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Thermal instability in a ferrimagnetic resonator strongly coupled to a loop-gap microwave cavity
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We study the nonlinear response of a ferrimagnetic sphere resonator (FSR) strongly coupled to a microwave
loop-gap resonator (LGR). The measured response in the regime of weak nonlinearity allows the extraction of
the FSR Kerr coefficient and its cubic damping rate. We find that there is a certain range of driving parameters
in which the system exhibits instability. In that range, self-sustained modulation of the reflected power off
the system is generated. The instability is attributed to absorption-induced heating of the FSR above its Curie
temperature.
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I. INTRODUCTION

Ferromagnetic and ferrimagnetic resonators [1–3] are
widely employed in a variety of microwave (MW) devices, in-
cluding narrow-band oscillators [4], filters [5], and parametric
amplifiers [6]. These resonators exhibit a variety of intrigu-
ing physical effects [7], including Bose-Einstein condensation
[8] and magneto-optical coupling [9–12]. Here, we study a
strongly coupled hybrid system composed of a loop-gap res-
onator (LGR) integrated with a ferrimagnetic sphere resonator
(FSR) made of yttrium iron garnet (YIG) [13,14]. We focus on
the regime of nonlinear response. In Sec. III below we explore
the effect on nonlinear damping in the region of relatively
weak microwave driving. An instability, which is observed
with a much stronger driving, is reported in Sec. IV below,
and a theoretical model, which attributes the instability to a
driving-induced heating, is presented.

Many nonlinear dynamical effects have been observed
before in FSRs, including auto-oscillations [15,16], opti-
cal cooling [17], frequency mixing [18,19], and bistability
[20–24]. The Suhl instability (of both first and second
orders) has been observed with transverse microwave driv-
ing, whereas parallel pumping instability has been observed
with longitudinal driving [25]. Applications of nonlinear-
ity for quantum data processing have been explored in
Refs. [26–33].

Heating a YIG sphere from room temperature to 400 K
by microwave driving having a power of 450 mW has
been reported in Ref. [34]. At a Curie temperature given
by Tc = 560 K, YIG undergoes a phase transition between
an ordered ferrimagnetic state (FS) and a disordered para-
magnetic state (PS). Thermal instability was observed in
a cavity magnetomechanical system [35]. Microwave os-
cillations induced by injecting spin-polarized current [36]
into a magnetic-multilayer structure have been reported in
Ref. [37]. Self-excited oscillations induced by ohmic heating
in a Y3Fe5O12/Pt bilayer nanowire have been investigated in
Ref. [38]. Imaging of heating induced by the spin Peltier effect
has been demonstrated in Ref. [39].

II. LOOP-GAP RESONATOR

With relatively low input power, the main mechanisms
responsible for the FSR nonlinear response are magnetic
anisotropy [40] and an exchange interaction [13]. Consider
a MW cavity mode having angular frequency ωe and an inte-
grated FSR having radius Rs. It is assumed that the applied
static magnetic field Hs is parallel to the easy axis. In the
Holstein-Primakoff approximation [41] (which assumes that
magnetization is nearly saturated), the Hamiltonian of the
system HD is expressed as [21,42]

h̄−1HD =ωeNe + ωsNs + KMN2
s

+ geff
(
A†

eAs + AeA†
s

)
, (1)

where Ne = A†
eAe (Ns = A†

s As) is a cavity mode (FSR Kit-
tel mode) number operator, ωs = γgHs is the Kittel mode
angular frequency, γg/2π = 27.98 GHz T−1 is the gyromag-
netic ratio, KM = h̄γ 2

g Kc1/(VsM2
s ) is the anisotropy-induced

Kerr frequency, Kc1 is the first-order anisotropy constant,
Vs = 4πR3

s /3 is the volume of the sphere, Ms is the
saturation magnetization, and geff is the cavity-FSR cou-
pling coefficient. For YIG at room temperature, Ms =
140 kA/m and Kc1 = −610 J/m3, hence KM = −2.4 ×
10−8 Hz × [Rs/(100 μm)]−3.

In the linear regime, where the Kerr nonlinearity can be
disregarded, the Hamiltonian HD (1) can be diagonalized.
The angular frequencies ω± of the two hybrid photon-magnon
eigenmodes are given by [43]

ω± = ωe + ωs

2
±

√(ωe − ωs

2

)2

+ g2
eff . (2)

Both angular frequencies ω± are positive provided that geff <√
ωsωe. Note that the superradiance Dicke instability occurs

in the ultrastrong coupling region where geff >
√

ωsωe [44].
In the rotating wave approximation (RWA) the Kerr coeffi-
cients K± of the hybrid modes having angular frequencies
ω± are given by Eqs. (A9) and (A10) of the Appendix [see
Eq. (A8)].
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FIG. 1. FSR-LGR coupling: (a) A sketch of the FSR made of
YIG having a radius of Rs = 1 mm that is integrated inside the
aluminum cylindrical LGR having a gap width of 0.3 mm. The
sphere is held by ceramic ferrules (CFs). A sapphire wafer (labeled
as S) is inserted into the gap to increase the capacitance. (b) The
numerically calculated magnetic field energy density distribution
(normalized with respect to the maximum value) corresponding to
driving at the resonance frequency ωe/(2π ) = 3.3 GHz. (c) A VNA
reflectivity |S11|2 measurement as a function of magnon frequency ωs

(proportional to the externally applied magnetic field). The coupling
coefficient geff is extracted from the theoretical fit (white dashed
lines) following Eq. (2).

In the current experiment, we explore the response for a
wide range of MW input powers Pp. We find that the response
is well described by the Hamiltonian HD provided that Pp

is sufficiently small. However, with sufficiently high Pp, the
FSR temperature T may exceed the Curie temperature Tc due
to MW absorption-induced heating. We study the response
of the FSR-LGR system to an injected monochromatic pump
tone having a frequency close to resonance. The off-reflected
power is measured using a spectrum analyzer (SA). We find
that there is a certain zone in the pump frequency–pump
amplitude plane, in which the resonator exhibits a limit-cycle
(LC) response resulting in self-sustained modulation of the
reflected power. The observed LC is attributed to thermal
instability (TI) [45].

A MW cavity made of an LGR allows achieving a rela-
tively large coupling coefficient geff [46,47]. The MW LGR,
schematically shown in Fig. 1(a), is made of a hollow concen-
tric aluminum tube having an inner and outer radii of RLGR =
1.7 and 3 mm, respectively, and a height of HLGR = 12 mm.
A sapphire strip of 260 μm thickness has been inserted into
the gap in order to increase its capacitance, which in turn
reduces the frequency fe of the LGR fundamental mode [ fe =
ωe/(2π ) = 3.3 GHz with sapphire] [48]. An FSR made of
YIG having a radius of Rs = 1 mm is held by two ferrules
inside the LGR. The static magnetic field Hs is applied per-
pendicularly to the LGR axis. The LGR-FSR coupled system
has been encapsulated in a metallic rectangular shield made
of aluminum. The cavity is weakly coupled to a loop antenna
(LA).

The numerically calculated magnetic energy density distri-
bution corresponding to the LGR fundamental mode is shown
in Fig. 1(b). The calculated density is homogeneous (�95%)
over the FSR volume, and it is well confined inside the LGR
inner volume. Note that for our device, the LGR inner volume,
which is given by πR2

LGRHLGR, is four orders of magnitude
smaller than the volume λ3

e , where λe = c/ fe is the free-space
wavelength corresponding to the LGR frequency fe, and c

is the speed of light in vacuum. Consequently, the coupling
coefficient geff can be made much larger than typical values
obtained with the commonly employed rectangular cavities
[28], for which the mode volume commonly has the same
order of magnitude as λ3

e .
Based on Eq. (2) of Ref. [28], together with the evaluated

energy density shown in Fig. 1(b), the calculated value of the
coupling coefficient is found to be geff = 176 MHz for the
LGR fundamental mode of frequency fe = 3.3 GHz. Alter-
natively, geff can be extracted from measurements of the MW
reflection coefficient |S11|2 as a function of the Kittel mode
frequency ωs/(2π ) and driving frequency ωNA/(2π ). Fitting
|S11|2, which is measured at a temperature of 3 K using a vec-
tor network analyzer (VNA), with Eq. (2) [see Fig. 1(c)] yields
the value geff = 200 MHz, which is fairly close to the value
obtained from simulation. Note that geff is only one order of
magnitude smaller than the threshold value corresponding to
the superradiance Dicke instability [44].

III. KERR COEFFICIENT AND NONLINEAR DAMPING

Cavity driving having an amplitude �p and angular fre-
quency ωp is taken into account by adding a term given
by h̄�p(A†

ee−iωpt + Aee−iωpt ) to the Hamiltonian HD (1). The
steady state solution of the driven system was calculated in
Ref. [40] for the case where damping is taken into account to
first order only. For that case the solution is found by solving
a cubic equation for the FSR dimensionless energy Es = 〈Ns〉
[given by Eq. (36) of Ref. [40]]. We find, however, that the
calculated steady state yields only a moderate agreement with
experimental data. Better agreement can be obtained by taking
into account nonlinear damping to cubic order [49]. In this
approach the cubic equation for Es becomes

(
δ′2

s + γ ′2
s

)
Es = η|�p|2, (3)

where δ′
s = δs − ηδe + 2KMEs, δs = ωs − ωp, and δe = ωe −

ωp are driving detuning angular frequencies, η = g2
eff/(δ2

e +
γ 2

e ), γe = γ1e + γ2e with γ1e (γ2e) being the external (intrinsic)
cavity damping rate, γ ′

s = γs + ηγe + γ3sEs, γs is the FSR
linear damping rate, and γ3s is the FSR cubic nonlinear damp-
ing coefficient. Note that |�p|2 is proportional to the driving
power Pp injected into the LA. Note also that when nonlinear
damping is disregarded (i.e., when γ3s = 0), Eq. (3) becomes
identical to Eq. (36) of Ref. [40].

VNA measurements of the reflection coefficient |S11|2 for
three different values of Pp are shown in Figs. 2(a)–2(c). For
the data presented in both Figs. 2 and 3, the radius of the
FSR is Rs = 0.1 mm. The theoretical fit shown in Figs. 2(d)–
2(f) is based on the cubic equation (3), which allows the
calculation of the dimensionless energy Es, and on Eq. (3)
of Ref. [28], which evaluates the reflection coefficient |S11|2
as a function of Es. The values of the parameters assumed
for the calculations are listed in the caption of Fig. 2. Note
the driving-induced blueshift observed in the magnetic res-
onance frequency [see Figs. 2(a)–2(c)]. This shift cannot be
accurately reproduced theoretically when nonlinear damping
is disregarded.
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FIG. 2. Reflection coefficient |S11|2 in dB units for three values of MW input power Pp. (a)–(c) present the experimental data corresponding
to MW input powers Pp of −20, −5, and +10 dBm, respectively. The second row [(c)–(e)] shows the corresponding theoretical fits that are
obtained from Eq. (3). The theoretical fit parameters are γ2e = 1.5 MHz, γe = 4 MHz, γs = 1 MHz, KM = 6.325 nHz, δe = 35 MHz, and
γ3s = 0.001 nHz. To obtain a proper fit, Ns and geff are taken as variable values varying as a function of Pp. For Pp = −20, −5, and 10 dBm,
Ns values are taken as 1 × 1019, 5 × 1019, and 8 × 1019 m−3, and geff values are taken as 14, 14, and 12 MHz, respectively.

IV. THERMAL INSTABILITY

Further insight can be gained by measuring the spectral
density ISA of the signal reflected off the LA using a SA (see
Fig. 3). We find that for Pp > Pc = 42.5 dBm, and for suffi-
ciently small detuning from resonance, the measured spectral
density ISA contains equally spaced sidebands (SBs) on both
sides of the driving frequency fp = ωp/(2π ) [see Fig. 3(a)].
We measure the SB spacing frequency ωSM/(2π ) as a func-
tion of the driving frequency fp and driving power Pp [see
Fig. 3(c)].

The observed equally spaced SBs are attributed to a ther-
mal instability mechanism that is discussed in Ref. [45]. The
phase transition occurring at the Curie temperature Tc between
the FS and the PS gives rise to a sharp change in the resonance
modes of the hybrid cavity-FSR system. Consider the case
where the frequency of the externally applied driving is tuned
very close to the frequency of one the hybrid system modes.
With a sufficiently high driving amplitude the temperature
T of the FSR may exceeds the Curie temperature Tc due to
driving-induced heating. For that case no steady state with
T < Tc (i.e., FS) exists. The transition from the FS to the
PS occurring at Tc is expected to give rise to a resonance
frequency shift. Consequently, the driving-induced heating is
expected to abruptly drop down, since above Tc the frequency
detuning between the continuous wave external driving and
the resonance frequency becomes larger (in absolute value).
Consider the case where the reduced heating gives rise to
a temperature drop below T < Tc. For this case, a steady
state with T > Tc (i.e., PS) also becomes impossible. In the
region where no steady state is possible, the temperature is
expected to oscillate around Tc. The frequency of temperature
oscillation can be determined from the spacing between the
measured SBs.

For the measurements presented in Fig. 3, the driving angu-
lar frequency ωp is tuned close to ω+. The analysis is greatly
simplified by disregarding the other hybrid eigenmode having
an angular frequency ω−. This approximation is applicable in
the strong coupling regime, for which the resonances having
angular frequencies ω± do not overlap [see Eq. (2)]. In this
approach the FSR-cavity system is treated as a single mode
having an angular frequency ω+ = 2π × 3.32 GHz, and Kerr
coefficient K+ = KM sin4(θg/2) [see Eq. (A9)]. The mode
damping rate γ+ = 30 MHz is expressed as γ+ = γ1+ + γ2+,
where γ1+ is the coupling coefficient between the driven mode
and the LA, and γ2+ is the mode intrinsic damping rate (note
that γ1+ = γ2+ for critical coupling).

To account for the observed SB, we consider the effect
of driving-induced heating on the FSR magnetic ordering.
The externally applied driving gives rise to a heating power
Q given by Q = 2h̄ω+γ2+|B|2, where B is the complex am-
plitude of the driven mode (note that nonlinear damping is
disregarded here). It is assumed that the FSR temperature T
is uniform, and that the cooling power due to the coupling
between the FSR and its environment at a base temperature
of T0 is given by H (T − T0), where H is the heat transfer
coefficient. The thermal heat capacity of the FSR is denoted
by C. It is assumed that all the parameters characterizing the
mode abruptly change at a critical temperature given by Tc. In
the adiabatic (diabatic) region, the mode linear damping rate
γ+ is much smaller (larger) than the thermal decay rate H/C.

In dimensionless form, the system’s time evolution is gov-
erned by [45]

Ḃ = wB − w1, (4)


̇ = σ |B|2 − wT
. (5)
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FIG. 3. Thermal instability. (a) Spectral density ISA of the signal
reflected off the LA, as a function of the detuning frequency fd,
for the driving frequency fp = 3.2224 GHz and normalized driving
power Pp/Pc = 1.288 specified by the black cross overlaid in (c).
(b) Spectral density ISA in dB as a function of the driving frequency
fp and detuning frequency fd for Pp/Pc = 1.7 [indicated by the
overlaid horizontal dashed line in (c)]. (c) The SB spacing frequency
ωSM/(2π ) in MHz as a function of driving frequency fp and nor-
malized driving power Pp/Pc. The overlaid blue (red) dashed line
represents the threshold condition EF = EcF (EP = EcP). The follow-
ing values are assumed for the calculations: ω+F/2π = 3.317 GHz,
ω+P/2π = 3.314 GHz, γ+F = 1.3 × γ+P, σF/wTF = 2.6 × σP/wTP,
(K+F/γ+F )(wTF/σF ) = 0.5, and K+P = 0.

The overdot denotes a derivative with respect to a dimen-
sionless time τ , which is related to the time t by τ = γ0t ,
where γ0 is a constant rate. The dimensionless complex fre-
quency w is given by w = [i(ωp − ω+ − K+|B|2) − γ+]/γ0,
the dimensionless driving amplitude w1 is given by w1 =
iγ −1

0

√
2γ1+�p, the dimensionless temperature 
 is given by


 = (T − T0)/(Tc − T0), the dimensionless heating coeffi-
cient σ is given by σ = 2h̄ω+γ2+γ −1

0 C−1(Tc − T0)−1, and the
dimensionless thermal rate wT is given by wT = (H/C)/γ0.

The normalized parameters w, w1, σ , and wT are assumed
to have a step function dependence on the temperature. Below
(above) the critical temperature Tc, i.e., for 
 < 1 (
 > 1),
they take the values wF, w1F, σF, and wTF (wP, w1P, σP,
and wTP), respectively. A steady state (i.e., time-independent)
solution below (above) the critical temperature Tc, i.e., in
the region 
 < 1 (
 > 1), is possible provided that EF <

EcF (EP > EcP), where EF = |w1F/wF|2 and EcF = wTF/σF

(EP = |w1P/wP|2 and EcP = wTP/σP) [see Eqs. (4) and (5) and
Fig. 4(b)]. Note that both EF and EP represent steady state

FIG. 4. Limit cycle. (a) Numerical integration of the equations
of motion (4) and (5) is performed with the following parameters:
Im(wF − wP ) = −0.1, Re(wF ) = −1, Re(wP ) = −1.5, σF = 0.01,
σP = 0.02, and wTF = wTP = 0.01. The values of driving detuning
frequency Im(wF ) and driving amplitude w1 = w1F = w1P are indi-
cated by the black cross in (b). The LC is shown in (a) as a closed
curve in the complex B plane, in (c) as a periodic function of 
 − 1
vs the normalized time τ , and in (d) as a periodic function |B|2 vs
τ . The plane of driving frequency and driving amplitude is shown in
(b). No steady state solution exists in the region between the blue and
red curves (labeled as A).

values of Eq. (4) for |B|2, whereas both EcF and EcP represent
values of |B|2, for which 
 = 1 is a steady state value of
Eq. (5).

Heat can be removed from the FSR by radiation, ex-
change with the surrounding air, and exchange with the
supporting ferrules, which hold the FSR inside the LGR.
The contributions to the total heat transfer coefficient H
due to radiation, air, and the ferrules are denoted by hradSs,
hairSs, and Hfer, respectively, where Ss = 4πR2

s is the FSR
surface area. The coefficient hrad is roughly given by hrad �
αYIGσSB(T 4

c − T 4
0 )/(Tc − T0), where αYIG is the averaged

FSR absorption coefficient in the spectral band correspond-
ing to room-temperature T0 � 300 K radiation (wavelength
λ � 10 μm), σSB = π2k4

B/(60h̄3c2) is the Stefan-Boltzmann
constant, kB is the Boltzmann’s constant, h̄ is Planck’s con-
stant, and Tc = 560 K is the YIG Curie temperature. The
absorption coefficient value αYIG � 10−1 [50] yields hrad �
2 W m−2 K−1. For ambient temperature and pressure hair �
15 W m−2 K−1, hence (hrad + hair )Ss(Tc − T0) � 0.6 mW for
a FSR having a radius Rs = 0.1 mm. In the region where SBs
are observed the induced heating power applied to the FSR is
about three orders of magnitudes larger, hence H � Hfer, i.e.,
both radiation and air have negligibly small contributions, and
thus heat is mainly removed by the ferrules.

The thermal heat capacity of a FSR having a radius Rs =
0.1 mm and volume Vs = 4πR3

s /3 is given by C = 2.9 ×
106 J K−1 m−3 × Vs = 1.2 × 10−5 J K−1 [51], hence the ther-
mal decay rate is roughly given by H/C � 320 Hz ×
(Qc/W)[(Tc − T0)/(260 K)]−1, where Qc is the heating power
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applied to the FSR, for which the steady state temperature is
Tc. Hence for the current device, (H/C)/γ+ � 10−5, and thus
the diabatic approximation is applicable.

A typical limit cycle (LC) in the diabatic regime is shown
in Fig. 4. The LC is calculated by numerically integrating the
equations of motion (4) and (5). The blue (red) cross shown
in Fig. 4(a) indicates the steady state value w1/w of B corre-
sponding to the FS (PS), i.e., for 
 < 1 (
 > 1), and the blue
(red) circle represents the relation |B|2 = EcF (|B|2 = EcP). In
the plane of driving frequency and driving amplitude, which
is shown in Fig. 4(b), the blue and red curves are derived
from the relations EF = EcF and EP = EcP, respectively. In the
region labeled as A, no steady state solution to Eqs. (4) and (5)
exists. The LC period time τLC can be calculated by integrat-
ing Eqs. (4) and (5) over a single period. In the diabatic limit,
one finds that τP � |wP|−1 + |wF|−1. The measured value of
LC frequency roughly agrees with this theoretical estimation.

V. SUMMARY

In summary, we demonstrate that a relatively large cou-
pling coefficient geff can be obtained by employing an LGR
having a mode volume much smaller than λ3

e . The response of
the system in the weak nonlinear regime allows the extraction
of the Kerr coefficient KM and the cubic nonlinear damping
rate γ3s. An instability is revealed by driving the system with
a relatively high input power. Above the instability threshold
the response of the system to an externally applied monochro-
matic driving exhibits self-modulation. The instability, which
is attributed to driving-induced heating, occurs in a region
where the response has no steady state value. Further study
will be devoted to developing sensors that exploit this insta-
bility for performance enhancement.
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APPENDIX: ROTATING WAVE APPROXIMATION

The Hamiltonian (1) can be expressed as

h̄−1HD = (A†
e A†

s )M

(
Ae

As

)
+ KMN2

s , (A1)

where the 2 × 2 matrix M is given by

M =
(

ωe geff

geff ωs

)
. (A2)

The eigenvalues ω± of the matrix M are given by ω± = ωm ±√
ω2

d + g2
eff [see Eq. (2)], where ωm = (ωe + ωs)/2 and ωd =

(ωe − ωs)/2. The matrix M can be expressed as

M = ωm

(
1 0
0 1

)
+

√
ω2

d + g2
eff

(
cos θ sin θ

sin θ − cos θ

)
, (A3)

where

tan θ = geff

ωd
. (A4)

The transformation (
Ae

As

)
= U

(
A+
A−

)
, (A5)

where

U =
(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)
, (A6)

which diagonalizes the linear part of HD, yields

h̄−1HD = ω+N+ + ω−N− + KM
(
A†

s As
)2

, (A7)

where As = A+ sin(θ/2) + A− cos(θ/2), and where N± =
A†

±A±.
In the rotating wave approximation (RWA) the Hamilto-

nian (A7) becomes

h̄−1HD = ω+N+ + ω−N−
+K+N2

+ + K−N2
− + KiN+N−,

(A8)

where the Kerr coefficients K± are given by

K+ = KM sin4 θ

2
, (A9)

K− = KM cos4 θ

2
, (A10)

and the intermode Kerr coefficient Ki is given by Ki =
KM sin2 θ .
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