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Anatomy of inertial magnons in ferromagnetic nanostructures
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We analyze dispersion relations of magnons in ferromagnetic nanostructures with uniaxial anisotropy taking
into account inertial terms, i.e., magnetic nutation. Inertial effects are parametrized by the damping-independent
parameter β, which allows for an unambiguous discrimination of inertial effects from Gilbert damping parameter
α. The analysis of magnon dispersion relation shows its two branches are modified by the inertial effect, albeit
in different ways. The upper nutation branch starts at ω = 1/β, the lower branch coincides with ferromag-
netic resonance (FMR) in the long-wavelength limit and deviates from the zero-inertia parabolic dependence
� ωFMR + Dk2 of the exchange magnon. Taking a realistic experimental geometry of magnetic thin films,
nanowires, and nanodiscs, magnon eigenfrequencies, eigenvectors, and Q-factors are found to depend on the
shape anisotropy. The possibility of phase-matched magnetoelastic excitation of nutation magnons is discussed
and the condition was found to depend on β, exchange stiffness D, and the acoustic velocity.
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I. INTRODUCTION

After the first description of the dynamics of the mag-
netization by Landau and Lifshitz [1], Gilbert proposed an
equation that contained a correction due to the precessional
damping [2,3]. Since then, the so-called Landau-Lifshitz-
Gilbert (LLG) equation is known to give an excellent
description of the dynamics of the magnetization, includ-
ing ferromagnetic resonance (FMR) and magnetostatic waves
[4,5], as well as the magnetization reversal [6,7]. Ferromag-
netic resonance and time-resolved magnetization measure-
ments allow its spatially homogeneous precession (k = 0),
but also nonuniform modes of the magnetization precession
(k �= 0, where k is the wave vector of spin waves) to be mea-
sured [8–10]. During the last decades, these techniques have
been advanced in the context of ultrafast demagnetization dy-
namics [11,12] that paved the way for the description of new
physics at the sub-picosecond regime. High-frequency reso-
nant modes of exchange magnons have been measured with
ultrafast time-resolved optical techniques [8,10,13]. There-
fore, the validity of the LLG equations has been confirmed
down to the picosecond timescale and below.

However, the limitations of LLG equations were estab-
lished in the stochastic derivation performed by Brown in a
famous paper published in 1963 [14]. This limit is due to
the hypothesis that the typical timescales of magnetization
dynamics are much longer than those of other degrees of
freedom forming the dissipative environment. In analogy to
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the common description of the diffusion process of a Brown-
ian particle, the inertial (momentum) degrees of freedom are
supposed to relax much faster than their spatial coordinates.
This means that the degrees of freedom related to the linear
momentum (in the case of the usual diffusion equation), or
to the angular momentum (in the case of the magnetization)
are included into the heat bath. As a consequence, the inertial
terms do not explicitly appear in the equations, but are consid-
ered to be part of the damping term [15].

The possibility of measuring the contribution to iner-
tial degrees of freedom led to a generalization of the LLG
equation with an additional term, incorporating the second
time-derivative of magnetization

ṁ = −γ m × Heff + αm × ṁ + βm × m̈, (1)

where m = M/Ms is the unit magnetization vector, Ms is
the modulus of the magnetization which remains constant,
γ = γ0μ0 is the product of the gyromagnetic ratio γ0, and the
vacuum permeability μ0, α stands for the Gilbert damping.
Inertial effects are characterized by the parameter β, which is
introduced in a phenomenological way, i.e., independent of α

and γ [16]. This generalized LLG equation has been derived
in the framework of different and independent theoretical
contexts [15,17–32]; its solutions were studied in a series of
publications [33–36]. The main consequence of inertia for the
uniform magnetization (magnon with the wave vector k = 0)
is the existence of nutational motion that is superimposed on
the precession. This leads to an appearance of the second
resonance peak at a higher frequency in FMR spectra. The
direct measurement of nutation was reported recently [37,38].

The goal of the present report is to study the consequences
of these inertial effects on the exchange magnons (i.e., k �= 0
modes), in the perspective of experimental studies. This work
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FIG. 1. (a) Inertial magnons propagating in ferromagnetic nanos-
tructures under an external magnetic field H result in complex
magnetization dynamics. (b) They can be decomposed in precession
magnon and nutation magnon circulating in opposite directions on
elliptical trajectories at different frequencies, giving rise to a charac-
teristic flower-shaped trajectory.

is restricted to the infinitesimal linear excitations governed by
exchange interaction in ferromagnets at the micromagnetic
limit. This work completes the first description published in
2015, Sec. IV of the remarkable work of Kikuchi and Tatara
[22], and independently reconsidered by Makhfudz et al. in
2020 [39].

The paper is organized as follows. Section II presents the
derivation of the linear magnetic excitations deduced from
Eq. (1). Section III describes the dispersion relation in a sim-
ple case of zero dipolar field (spherical symmetry). The first
consequence of the inertia is that the dispersion relation splits
in two branches: the lower one s1exp(ikz − iω1t ) (precession
magnons) and the upper one for s2exp(ikz − iω2t ) (nutation
magnons). The second consequence is that the quality factor
Q increases with the k-vector. Section IV generalizes the
description to the case of a uniaxial anisotropy quantified
by the dimensionless (shape) anisotropy parameter ξ . In the
anisotropic case the trajectories of both precession and nu-
tation magnons become elliptical and rotating in opposite
directions at each point in space. For a given k-vector the
magnetization vector corresponding to a superposition of both
magnons draws a typical trochoidal trajectory (see Fig. 1).
Section V discusses the conditions for phase-matched exci-
tation the nutation magnons by copropagating longitudinal
acoustic phonons, illustrated by the material parameters for
Gd-doped Permalloy thin films [13].

II. EXCHANGE MAGNONS IN FERROMAGNETIC
THIN FILMS WITH MAGNETIC INERTIA

We start with the LLG equation for unit magnetization vec-
tor m with an effective field Heff, which includes an exchange
interaction with stiffness D, an external field H = (Hx, 0, Hz )
and a demagnetizing field induced by the shape anisotropy
Hd = −MSN̂m. The demagnetization tensor N̂ depends on
the specific shape of the ferromagnetic sample. Hereafter we
assume the diagonal form of N̂ with diagonal elements Nx, Ny,
and Nz. Damping of the magnetization dynamics is described
by the conventional Gilbert term with parameter α. In addition

to the conventional LLG equation we take into account the
inertial effect characterized by the independent parameter β.
Then the inertial LLG equation (ILLG) takes the form of
Eq. (1) with Heff = H + D�m + Hd.

The coordinate system was chosen such that the external
field lies in the y = 0 plane, as is shown in Fig. 1. The
material is assumed to be magnetically isotropic, so that the
unperturbed magnetization vector also lies in the y = 0 plane.
We seek for time- and space-dependent solutions in the form
m = m0 + s(r, t) with spin-wave solutions

s(r, t ) = (sx, sy, sz ) exp (ikr − iωt ), (2)

propagating as a plane wave with a real wave vector k, see
Fig. 1. The substitution m(z, t) into Eq. (1) and its lineariza-
tion with respect to small perturbations sx, sy, sz results in a
homogeneous system of three linear equations

Â

⎛⎝sx

sy

sz

⎞⎠ = 0, (3)

where the matrix A is given by⎛⎝ −iω A12(ω, k) 0
A21(ω, k) −iω A23(ω, k)

0 A32(ω, k) −iω

⎞⎠, (4)

with coefficients Ai j (ω, k) defined as

A12 = mz(γ Dk2 + γ MSξyz − iαω − βω2) + γ Hz,

A21 = −mz(γ Dk2 + γ MSξxz − iαω − βω2) + γ Hz,

A23 = mx(γ Dk2 + γ MSξzx − iαω − βω2) + γ Hx,

A32 = −mx(γ Dk2 + γ MSξyx − iαω − βω2) − γ Hx,

(5)

where coefficients ξi j = Ni − Nj characterize the shape
anisotropy. Note that the matrix elements depend on the wave-
vector squared and not on its components, therefore all the
properties related to its eigenvalues are independent of the
propagation direction of the magnon. The condition for the
nontrivial solution of the homogeneous system (3) to exist,
i.e., det A = 0, gives rise to the secular equation

ω2 + A12(ω, k)A21(ω, k) + A23(ω, k)A32(ω, k) = 0, (6)

which is used to calculate the spin-wave dispersion relation
ω(k) for different shapes/symmetries, i.e., characterized by
different types of the N̂ tensor.

III. INERTIAL EXCHANGE MAGNONS IN SAMPLES
WITH SPHERICAL SYMMETRY

Examples of such symmetry are infinite homogeneous
isotropic ferromagnetic media, or any spherical body. In
these cases the demagnetization tensor N̂ is diagonal with
all nonzero elements equal 1/3, so that its contribution to
the magnetization dynamics (1) and correspondingly to the
wave matrix components (5) vanishes. The secular equation
(6) takes a concise form(

γ H + γ Dk2 − βω2 − iαω + ω
)

×(
γ H + γ Dk2 − βω2 − iαω − ω

) = 0. (7)

054425-2



ANATOMY OF INERTIAL MAGNONS IN FERROMAGNETIC … PHYSICAL REVIEW B 104, 054425 (2021)

Due to the symmetry of N̂ , Eq. (7), and hence all its roots,
remains independent on the direction of H and the equilib-
rium magnetization m0 with respect to the wave propagation
direction along the z-axis. For each positive wave number k,
the determinant (7) is solved for ω. Given that the presumed
solution has a form ∼ exp(ikz − iωt ), positive ω designates
the waves traveling in the positive direction. The two positive
roots corresponding to the first parenthesis in Eq. (7) have the
following forms:

ω1 = 1

2β
(−1 − iα +

√
4γ β(Dk2 + H ) + (1 + iα)2), (8)

ω2 = 1

2β
(1 − iα +

√
4γ β(Dk2 + H ) + (1 − iα)2). (9)

The first root is the lower magnon branch or precession,
slightly modified by the inertial term, and the second one
exhibits the inertial magnon branch or nutation. It is con-
venient to split these roots into real and imaginary parts:
ω1,2 = ω′

1,2 + iω′′
1,2. The Taylor series approximation of those

roots assuming the smallness of γ βDk2, γ βH, α � 1 results
in the following expressions for their real parts:

ω′
1 ≈ γ [Dk2 + H − 2βγ HDk2 + · · · ], (10)

ω′
2 ≈ 1

β
+ ω′

1. (11)

In this approximation the nutation magnon branch is sim-
ply shifted by 1/β with respect to precession magnon branch.
The validity of this approximation is illustrated in Fig. 2(a),
where frequencies f = ω/(2π ) of the exact roots given by
Eqs. (8) and (9) are depicted with solid lines, whereas dashed
lines represent the power series approximation of Eqs. (10)
and (11).

Lower branch emerges from the Larmor’s frequency γ H
and grows parabolically with k. The effect of inertia re-
duces the coefficient at the term quadratic in k. The upper
branch is simply displaced by +1/β and has the similar
shape. Imaginary parts of the roots ω′′

1,2 represent attenua-
tion of the corresponding magnetization dynamics in time
as ∝ exp(ω′′

1,2t ), and therefore they must be negative. In the
frequency domain they characterize the width � f = |ω′′|/π
[full width at half maximum (FWHM)] of the Lorentzian
spectral line

ω′′
1 ≈ −αγ [Dk2 + H − 6βγ HDk2 + · · · ], (12)

ω′′
2 ≈ −α

β
− ω′′

1 . (13)

Note that in the limiting case of Eqs. (12) and (13) field and
exchange stiffness have opposite effects on the attenuation of
the two magnon branches: they increase the attenuation in the
lower branch ω1 and decrease it for the inertial branch ω1. In
the other limiting case of large-field and large-k attenuation
of both branches tends to exp(− α

2β
t ). The damping for both

branches appears to be naturally proportional to the Gilbert
damping parameter α. A conspicuous decrease of nutation
linewidth ω′′

2 (k = 0) with growing α reported by Cherkasski
et al. [36] roots back to the parametrization of the nutation
phenomenon in terms of a product ατ , where τ denotes the
characteristic nutation lifetime. Within this parametrization,

(a)

(b)

(c)

FIG. 2. (a) Dispersion of the nutation magnon (red, magenta) and
precession magnon (blue, green). Dashed curves shows the approx-
imations by Eqs. (10) and (11). (b) Corresponding line widths. To
indicate the effect of inertia on the precession, dashed curves show
the line width without inertia β = 0. (c) Quality factors Q(k) for H
in the range from zero to 5 T. The curve 2 T corresponds to panels
(a) and (b). Dashed curve is the approximation given by Eq. (14)

a variation of α, while keeping τ constant, leads to the si-
multaneous decrease of the nutation frequency 1/β = 1/(ατ )
rendering the analysis of damping extremely difficult. An
alternative notation in terms of α and β, introduced in this
paper, resolves this problem and allows for an independent
investigation of inertial and damping effects.

Another parameter, which characterizes the resonant spec-
tral line centered at frequency f0, is its quality factor defined
as Q = f0/� f = ω′/(2ω′′). As can be seen from Eqs. (8) and
(9), in isotropic ferromagnets Q-factors for both branches co-
incide within the accuracy of ∼(ωα)2. The dependence of the
Q-factor on the wave number k looks counterintuitive in that
it essentially grows with k. Assuming for simplicity H = 0,
for small k the Q-factor can be approximated by expansion of
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FIG. 3. Q-factor dependencies of precession branches (blueish
lines) and nutation branches (reddish lines) and on k in a thin film and
a wire for β ranging from 0.1 ps to 0.5 ps and in-plane magnetization
m0 = (1, 0, 0) and field H = (Hx, 0, 0). In a film (left panel) the
Q-factor is plotted for two values Hx = 20 mT and 500 mT. In the
wire (right panel) the field was 500 mT, which ensures saturation of
magnetization

ω′ and ω′′ in the power series in k, which results in

Q(k) ∼ 1

2α

1 + γ βDk2

1 − γ βDk2
+ · · · ∼ 1

2α
(1 + 2γ βDk2). (14)

Exact values for the Q-factor in comparison to the estimate of
Eq. (14) are shown in Fig. 3 for the external field ranging from
0 to 5 T.

The applied field helps to increase the quality fac-
tor; the effect for small k can be approximated as
Q ∼

√
1 + 4γ βH + 4Dβγ k2/(2α).

IV. INERTIAL EXCHANGE MAGNONS IN SAMPLES
WITH CYLINDRICAL SYMMETRY

Examples of such bodies are disks, wires, infinite plates,
and films. Axial symmetry about the z-axis retains the di-
agonal form of N̂ with the diagonal elements satisfying the
following conditions: Nx = Ny and Nx + Ny + Nz = 1. As a
result, the components of the matrix Â given by Eq. (5) acquire
terms proportional to γ MS . The lack of symmetry makes the
magnon propagation dependent on the orientation of vectors
m0 and H with respect to the z-axis. We consider two limiting
cases: collinear arrangement with m0 parallel to the axis of
symmetry z (
 = � = 0 in Fig. 1) and orthogonal arrange-
ment with m0 parallel to the x-axis and 
 = � = π/2. In the
collinear case the demagnetizing field acts simply against the
external field, hence the secular equation remains similar to
Eq. (7), but with field H substituted with the reduced field
H ′ = H − ξMS:

(γ H ′ + γ Dk2 − βω2 − iαω + ω)

× (γ H ′ + γ Dk2 − βω2 − iαω − ω) = 0, (15)

where ξ = Nz − Nx = Nz − Ny characterizes the shape effect
on demagnetizing, so that in an infinite wire ξ = −1/2 in the
spherical symmetric (or unbounded) body ξ = 0 and in the

infinite film ξ = 1. Correspondingly the roots to Eq. (15) are
similar to the ones given in Eqs. (8) and (9) with modified field

ω1 = 1

2β

(
−1 − iα +

√
4γ β(Dk2 + H ′) + (1 + iα)2

)
,

(16)

ω2 = 1

2β

(
1 − iα +

√
4γ β(Dk2 + H ′) + (1 − iα)2

)
. (17)

At the low-k limit the lower branch roughly tends to the
Larmor’s frequency γ (H − ξMS ) and the upper branch limit
is 1/β + γ (H − ξMS ), which is similar to the case of spher-
ical symmetry, but with modified field. In the orthogonal
configuration with m0 and H perpendicular to the axis of
symmetry, the roots of the determinant (4) generally cannot
be found in an analytical form. Therefore we first consider an
approximate solution, and then describe briefly the numeric
algorithm for obtaining the dispersion curves. By neglecting
the Gilbert attenuation (α = 0), the approximate solutions to
Eq. (4) for the in-plane magnetization and field can be found
in a concise analytical form:

ω1,2 = 1

β
√

2
{2γ β(Dk2 + H ) + γ βξMs + 1,

∓
√

4γ β(Dk2 + H ) + (γ βξMs + 1)2}1/2. (18)

Here indices 1 and 2 denote the frequencies of precession
and nutation magnons, respectively. The minus sign prior to
the square root in Eq. (18) corresponds to the precession
branch ω1; the plus sign denotes the nutation branch ω2.
Damping gives rise to the imaginary part of solutions (18),
which for the small k limit and in-plane applied field Hz = 0,
Hx = H can be approximated as ω1

′′ ≈ −αγ [ξMS (m2
x/2 −

m2
z ) + Hmx] with the influence of β negligible in this approx-

imation, as shown in Fig. 3. Components mx, mz minimize
the free energy MS (m2

xNx + m2
z Nz )/2 − Hmx = min. In a film

mx = 1, mz = 0, in a wire mx grows with field as mx = 2H/MS

for 0 < H < MS/2 and mx = 1 for H � MS/2. The quality
factor of the low-frequency branch is given by

Q⊥|k=0 ≈
√

H (ξMSmx + H ) + ξ 2M2
S m2

z

α
(
ξMSm2

x + 2Hmx − 2ξMSm2
z

) . (19)

In the case of spherical symmetry with ξ = 0 the quality
factors of both branches are equal and tend to 1/(2α) as shown
in Fig. 2(c), whereas in a film (ξ = 1) or wire (ξ = −1/2) the
quality factor of the precession magnon decreases at small k
as shown in Fig. 3. In the in-plane magnetized film mz = 0 the
quality factor for the precession magnon with wave number k
reduces to

Q⊥| f =
√

D2k4 + Dk2(MS + 2H ) + HMS + H2

α(2Dk2 + MS + 2H )
. (20)

Similarly to the case of spherical symmetry, in films and wires
the inertial effect increases the quality factors of both branches
as shown in Fig. 3.

The numerical procedure for building the dispersion re-
lations of the magnonic modes for nonzero α or arbitrary
orientation of the external field H starts with the calculation of
the stationary equilibrium magnetization m0 = (mx, my, mz ).
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This can be done by solving Eq. (1) in its stationary form, i.e.,
with all time derivatives set to zero. In a thin film, for exam-
ple, quantities Hi and mj are related by MSmxmz + Hxmz −
Hzmx = 0. Thus obtained stationary magnetization compo-
nents are then substituted into Eqs. (5) and (4). At some fixed
small k the determinant (4) as a function of complex-valued
ω possesses two minima, which correspond to the precession
and nutational branches. Their exact locations can be eval-
uated by a numerical routine which minimizes the absolute
value of the determinant (4) in the vicinity of the guess values
for those branches, for example, given by Eqs. (21) and (22).
Then we give k a small increment and repeat the extremum
search using the ωs obtained at the previous step as guess
values and so on. As a result, the calculated values for ω1

and ω2 follow the dispersion curves of both branches. Note
that for nonzero α roots ω1,2 possess imaginary parts, which
determine the line width and Q-factor for each mode. Let us
consider the magnetization behavior in a thin film in more
detail. For this geometry N̂ possesses the only a nonzero
component Nz = 1, and correspondingly, ξ = 1. In the small-
k limit, the lower branch approaches the Kittel’s frequency
ωFMR = γ

√
H (H + MS ) from below as β, k → 0:

ω1 ≈ ωFMR − 1
2γωFMR(2H + MS )β + · · · . (21)

The effect of the demagnetizing field on the inertial branch
is exhibited by an upward shift by 1

2γ MS; whereas the effect
of inertia is the opposite:

ω2 ≈ 1

β
+ γ H + 1

2
γ MS −

(
ω2

FMR + 1

8
γ 2M2

S

)
β + · · · .

(22)

For the orthogonal configuration, when both m0 and H
lie in the film plane, we can estimate the trajectories of the
magnetization dynamics of both modes for small k and small
α. For each root given by Eq. (18) we solve the homogeneous
equation for perturbations s (3). Normalization of the solu-
tions can be chosen in an arbitrary way, here for simplicity
we define sz = 1. In orthogonal geometry the sx component is
obviously negligible or equals zero, so the system reduces to
two equations in sy and sz. The results shown as a power series
expansion for small inertia βω � 1 for the precession

sp =

⎛⎜⎝ 0

−i
√

1 + ξMS

Dk2+H

(
1 + βγ ξMS

2

)
1

⎞⎟⎠ exp(−iω1t ), (23)

and nutation

sn =
⎛⎝ 0

i(1 − βγ ξMS/2)
1

⎞⎠ exp(−iω2t ), (24)

with the parameter of anisotropy ξ = 1 for a thin film normal
to the z-axis and ξ = −1/2 for a thin wire spread along the
z-axis. Both perturbations exhibit elliptical polarization within
the (x′, y′) plane. Precession trajectory is deformed by the de-
magnetizing effect so that the y-axis of the ellipse is stretched
with the

√
1 + MS/H factor due to demagnetizing effect, and

in addition by a factor of 1 + ξγ βMS/2 on account of the
inertial effect. On the contrary, the nutation ellipse is squeezed
along the y-axis by the product of both parameters βξ as

(a)

(b)

FIG. 4. Ratio of the polarization axes for the external field of
0.1 T, 0.2 T, and 1 T. H and m0 are parallel to the inward normal
to the figure plane.

1 − ξγ βMS/2. The ellipticity of the lower branch depends on
the external field (23), whereas that of the upper branch in this
approximation shows no dependence on the field. The signs
of the sy components are opposite for nutation and precession;
this indicates that they are rotating in the opposite directions.
Exact polarizations can be found numerically for a reasonable
set of material parameters and fields, as is shown in Fig. 4.

V. EXCITATION MECHANISMS OF INERTIAL
EXCHANGE MAGNONS

The only experimental evidence of inertial effects in fer-
romagnets has been reported for k = 0 nutation mangons
in Py-thin films resonantly excited with a magnetic field of
an intense quasimonochromatic THz pulse [37]. To excite
k �= 0 exchange magnon modes one would need to have
either spatially localized and instantaneous stimuli [10] or
any other source of effective magnetic field characterized by
spectral and spatial overlap with investigated magnon modes.
The letter can be provided through ultrashort large-amplitude
acoustic pulses [40,41] producing effective magnetoelastic
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fields rapidly varying in time and space [42]. Acoustic pulses
propagating through a thin ferromagnetic sample at an acous-
tic velocity v are quantified by a linearized dispersion relation
ωac = vk. Crossing between acoustic and magnon branches,
i.e., satisfying the phonon-magnon phase-matching condition,
usually facilitates the acoustic excitation of magnetization
dynamics [43,44]. A question arises under which condi-
tions the crossing between dispersion curves for longitudinal
phonons and inertial magnons can occur. Whereas for realistic
magnetic fields the acoustic dispersion always intersects the
lower dispersion branch at a frequency close to FMR fre-
quency [42]; the crossing of the upper nutation brunch is less
obvious.

It is possible to quantify the criterion for magnetoelastic
crossing with nutation magnons analytically. To do that we
note that for larger wave numbers k satisfying Dk2  H, MS

the exchange term plays the dominant role and the asymptotic
behavior for both branches becomes linear in k:

ω1,2 ≈ ∓ 1

2β
+ k

√
γ D

β
. (25)

It follows from Eq. (25) that the condition for the nutation
magnon branch to intersect the acoustical dispersion relation
ωac(k), requires the asymptotic slope of ω2(k) to be smaller
than the acoustic velocity v:

√
γ D

β
< v. (26)

This expression shows that for a given β the magnetoelas-
tic crossing is facilitated by small exchange stiffness D and
small acoustic velocity. This approximate analysis breaks
down for acoustic frequencies in above-THz spectral range,
where the acoustic dispersion starts deviating from its linear
approximation.

Figure 5 highlights the remarkable role of exchange stiff-
ness to achieve the dispersion crossing between nutation
magnons and longitudinal acoustic phonons. Doping Py thin
films with gadolinium has been shown to gradually reduce
the exchange stiffness upon Gd-concentration from 300 to
100 [meV × Å2] [13]. For a fixed value of inertial parameter
β = 0.276 ps, nutation magnons for pure Py samples do not
display any crossing with acoustic phonons within the dis-
played range of k-vectors but the Gd-doped Py with 13% Gd
concentration does. The nutation magnon-phonon crossing
point occurs at 0.75 THz frequency and k = 0.85 nm−1 (with
a magnon wavelength of approximately 5 nm), i.e., magnon
parameters readily accessible in ultrafast magnetooptical ex-
periments [10].

FIG. 5. The magnetoacoustic phase-matching condition for nuta-
tion magnons can be tuned via the reduction of exchange stiffness in
Gd-doped Py samples. Gd concentration x varies from 0 to 13%. The
dashed line displays the acoustic dispersion relation ωac/(2π ). Mag-
netoelastic coupling with the precession mangon is efficient when the
dashed line lies within the pink tinted area. Material parameters are
taken from Ref. [13] and β = 0.276 ps.

VI. CONCLUSION

In this paper we theoretically studied exchange inertial
magnons in ferromagnetic samples of different shapes under
the action of an external magnetic field. The parametriza-
tion of magnetization dynamics in terms of two independent
parameters, the Gilbert damping α and the inertial time β,
allows for unambiguous discrimination between the inertial
and damping effects as well as their impact on both branches
of magnon dispersion. Inertial effects are found to strongly
effect not only the frequencies (magnon eigenvalues) of both
branches but also to result in a monotonous increase of the
Q-factor as a function of the external magnetic field and
magnon k-vector. The two magnon branches are found to
process in opposite directions along the elliptical trajectories
with the perpendicularly oriented long axis of the ellipses
(magnon eigenvectors). Their ellipticity is found to depend
on the components of the demagnetizing tensor. An analytical
criterion for the existence of phase-matched magnetoelastic
excitation of nutation magnons has been derived and illus-
trated for Gd-doped permalloy samples with tunable exchange
stiffness.
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