for z < 0, assuming that z = 0 corre-
sponds to the position of the point charge. This has important
consequences. Firstly, the respective components of the mag-
netic field h = —V ¢y (x, z) have the same profiles, i.e., i, =
—iky(x, z) and h, = %|k|@i(x, z). Secondly, these two field
components are of the same magnitude, while their phases
are shifted by £90°. Thus, the field harmonic has a perfect
circular polarization, with the handedness defined by whether
the resonator is above or below the waveguide and whether
the wave number k is positive or negative. This field would
couple to the spin wave’s magnetization components s, and
s, via the term (—sjh, — s7h;) o [isign(k)sy F s], where the
minus sign corresponds to our case of the resonator located
below the waveguide. Had the receiving spin wave been itself
chiral in the xz plane, this would provide the chiral cou-
pling [17,18,31]. However, this mechanism is not active in our
geometry, in which the waveguide is magnetized collinearly to
the spin-wave propagation directions.

To explain chirality in our geometry, we recall that the
resonator is described by a magnetic dipole with components
m, and m,. Considering the dipole as a pair of oppo-
site magnetic charges, one computes the difference of their
stray fields, which brings the interaction to the symmet-
ric form [isign(k)s} F s ][isign(k)m, F m;]. Specializing to
precession m, = iem, of ellipticity ¢, with handedness (and
therefore the sign of €) defined by the equilibrium magnetiza-
tion in the resonator, one finds that the amplitude of the stray
field component that mediates the coupling is proportional to

[esign(k) £ 1]. If the precession is circular, i.e., ¢ = %1, the
coupling is completely suppressed for one sign of k, regardless
of whether the spin wave itself is chiral. In our case of the
resonator magnetized along the y axis (¢ > 0) and located
below the waveguide (z > 0) that is magnetized along the x
axis (s} = 0), the coupling chirality is mediated by the field
component h,  [esign(k) + 1] only. This field may be dras-
tically suppressed for negative (but not for positive) k values,
consistent with Fig. 6.

We see that dipolar stray fields from the resonator provide a
simple and general mechanism for chiral coupling in resonant
magnonic systems such as ours. In the Damon-Eshbach geom-
etry, additional chirality arises from spin waves through the
factor [isign(k)s; F s71, as considered in Refs. [17,18,20,31].
A useful mathematical discussion of the coupling (includ-
ing the form factor) for the case of uniform precession in
resonators with rectangular cross sections can be found in
Ref. [32], while resonators with circular cross sections were
considered in Ref. [12]. For scattering mediated by nonuni-
form modes, the coupling energy must be weighted with
the specific mode profile, which will determine the degree
of mode chirality. The detailed analysis of this is, however,
beyond the scope of this paper.

We point out that the chiral scattering discussed here is
different from the nonreciprocity of the magnonic disper-
sion relation [33,34]. Moreover, the dispersion nonreciprocity
does not guarantee nonreciprocity of the scattering coef-
ficients [35]. At the same time, our theory predicts that
a nonreciprocal dispersion relation can make the radiative
linewidths unequal, I'r # I'L, if the group velocities of the
forward and backward propagating spin waves are unequal.
Then, the scattering will be chiral even when Agr = Ap.

Finally, we demonstrate that the dark modes remain such
even when the resonator is placed close to the waveguide.
Figure 7 shows representative spectra of the resonator itself
as well as of spin waves emitted in the two opposite directions
into the waveguide when the resonator is excited by a broad-
band pulse of uniform magnetic field. The spectra confirm
the findings from Ref. [12] that the emission is chiral and
that the resonator acts as a “resonant microwave to spin wave
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transducer.” At the same time, the spectra show that the emis-
sion for the dark modes is at least an order of magnitude
weaker than that for the quasiuniform modes; i.e., the dark
modes couple only weakly to the incident microwave mag-
netic field.

V. CONCLUSIONS

In summary, we have modeled both numerically and an-
alytically the scattering of dipole exchange spin waves from
mesoscale chiral magnetic resonators. We have presented con-
ditions for the most efficient modulation of the spin-wave
amplitude and phase in such devices. The geometry in which
the magnonic waveguide is magnetized collinear to the direc-
tion of spin-wave propagation is shown to be fully adequate
for creation of magnonic diodes. Furthermore, the magnonic
dark mode of the resonator is shown to be as good as or
even to outperform the quasiuniform mode in terms of chiral
trapping of incident spin waves or controlling their phase.
This not only enables creation of efficient phase shifters at
elevated frequencies but it also opens prospects for creation
of magnonic integrated circuits based on these phenomena.
Indeed, the resonators demonstrated in Refs. [11,12] and fur-
ther investigated here could be used to build the three main

elements of magnonic devices [2]: chiral spin-wave sources
(see, e.g., the emission for the quasiuniform mode at 20 nm
spacing, Fig. 7), chiral spin-wave detectors or diodes (see,
e.g., the absorbance by the dark mode at 15 nm spacing,
Fig. 2), and phase shifters (see, e.g., the transmission for the
dark mode at 5 nm spacing, Fig. 2). To achieve this, one
would need to ensure that the frequencies of the modes match,
which could be achieved by varying the widths of the stripe
resonators. Then, the decoupling of the dark modes from
the incident uniform excitation shown in Fig. 7 suggests that
circuits containing several such magnonic devices could be
driven by the same global uniform magnetic field [12] without
compromising their output.
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