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Orthonormal wave functions for periodic fermionic states under an applied magnetic field
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We report an infinite number of orthonormal eigenfunction bases for the quantum problem of a free electron
in presence of an applied external magnetic field, suitable to describe doubly periodic electronic densities. The
completeness of these bases is shown here and so, a single basis, labeled by the number of magnetic fluxons
trapped in the unit cell (integer p), expands any function in the unit cell. The present framework unveils for
the electronic density an egg-box pattern that displays fractional charge and magnetic flux. In case of electrons
confined to the lowest Landau level we obtain an analytic expression for the local magnetic field created by
their own motion and find that it yields an attractive magnetic interaction. The well-known de Haas–van Alphen
oscillations are retrieved, thus showing the correctness of the present theoretical framework.
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I. INTRODUCTION

“There is hardly a single-electron problem in quantum
mechanics which has attracted so much and continuous in-
terest for about seven decades as that of Bloch electrons in
a magnetic field,” according to Rössler and Suhrke [1]. The
problem of free electrons in a magnetic field has been in-
vestigated since the early days of quantum mechanics when
Landau explained the diamagnetism of metals [2]. They are
part of the educational training of any physics student [3–7]
and remain of direct interest to explain many measurements,
such as magnetotransport and the de Haas–van Alphen effect,
the latter allowing for the determination of Fermi energy
properties [8–10]. New and startling phenomena [11], such
as the quantum Hall effect [12,13], keep a vivid interest in the
understanding of the behavior of electrons in presence of an
applied magnetic field. The Bloch electrons are more complex
than the free electrons as they fill states that are eigenfunctions
of a Hamiltonian with a periodic potential, whose lattice rep-
resents an underlying solid. Interestingly, periodic states can
be formed from electrons that are not submitted to a periodic
potential and are nearly free. They are found in nature, such
as the Wigner crystal [14,15] that also exists in the presence
of a magnetic field [16].

The search for Wannier functions for electrons in presence
of both a periodic potential and of an applied magnetic field
has been the subject of investigation in the past [17–21]. The
Wannier functions are sums over Bloch states which form a
complete set of orthonormal functions associated to the unit
cell of the underlying lattice. They are localized in the unit cell
and rapidly go to zero away from the cell. The construction
of Bloch-Wannier states in the limit of a vanishing periodic
potential [17,19,20] is useful since in this limit the task of
deriving the states is simplified. From this perspective the
free-electron Schrödinger Hamiltonian in a magnetic field is

the limiting case, however, not all of its solutions are periodic,
only selected ones are. Hence, general properties of the Bloch-
Wannier states [21] do not generally apply for the free case as
periodicity is absent at the Hamiltonian level.

Wannier [20] and Thouless [19] found that Bloch-Wannier
functions for free electrons only exist for selected values of
the applied magnetic field, but not in general. Their analysis
was done in the symmetric gauge [ �A = (−H3x2/2, H3x1/2),
the magnetic field H3 is along the direction x̂3, which is per-
pendicular to the plane of motion (x1, x2)]. From this point of
view their choice of the symmetric gauge is a natural one since
the eigenfunctions are based on theta functions, which feature
a Gaussian behavior along both the x1 and x2 directions, there-
fore being localized in the unit cell.

In this paper we obtain the eigenfunctions, orthonormal in
the unit cell, using the Landau gauge [ �A = (−H3x2, 0, 0)]. We
do not call them Bloch-Wannier states because our analysis is
restricted to free electrons. It is well known that free-electron
solutions of the Schrödinger Hamiltonian in the Landau gauge
display periodicity only along one of the directions but not
in the other one, where they are harmonic oscillator eigen-
functions [see Eq. (9)] and, so, expressed in terms of Hermite
polynomials. In other words these eigenfunctions are plane
waves along one direction (x1) and display Gaussian behavior
in the other one (x2). This lack of periodicity along one of the
directions has been an impediment to the use of the Landau
gauge for the purpose of obtaining Wannier-type functions,
but this is just an apparent difficulty which is overcome here.

The orthonormal bases found here can only exist for se-
lected values of the flux trapped in the unit cell, similarly to
Wannier’s and Thouless’ eigenfunctions [19,20]. The Wannier
and Thouless investigation is limited to electrons confined to
the ground state, namely, to the lowest Landau level, whereas
here all Landau levels are included. From this perspective the
present orthonormal bases do form complete sets whereas the

2469-9950/2021/104(5)/054423(14) 054423-1 ©2021 American Physical Society

https://orcid.org/0000-0001-5435-8022
https://orcid.org/0000-0001-7207-7697
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.054423&domain=pdf&date_stamp=2021-08-16
https://doi.org/10.1103/PhysRevB.104.054423


EDINARDO I. B. RODRIGUES AND MAURO M. DORIA PHYSICAL REVIEW B 104, 054423 (2021)

FIG. 1. The spatial electronic density in the unit cell (x1/L1, x2/L2) for the case of the completely filled first Landau levels (n = 0, sum
over q). The number of trapped magnetic fluxons is equal to the number of electrons p, and the plots are shown from left to right according to
p = 1, 2, 3, and 4.

Wannier and Thouless bases do not since from the very be-
ginning the contributions of higher Landau levels are missing
in their work. In power of these bases we unveil proper-
ties of the electronic density, i.e., doubly periodic spatial
arrangements with fractional charge and flux patterns. Hence,
the present Landau gauge orthonormal bases, expressed in
terms of Hermite polynomials, bring a different insight into
the understanding of doubly periodic free-electron states in a
magnetic state that advances over previous studies [17–21].

In this paper we show the remarkable fact that fractional
effects arise from free electrons in a magnetic field under the
sole hypothesis of double periodicity. These properties have
not been reported in previous studies [17–21]. We also report
another property, i.e., of an attractive magnetic interaction in
case the electrons are confined to the lowest Landau theory.
There we show that the local magnetic field also displays
fractional patterns. The correctness of the present theoreti-
cal approach is confirmed by the derivation of de Haas–van
Alphen oscillations from it. The fractional effects can be di-
rectly visualized in the spatial electronic density. Figures 1
and 2 summarized these results through the examples of p
electrons and a single electron in the unit cell, respectively.
The former corresponds to a completely filled lowest Lan-
dau level and the latter to a partially filled lowest Landau

level with only one electron present. In both situations there
are p trapped magnetic fluxons in the unit cell (� = p�0,
�0 ≡ hc/e, e the electronic charge); the applied field is H3 =
�/(L1L2) and (L1, L2) are the lengths of the unit cell. Re-
markable egg-box patterns are seen in Figs. 1 and 2 which
show the existence of fractional structures, which correspond
to the p2 and p maxima (minima), respectively. Each of the p2

structures seen in Fig. 1 can be regarded as 1/p of an electron
(or flux) as their sum must recover the p electrons (fluxons)
present in the unit cell. Similarly, the electronic density in
Fig. 2 shows p zeros although there is only one electron in
the cell. Thus, each zero of the electronic density corresponds
to the 1/p fraction of an electron and since there are p of
them, the single electron is recovered. Figure 3 just extends
the results shown in Fig. 1 to higher Landau levels. There
are n + 1 fully filled Landau levels, and still the electronic
density shows p2 maxima (or minima) independent of n.
The total number of electrons (and fluxons) is N = (n + 1)p.
Hence, the ratio between the total number of electrons and
the number of observed electronic density maxima (minima)
N/p2 is (n + 1)/p. Notice that the number of electrons N and
the number of fluxons in the unit cell p are two independent
variables.

FIG. 2. The spatial electronic density is shown in the unit cell (x1/L1, x2/L2) for the case of the partially filled first Landau levels (n = 0,
q = 0). The number of trapped magnetic fluxons is p whereas there is only one electron in the unit cell. The plots are shown from left to right
according to p = 1, 2, 3, and 4.
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FIG. 3. The spatial electronic density 〈�|ρp|�〉, obtained from Eq. (41), is shown in the unit cell x1/L1, (x2/L2) for the case of completely
filled Landau levels. The rows correspond to the sum over Landau levels n′ = 0, 1, n′ = 0, 1, 2, and n′ = 0, 1, 2, 3 from top to bottom, and are
associated to the maximum Landau level n = 1, 2, and 3, respectively. The columns run from left to right the number of electrons in the unit
cell, p = 1, 2, 3, and 4, which is the same as the number of trapped flux. Then the plots are labeled by (p, n) where p and n are integers and the
total number of electrons associated to each one is N (p, n) = (n + 1)p. Interestingly, the density shows p2 maxima (or minima) independent
of n, the number of filled Landau levels. Hence, the ratio between the number of electrons and the number of density maxima (minima) is
given by (n + 1)/p. The ratios of each of the plots displayed are given in Table I.

An interesting attempt to understand periodic single-
electron solutions in presence of an applied field and of a
periodic potential has been developed by Harper [22], who
proposed a tight-binding model, which is a simplified version
of the Schrödinger equation. The position space is discretized
and one seeks solutions just at the points of this tight-binding
lattice. The tight-binding lattice adds an extra parameter inde-
pendent of the periodic length of a possible periodic potential.
The Harper’s tight-binding lattice can be regarded as a way to
solve the Schrödinger equation in the limit that the involved
distances are much larger than the tight-binding lattice. This
means that the true Schrödinger equation solution must be

retrieved, in the limit that the tight-binding cell shrinks to
zero, but this limit is not well defined in Harper’s equation.
In case the magnetic flux trespassing the tight-binding cell
is a rational number, this equation yields the so-called Hof-
stadter’s butterfly spectrum [23,24]. The obtainment of the
Hofstadter spectrum directly from the Schrödinger equation
in the presence of a periodic potential is possible [8] but this
hardly proves that the study of solutions of Harper’s equation
exhausts those of the Schrödinger equation.

The paper is organized as follows. In Sec. II we ob-
tain the orthonormal in the unit-cell eigenfunctions of the
Scrödinger equation. Section III provides the diagonalization
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of the free-electron Hamiltonian using the second quantiza-
tion formalism. The second quantization formalism is the
venue to obtain the spatial electronic density. In Sec. III A
the many-electron wave function is obtained and formulas
for the spatial electronic density are given. Section IV studies
the curious case when the local magnetic field created by the
motion of the electrons is taken into account. In case the
electrons are confined to the lowest Landau level (n = 0),
the magnetic energy due to their motion is found to give a
negative contribution. This shows that for this situation there
is a magnetic attraction between the electrons. For this study
we apply the so-called first-order equations [25], first used
by Abrikosov to discover vortices in superconductors [26]. In
fact, the present orthonormal functions stem from Abrikosov’s
solution for the vortex lattice [26]. Finally, in Sec. V we
present our conclusions. We leave for the Appendices the
treatment of some aspects of the problem. The proof that the
eigenfunctions form a complete set is given in Appendix A.
In Appendix B we show that the boundaries of the unit cell
do not contribute to the kinetic energy due to the periodicity
of the lattice. Finally, in Appendix C we retrieve here the
well-known properties of the de Haas–van Alphen effect, such
as the periodicity of the energy with respect to the applied field
H3, and also with respect to 1/H3, that allows for the measure-
ment of the Fermi surface area [27,28]. We also retrieve the
magnetization M, which is a thermodynamic function of state
[4–7].

II. PERIODIC SOLUTIONS FOR THE SCHRÖDINGER
EQUATION OF A FREE ELECTRON

IN A MAGNETIC FIELD

In this section we obtain the doubly periodic Landau gauge
orthonormal eigenfunctions for free electrons in presence of a
magnetic field H3. Electrons are taken as spinless fermions for
simplicity. The Schrödinger Hamiltonian is well known and
given by

1

2m
�D2ψ = Eψ, (1)

where �D = x̂1D1 + x̂2D2 + x̂3D3. The covariant derivative is
Dj ≡ −ih̄∇j − (e/c)Aj , j = 1, 2, and 3, e is the electron
charge, and Aj is the vector potential �∇ × �A = x̂3H3. Uniaxial
symmetry is assumed and so, there is no derivative along
x̂3 since A3 = 0. Only the derivatives D1 and D2 remain
and so, the index is limited to j = 1 and 2. We assume the
simplest possible behavior along the third direction, namely,
of no dependence on x3: D3 = 0. Hence, states are solely
described by the coordinates perpendicular to the direction
of the applied field ψ = ψ (x1, x2). A rectangular unit cell
in this plane (x1, x2) is assumed with dimensions L1 and L2.
We seek periodic states on this lattice and for this reason the
translations x1 → x1 + L1 and x2 → x2 + L2 are studied such
that the electronic density |ψ (x1, x2)|2 be periodic. This means
to impose quasiperiodicity along the coordinate x1,

ψ (x1 + L1, x2) = eiη1ψ (x1, x2), (2)

as the phase eiη1 does not affect the periodicity condition
|ψ (x1 + L1, x2)|2 = |ψ (x1, x2)|2. Similarly the periodicity
along the coordinate x2, |ψ (x1, x2 + L2)|2 = |ψ (x1, x2)|2, is a

consequence of the demand that

ψ (x1, x2 + L2) = eiη2ψ (x1, x2), (3)

where eiη2 is an arbitrary phase.
The general solution of Eq. (1) in the Landau gauge is well

known [3–7]: ψ ≡ ψn,k (x1, x2) = eikx1 fn(x2) where fn(x2) is
obtained below. We briefly review its derivation for later pur-
poses. There are two quantum indices, k and n, where the latter
index defines the Landau level. Equation (1) acquires the form[

− h̄2

2m

∂2

∂x2
2

+ 1

2
mω2

c (x2 − x′
2)2

]
fn(x2) = En fn(x2), (4)

where x′
2 = −(h̄ck)/(eH3) and ωc is the Larmor frequency

given by

ωc = eH3

mc
. (5)

The analogy of Eq. (4) with the harmonic oscillator yields the
eigenvalues as

En = h̄ωc
(
n + 1

2

)
, n = 0, 1, 2, 3, . . . (6)

and shows that the Landau levels are equally spaced in energy
and separated by h̄ωc. The solution for fn(x2) is given by

fn(x2) = AnHn(x̄2)e− 1
2 x̄2

2 , (7)

where An is a constant to be determined, Hn(x̄2) are the Her-
mite polynomials, and the variable x̄2 is defined by

x̄2 ≡
√

eH3

h̄c

(
x2 + ch̄

eH3
k

)
. (8)

Hence, the wave function is given by

ψn,k (x1, x2) = Aneikx1 Hn(x̄2)e− 1
2 x̄2

2 . (9)

The wave functions ψn,k (x1, x2) [Eq. (9)] are orthogonal, and
satisfy the following condition:∫

d2x ψ∗
m,k′ψn,k = δ(k − k′)δnm. (10)

Notice that the orthogonality expressed in Eq. (10) refers to
integration in the whole plane space and not to the unit cell.
Nevertheless, we check its validity by taking ψm,k′ and ψn,k ,
and computing the integral∫

d2x ψ∗
m,k′ψn,k = AmAnIx1 Ix2 , (11)

where

Ix1 =
∫ +∞

−∞
dx1ei(k−k′ )x1 (12)

and

Ix2 =
∫ +∞

−∞
dx2Hm(x̄′

2)Hn(x̄2)e− 1
2 (x̄′2

2 +x̄2
2 ), (13)

such that x̄2 is given by Eq. (8) and x̄′
2 is equiv-

alent to Eq. (8) for k′. The integration in x1 yields
that Ix1 = 2πδ(k − k′). Then, x̄′

2 = x̄2 and deriving both

sides of Eq. (8) gives that dx2 =
√

h̄c
eH3

dx̄2. Hence, Ix2 =√
h̄c

eH3

∫ ∞
−∞ dx̄2Hm(x̄2)Hn(x̄2)e−x̄2

2 . One obtains that Ix2 = 0 if
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m �= n and Ix2 =
√

h̄c
eH3

2nn!
√

π if m = n. Combining these

results in Eq. (11) gives the constant of Eq. (9):

An =
(

eH3

4π2h̄c

)1/4

(2nn!
√

π )−1/2. (14)

We search for periodic eigenfunctions in both directions
that must stem from linear combinations of Eq. (9) and
for this we must introduce the free parameters αn,k . Along
x1 the quasiperiodicity is easily checked: ψn(x1 + L1, x2) =
eikL1ψn(x1, x2) = AneikL1

∑
k αn,keikx1 Hn(x̄2)e− 1

2 x̄2
2 , and eiη1 =

eikL1 . The quasiperiodicity along x2 is only possible in case
there is a sum over k,

ψn(x1, x2) =
∑

k

αn,kψn,k (x1, x2). (15)

However, the quasiperiodicity along x1 limits k to the follow-
ing values:

k = 2π

L1
l, l = 0,±1,±2, . . . . (16)

In this case, eiη1 = 1, and the coefficients are reduced to the
discrete set αn,k = αn,l .

Remarkably, the quasiperiodicity condition along x2 de-
mands the quantization of the magnetic flux in the unit cell
and, so, the integer p enters into the theory at this point. Then,
the number of coefficients in Eq. (15) becomes limited to just
p free coefficients since it must hold that

αn,l+p = αn,l . (17)

To check this, write the wave function as

ψn(x1, x2) =
∑

l

αn,lψn,l (x1, x2), (18)

where

ψn,l (x1, x2) = Anei 2π
L1

lx1 Hn(gl (x2))e− 1
2 (gl (x2 ))2

(19)

with gl (x2) ≡
√

2πH3
�0

(x2 + �0
H3L1

l ). To calculate ψn(x1, x2 +
L2), first notice that under the flux quantization condition one
obtains that L2 + (�0/H3L1)l = (�0/H3L1)(l + p). Next,

write ei 2π
L1

lx1 as e−i 2π
L1

px1 ei 2π
L1

(l+p)x1 to obtain that ψn(x1, x2 +
L2) = e−i 2π

L1
px1 An

∑
l cn

l+pei 2π
L1

(l+p)x1 Hn(ḡl (x2))e− 1
2 (ḡl (x2 ))2

with ḡl (x2) =
√

2π p
L1L2

(x2 + L2
p (l + p)). Define l ′ = l + p

to retrieve the original form, namely, ψn(x1, x2 + L2) =
e−i 2π

L1
px1ψn(x1, x2). Thus, it holds that η2 = − 2π

L1
px1. For this

reason we introduce p and l ′ → l into the wave function.
Thus, under the assumption that the coefficients are limited to
a set, as stated in Eq. (17), the wave function can be expressed
in terms of p instead of H3. Then the wave function, as given
by Eq. (18), becomes

ψn(x1, x2, p) =
∑

l

αn,lψn,l (x1, x2, p),

where

ψn,l (x1, x2, p) = Anei 2π
L1

x1 Hn(ḡl (x2))e− 1
2 (ḡl (x2 ))2

,

and ḡl (x2) =
√

2π p
L1L2

(x2 + L2l
p ).

Next, Eq. (17) must be solved in order to to fully deter-
mine the set of p wave functions in a given Landau level
n. Notice that p is fixed and this defines φn,q(x1, x2, p),
such that q = 0, . . . , p − 1. For p = 1, Eq. (17) becomes
αn,l+1 = αn,l , and this means that all coefficients are equal
regardless of l . We choose to express all of them in terms
of αn,0, namely, αn,l = αn,0. For p = 2, Eq. (17) becomes
αn,l+2 = αn,l and in this case there are two free coeffi-
cients, chosen to be αn,0 and αn,1. Hence, solutions split into
two sets for l even and odd ones, respectively. Therefore,
αn,l = αn,0 for l = 0, ±2, ±4, ±6, . . . and αn,l = αn,1 for
l = ±1, ±3, ±4, . . . . For the next case p = 3, Eq. (17) be-
comes αn,l+3 = αn,l , and there are three free coefficients at
each Landau level n. Similarly, the choices of free coefficients
are αn,0, αn,1, and αn,2. This gives that αn,l = αn,0 for l =
0, ±3, ±6, . . ., αn,l = αn,1 for l = ±1, ±4, ±7, . . ., and
αn,l = αn,2 for l = ±2, ±5, ±8, . . . . The last case explicitly
treated here is p = 4, and in this case, Eq. (17) becomes
αn,l+4 = αn,l . There are four free coefficients, namely, αn,0,
αn,1, αn,2, and αn,3. Hence, we introduce the general notation
αn,q for the coefficients, such that q = 0, 1, 2, . . . , p − 1,
represent the p free and independent coefficients. The co-
efficients αn,q satisfy conditions. Let us look for the first
four cases, namely, p = 1, 2, 3, and 4. For p = 1 there is
only one (q = 0) free and independent coefficient: αn,l = αn,0.
For p = 2 there are (q = 0, q = 1) two coefficients: αn,2l =
αn,0, αn,2l+1 = αn,1. For p = 3 the three free coefficients are
associated to q = 0, 1, and 2: αn,3l = αn,0, αn,3l+1 = αn,1,
αn,3l+2 = αn,2. Lastly, for p = 4 the four free coefficients are
associated to q = 0, 1, 2, and 3: αn,4l = αn,0, αn,4l+1 = αn,1,
αn,4l+2 = αn,2, αn,4l+3 = αn,3. In power of such information
we write the most general quasiperiodic ψn function as

ψn,p(x1, x2) =
p−1∑
q=0

αn,qφn,q(x1, x2, p), (20)

where the functions φn,q(x1, x2, p) are defined below,

φn,q(x1, x2, p) = Anei 2π
L1

qx1

+∞∑
l=−∞

ei 2π
L1

plx1 Hn( flq)e− 1
2 f 2

lq , (21)

such that flq is defined by

flq ≡
√

2π p

L1L2

[
x2 + L2

p
(pl + q)

]
. (22)

The functions φn,q form a set orthonormal in the rectangular
unit cell for a given p:∫

L1L2

d2x φ∗
m,q′ (x1, x2, p)φn,q(x1, x2, p) = δqq′δnm. (23)

To prove it we introduce the explicit representation of the
functions φm,q′ and φn,q:

IL1L2 =
∫

L1L2

d2x φ∗
m,q′φn,q

= AmAn

+∞∑
l ′=−∞

+∞∑
l=−∞

I1I2, (24)
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where

I1 =
∫ L1

0
dx1ei 2π

L1
[(pl+q)−(pl ′+q′ )]x1 (25)

and

I2 =
∫ L2

0
dx2Hm( f ′

l ′q′ )Hn( flq)e− 1
2 ( f ′2

l′q′+ f 2
lq )

, (26)

such that f ′
l ′q′ is given by Eq. (22) for l ′ and q′. The in-

tegral I1 differs from zero only in case l = l ′ and q = q′.
Then, one obtains that I1 = L1δqq′ and this yields that f ′

l ′q′ =
flq. A change of variables y = flq in Eq. (22) brings a

change in the integration variable dx2 =
√

L1L2
2π p dy and, so,

I2 =
√

L1L2
2π p

∫ y f

yi
dy Hm(y)Hn(y)e−y2

, with the limits of integra-

tion given by

yi =
√

2πL2

pL1
(pl + q) and y f =

√
2πL2

pL1
[p(l + 1) + q].

Hence, the integral of Eq. (24) is expressed as

IL1L2 = AmAn

√
L3

1L2

2π p

+∞∑
l=−∞

∫ y f

yi

dy Hm(y)Hn(y)e−y2
. (27)

Through this trick, the integral along the x2 direction, limited
to the unit cell, is extended to the whole axis. According
to the change of variable, yi and y f run from l until l + 1,
that is, the integrand becomes independent of l . Therefore,
we write that

∑+∞
l=−∞

∫ y f

yi
dy = ∫ +∞

−∞ dy, and in this way,∫ ∞
−∞ dy Hm(y)Hn(y)e−y2 = 2nn!

√
πδnm. Substituting this re-

sult into Eq. (27) leads to the conclusion that the functions of
Eq. (21) are orthogonal. They become orthonormal according
to Eq. (23) by choice of

An =
(

2π p

L3
1L2

)1/4

(2nn!
√

π )−1/2. (28)

The set of orthonormal functions φn,q carry the index p and
correspond to degenerate eigenfunctions of the free Hamilto-
nian with eigenvalues labeled by n, the Landau level index:

1
2m

�D2φn,q = h̄ωc(n + 1
2 )φn,q. For the first Landau level n = 0,

φ0,q satisfies the condition D+φ0,q = 0, where this operator is
defined by Eq. (45).

The orthonormality relation was also found to hold through
a direct numerical verification of Eq. (23). We stress that any
two functions with distinct values of the trapped flux, say p1

and p2, do not belong to the same set of orthonormal functions
and so are not orthogonal, as numerically checked. In fact,
they belong to two distinct sets of orthonormal functions.

III. KINETIC ENERGY OF FREE FERMIONS
IN A MAGNETIC FIELD

In this section we introduce the second-quantization for-
malism to treat the free fermions in a magnetic field under the
second-quantized field �p(x1, x2), which carries the index p.

Thus, there are p fluxons trapped in the unit-cell area L1L2.
This formalism, although of straightforward derivation, is im-
portant for the obtainment of the doubly periodic electronic
density which shows fractional effects:

�p(x1, x2) =
∞∑

n=0

p−1∑
q=0

cn,qφn,q(x1, x2, p). (29)

The cn,q are operators intimately connected to the eigenfunc-
tions φn,q(x1, x2, p) and, so, carry the index p: c(p)

n,q. However,
this dependence is hidden in order to keep the notation simple.
The second-quantized field �p(x1, x2) satisfies the anticom-
mutation relation

{�p(x1, x2), �†
p(x′

1, x′
2)} = δ(x1 − x′

1)δ(x2 − x′
2) (30)

and
{�p(x1, x2), �p(x′

1, x′
2)} = 0, (31)

assuming that the operators cn,q obey the conditions

{cn,q , c†
m,q′ } = δqq′δnm, (32)

{cn,q , cm,q′ } = 0. (33)

The completeness of the φn,q(x1, x2, p) set is the key ingre-
dient to prove that the anticommutation relations hold in real
space, as shown in Appendix A.

For noninteracting fermions the Hamiltonian is given by
the kinetic energy H = K , where K is

K =
∫

d2x
1

2m
( �D�)†( �D�). (34)

For simplicity we drop the index p on the second-quantized
field. In Appendix B we show that the boundaries of the unit
cell do not contribute, and using this, the Hamiltonian acquires
diagonal form

H = 1

2m

∫
d2x(�† �D2�) =

∞∑
n=0

p−1∑
q=0

Enc†
n,qcn,q, (35)

where En is given by Eq. (6). The number of electrons is also
diagonal and given by

N =
∫

d2x �†� =
∞∑

n=0

p−1∑
q=0

c†
n,qcn,q. (36)

Although the above expressions are the standard ones, the
electrons are associated to the new functions φn,q(x1, x2, p).

A. Wave function and the spatial electronic density

The fermions fill the first n′ Landau levels, n =
0, 1, 2, . . . , n′ − 1, each with p electrons, and the last Landau
level n′ is partially filled with p′ electrons, hence p′ < p.
Therefore, the wave function |�〉 representing this state has
the form |�〉 = ∏

n,q c†
n,q|0〉 where c†

n,q is a creation operator,
the index n ∈ [0, n′] represents the Landau levels, and the
index q, 0 � q � p̃ − 1, runs over p̃, which is the number of
electrons in each Landau level n. An explicit version of the
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wave function is given as follows:

|�〉 = c†
n′,p′−1 . . . c†

n′,1c†
n′,0︸ ︷︷ ︸

(level n = n′ incomplete)

(level n = n′ − 1 complete)︷ ︸︸ ︷
c†

n′−1,p−1 . . . c†
n′−1,1c†

n′−1,0 . . . c†
1,p−1 . . . c†

1,1c†
1,0︸ ︷︷ ︸

(level n = 1 complete)

(level n = 0 complete)︷ ︸︸ ︷
c†

0,p−1 . . . c†
0,1c†

0,0 |0〉. (37)

The state |�〉 is automatically normalized, 〈�|�〉 = 1 and has
a fixed number of electrons [Eq. (36)] since

N |�〉 = N |�〉, where N = n′ p + p′. (38)

From the second-quantized formalism we obtain the elec-
tronic density, which is given by the expectation value
〈�|ρp|�〉, where ρp ≡ �†

p�p and �p is the operator associ-
ated to the periodic density, that acquires the following form:

ρp(x1, x2)

=
∞∑

m=0

∞∑
n=0

p−1∑
q′=0

p−1∑
q=0

c†
m,q′cn,qφ

∗
m,q′ (x1, x2)φn,q(x1, x2). (39)

Then, the expectation value is obtained used the anticommu-
tation condition of Eq. (32):

〈�|ρp(x1, x2)|�〉

=
n′−1∑
n=0

p−1∑
q=0

|φn,q(x1, x2, p)|2

+
p′−1∑
q=0

|φn′,q(x1, x2, p)|2. (40)

In power of the above expressions one can numerically calcu-
late the electronic density and observe some original features
of free-electron states.

Figure 1 shows the spatial electronic density of the com-
pletely filled first Landau levels (n = 0). In this case the wave
function (37) is |�〉 = c†

0,p−1 . . . c†
0,1c†

0,0|0〉, and so the spatial

density becomes 〈�|ρp|�〉 = ∑p−1
q=0 |φ0,q(p)|2, obtained from

Eq. (41). The number of trapped flux and the number of
electrons is the same and equal to p. Interestingly, the density
displays an egg-box pattern with p2 maxima (minima). Hence,
each maxima (minima) can be associated to a fraction 1/p of
a electron. Notice that as p increases, the difference between
the maximum and the minimum density shrinks. This is a
consequence of the sum over the |φ0,q(p)|2 wave functions
which adds more positive contributions as p increases. For
this reason the first plot, which corresponds to p = 1, is able
to reach zero density, as the sum over q is absent.

Figure 2 shows the spatial electronic density for the par-
tially filled first Landau levels (n = 0) such that only the q = 0
state is present. In this case the wave function (37) contains a
single electron |�〉 = c†

0,0|0〉, and the spatial density becomes
〈�|ρp|�〉 = |φ0,0(p)|2, obtained from Eq. (41). The number
of trapped flux and the number of electrons is not the same:
the former is p whereas the latter is one. The density displays
p zeros, which is the number of trapped flux in the unit cell.
Thus, each zero in the density is associated to 1/p electrons.

The first plots of Figs. 1 and 2 coincide as both correspond to
p = 1 and q = 0.

Figure 3 shows the remarkable fact that the electronic
density of N = (n + 1)p electrons displays an egg-box pattern
with p2 maxima (minima). There are p electrons (and fluxons)
in each Landau level and n filled Landau levels, thus making a
total of N = (n + 1)p electrons (fluxons). From top to bottom
the sum is over the Landau levels n′ = 0, 1, n′ = 0, 1, 2,
and n′ = 0, 1, 2, 3, thus defining the maximum Landau level
n = 1, 2, and 3. Hence, the unit cell is shown in units of
(x1/L1, x2/L2), such that the last level of Eq. (41), n′ = n, is
also filled, p′ = p. The columns run from left to right and the
number of electrons in the unit cell ranges p = 1, 2, 3, and
4. Notice that the scales of the plots do not coincide although
the same set of colors is used. The case where only the lowest
Landau level is considered, n = n′ = 0, is treated in Fig. 1.
Therefore, the first, second, and third rows correspond
to the densities 〈�|ρp|�〉 = |φ0,0(p)|2 + |φ1,0(p)|2,
〈�|ρp|�〉 = |φ0,0(p)|2 + |φ1,0(p)|2 + |φ2,0(p)|2, and
〈�|ρp|�〉 = |φ0,0(p)|2 + |φ1,0(p)|2 + |φ2,0(p)|2 + |φ3,0(p)|2,
respectively. Remarkably, the ratio between the total number
of electrons and the number of maxima (minima) is fractional,
and given by (n + 1)/p, as shown in Table I.

IV. ATTRACTIVE MAGNETIC INTERACTION AMONG
ELECTRONS CONFINED TO THE LOWEST

LANDAU LEVEL

In this section we include interaction among electrons con-
fined to the lowest Landau level. The motion of the electrons
due to the external field makes them generate currents which
create a local magnetic field causing a mutual interaction
among them. We prove here that this magnetic interaction is
attractive and to treat it the field energy is incorporated into

TABLE I. The (n, p) above elements are associated to the Landau
level n, and the number of electrons in each Landau level p. Indices
run n = 0, 1, 2, 3 and p = 1, 2, 3, 4, respectively. Notice that all lev-
els are filled up to n which gives for the total number of electrons
p(n + 1). The number of density maxima (minima) observed in
Figs. 1 and 3 is p2. Therefore, the ratio between the total number of
electrons and the observed maxima (minima) is fractional and given
by (n + 1)/p.

p = 1 p = 2 p = 3 p = 4

n = 0 1 1/2 1/3 1/4
n = 1 2 1 2/3 1/2
n = 2 3 3/2 1 3/4
n = 3 4 2 4/3 1

054423-7



EDINARDO I. B. RODRIGUES AND MAURO M. DORIA PHYSICAL REVIEW B 104, 054423 (2021)

the Hamiltonian, and added to the kinetic energy such that

H = K + F. (41)

We emphasize that the present approach only applies in case
the system has uniaxial symmetry which means that the ki-
netic energy K is

K =
∫

d3x
1

2m

2∑
j=1

(Dj� )†(Dj� ), (42)

and the field energy F is

F =
∫

d3x
1

8π
[h3(�) − H3]2. (43)

The local magnetic field �h(�) is also a second-quantized field
solution of Ampère’s law,

�∇ × �h(�) = 4π

c
�J (�), �J (�) = e

2m
(�† �D� + c.c.), (44)

by knowledge of the current �J . A special attention must be
paid to the dimensionality of the fields, as the magnetic field
and the the current are tied to each other through Ampère’s
law, which assigns to � the dimensionality [�] = 1/

√
V ,

where V = AL3 is a volume, the product of the unit-cell area
in the plane, A times a length along the direction of the applied
field L3. This is consistent with the energy being an integral
over three-dimensional space, but uniaxial symmetry along
the direction of the external applied field renders the problem
two dimensional. All the fields only depend on (x1, x2), in-
cluding the local field �h(�) = x̂3h3(�), h3 = ∇1A2 − ∇2A1.
For the applied field we choose, as before, that A3 = 0 and
�H = x̂3H3.

Remarkably, Ampère’s law is solved exactly and the local
magnetic field h3(�) fully determined under the lowest Lan-
dau level condition. To show this consider a dual view of the
kinetic energy that requires the operators

D± ≡ D1 ± iD2. (45)

We use the identity

(D+� )†(D+� ) =
2∑

j=1

(Dj� )†(Dj� ) + i�†[D1, D2]�

− h̄m

e
(∇1J2 − ∇2J1), (46)

where the current components Ji, i = 1 and 2, are given by
Eq. (44), and the commutation relation is given by

[D1, D2] = −eh̄

ic
h3. (47)

Combining Eqs. (42), (46), and (47), and using that

h̄m

e
(∇1J2 − ∇2J1) = h̄2

2
�∇2(�†�), (48)

one obtains that

K =
∫

d3x

( |D+�|2
2m

+ eh̄

2mc
h3�

†�

)

+ h̄2

4m

∫
d3x �∇2(�†�), (49)

where the last term is a surface term. The dual formulation
of the kinetic energy also leads to a dual formulation of
the current, which is obtained by varying the kinetic energy
with respect to the vector potential δFk = · · · − 1

c

∫
d2x �J ·

δ �A. Therefore, one obtains the components of the current in
the plane:

J1 = e

2m
[�†(D+�) + (D+�)†�] − eh̄

2m
∇2(�†�) (50)

and

J2 = e

2im
[�†(D+�) − (D+�)†�] + eh̄

2m
∇1(�†�). (51)

The confinement to the lowest Landau leads corresponds to

D+� = 0. (52)

Under this condition the current components become J1 =
− eh̄

2m ∇2(�†�) and J2 = eh̄
2m ∇1(�†�). Ampère’s law, given

by ∇2h3 = (4π/c)J1 and ∇1h3 = −(4π/c)J2, is solved and
h3 + (2πeh̄/mc)|�|2 = constant obtained. The constant is
determined by the condition that the local field must be equal
to the applied field h3 = H3 in case that � = 0. Hence, there
are first-order equations that link � to h3, namely, Eq. (52)
and

h3(�) = H3 − 4πμB�†�, (53)

where μB is Bohr’s magneton

μB = eh̄

2mc
. (54)

Next, we find approximate solutions for these first-order equa-
tions that result in the determination of � and h3. First,
Eq. (52) is solved for � assuming that the vector potential
is only due to H3. Second, Eq. (53) is solved. The general
solution for �, given by Eq. (29), is the n = 0 part of the
general solution since D+�0,p = 0:

�0,p(x1, x2) = 1√
L3

p−1∑
q=0

c0,qφ0,q(x1, x2, p), (55)

where

φ0,q(x1, x2, p) =
(

2π p

L3
1L2

) 1
4

+∞∑
l=−∞

ei 2π
L1

(pl+q)x1 e− 1
2 f 2

lq , (56)

with flq defined in (22) since D+φ0,q = 0. Once in power of �

the local field follows from (53) by computing the expectation
value 〈�|h3(�0,p)|�〉 for a state |�〉 constrained to the first
Landau level. Hence, one obtains that

〈�|h3(�0,p)|�〉 = H3 − μB
4π

L3

p′−1∑
q=0

|φ0,q(x1, x2, p)|2. (57)

Next, we consider the attraction among electrons confined
to the lowest Landau level that stems from the first-order
equations. Introduce Eq. (52) into the kinetic energy,
given by Eq. (49). The Hamiltonian (41) becomes H =
μB

∫
d3x h3�

†� + h̄2

4m

∫
d3x �∇2(�†�) + 1

8π

∫
d3x (h3 −

H3)2, that once combined with �†� = −(1/4πμB)(h3 − H3)
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from Eq. (53) renders that

H =
∫

d3x

(
1

8π
H2

3 − 1

8π
h3(�)2 + h̄2

4m
�∇2(�†�)

)
. (58)

Next, we express H by introducing Eq. (53) into Eq. (58):

H = 2πμ2
B

∫
d3x

[
H3�

†�

2πμB
− (�†�)2 + �∇2(�†�)

2πre

]
, (59)

where Bohr’s magneton is related to the electron’s classi-
cal radius by h̄2/4m = μ2

B/re → re = e2/mc2. Equation (58)
shows that the magnetic field energy is negative −h2

3/8π and
so able to lower the energy by becoming more intense. In
other words, it causes attraction among the electrons. No-
tice that the total energy must remain positive, as initially
assumed according to Eq. (41). For the periodic state the last
term vanishes

∫
d2x �∇2�†� = 0, as previously shown. Since

μBH3 = h̄ωc/2, the Hamiltonian can also be expressed as

H =
∫

d3x

[
h̄ωc

2
�†� − 2πμ2

B(�†�)2

]
. (60)

The second term is evidently attractive although, in compari-
son with the first, very small.

By turning the three-dimensional integration into a two-
dimensional integration, a new parameter L3 is introduced:∫

d3x/L3 = ∫
d2x. For this reason Eq. (55) carries L3 that

also appears in the local field, given by Eq. (57). Hence,
L3 is a phenomenological parameter that sets the scale of
the difference h3 − H3, and so, cannot be determined within
the present approach. L3 limits the validity of the first-order
equation approach since h3 − H3 must be very small, and
according to Eq. (53) this requires that H3 � 4πμB�†� or,
equally,

L3 �
√

2π

p
re. (61)

This is easily reachable for any reasonable L3, considering that
re = 2.8 × 10−15 m. This relation is obtained by assuming
that �†� ∼ √

2π p/(L3A), where the area A ≡ L1L2 is asso-
ciated to the flux quantization in the plane H3A = p�0. Bohr’s
magneton, the magnetic flux, and the classical radius are con-
nected through μB = �0re

4π
, and from it the above condition

for L3 is straightforwardly obtained. In summary, once the
deviation H3 − h3 is adjusted by an external argument, such as
a measurement, the parameter L3 becomes known. Apart from
the choice of L3 the theory can be treated two dimensionally
in the plane (x1, x2) due to its uniaxial symmetry along the
applied field.

The deviation of the local field to the applied field is shown
in Fig. 4, and is given by −〈�|h3(�0,p) − H3|�〉L3/μB. This
deviation shows the existence of maxima and minima in the
unit cell (x1/L1, x2/L2). The lowest Landau level is assumed
totally filled and the figure shows the cases p = 1 (left, up),
p = 2 (right, up), p = 3 (left, down), and p = 4 (right, down).
Notice that while this figure shows the density, Fig. 4 displays
the local field h3, and they are connected to each other by
Eq. (57). An egg-box pattern emerges with p2 maxima (pink)
and p2 minima (black) in the magnetic field pattern. The
ratio between the maxima (minima) of the local field and the

FIG. 4. The deviation of the local magnetic field to the applied
field −〈�|h3(�0,p) − H3|�〉L3/μB is shown here in a unit cell. The
unit cell (x1/L1, x2/L2) is displayed for the cases p = 1 (left, up), p =
2 (right, up), p = 3 (left, down), and p = 4 (right, down), respec-
tively. The number of electrons for the totally filled lowest Landau
level n = 0 is N = p. Thus, there are 1 (top-left), 2 (top-right), 3
(bottom-left), and 4 (bottom-right) electrons (fluxons), respectively.
Remarkably, the ratio between the number of maxima (minima) of
the local field, as seen in the above plots, and the number of electrons
is 1, 1

2 , 1
3 , and 1

4 , respectively.

number of electrons is fractional, and given by 1/p, as found
in Table I.

V. CONCLUSION

The set of orthonormal bases developed here yield wave
functions for the well-known Schrödinger equation problem
of a electron in a magnetic field that features a periodic den-
sity probability. These wave functions display a fixed number
of p trapped magnetic flux per Landau level. The second-
quantization study reveals that the number of electrons N and
the number of fluxons trapped in the unit cell p are indepen-
dent. For N fermions distributed among n + 1 Landau energy
levels we find the remarkable property that the density of
electrons presents p2 spatial maxima (minima) in the unit cell
for any n. In case the highest Landau level is completely filled,
and so with N = (n + 1)p electrons, there are (n + 1)/p elec-
trons per maxima (minima). We have shown that in case that
electrons fall in the lowest Landau level (n = 0), the magnetic
field produced by the electrons yields a residual attractive
interaction among them. The present set of orthonormal func-
tions retrieves the de Haas–van Alphen effect results, namely,
the total magnetization displays a periodicity with respect to
the inverse of the applied field which is proportional to the
area of the Fermi surface.
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APPENDIX A: COMPLETENESS OF THE
ORTHONORMAL WAVE FUNCTIONS IN THE UNIT CELL

In this Appendix we prove the completeness of the or-
thonormal set defined by p, which is given by

∞∑
n=0

p−1∑
q=0

φn,q(x1, x2, p)φ∗
n,q(x′

1, x′
2, p)

= δ(x1 − x′
1)δ(x2 − x′

2). (A1)

This completeness relation is behind Eq. (30) through
Eq. (29). Using Eq. (32) it follows that

{�p(x1, x2), �†
p(x′

1, x′
2)}

=
∞∑

n=0

p−1∑
q=0

φn,q(x1, x2, p)φ∗
n,q(x′

1, x′
2, p). (A2)

To prove it one must calculate

{�p(x1, x2), �†
p(x′

1, x′
2)}

=
√

2π p

L3
1L2

p−1∑
q=0

+∞∑
l=−∞

ei 2π
L1

(pl+q)x1

+∞∑
l ′=−∞

e−i 2π
L1

(pl ′+q)x′
1

×
∞∑

n=0

b2
nHn( flq)Hn( f ′

l ′q)e− 1
2 ( f 2

lq+ f ′2
l′q )

. (A3)

The latter is obtained by using φn,q(x1, x2, p), defined
by Eqs. (21) and (28), where bn = (2nn!

√
π )−1/2.

First, consider the sum in n, which is essentially done
over the normalized wave functions of the harmonic
oscillator ψn(x) = (2nn!

√
π )−1/2Hn(x)e

1
2 x2

, where Hn(x)
are the Hermite polynomials. Hence, the ψn(x) satisfy∫ ∞
−∞ dx ψ∗

m(x)ψn(x) = δnm and the corresponding complete-
ness relation is

∑∞
n=0 ψn(x)ψn(y) = δ(x − y). Thus, the sum

over n in Eq. (A2) becomes

∞∑
n=0

b2
nHn( flq)Hn( f ′

l ′q)e− 1
2 ( f 2

lq+ f ′2
l′q ) = δ( flq − f ′

l ′q),

and using Eq. (22), one obtains that

∞∑
n=0

b2
nHn( flq)Hn( f ′

l ′q)e− 1
2 ( f 2

lq+ f ′2
l′q )

= δ

(√
2π p

L1L2
(x2 − x′

2) + L2(l − l ′)

)
.

Considering that x2 and l are independent variables it holds
that the delta function is centered at x2 = x′

2 and l = l ′. There-
fore, we have the following completeness relation:

∞∑
n=0

b2
nHn( flq)Hn( f ′

l ′q)e− 1
2 ( f 2

lq+ f ′2
l′q ) =

√
L1L2

2π p
δ(x2 − x′

2), (A4)

where we have used the property δ(a(x2 − x′
2)) = 1

aδ(x2 −
x′

2), a =
√

2π p
L1L2

. Using Eq. (A4), Eq. (A2) becomes

{�p(x1, x2), �†
p(x′

1, x′
2)} = 1

L1
Sp(x1 − x′

1)δ(x2 − x′
2), (A5)

where Sp(x1 − x′
1) = ∑p−1

q=0

∑+∞
l=−∞ ei 2π

L1
(pl+q)(x1−x′

1 ) must be
analyzed.

For p = 1, 2, and 3 the sum becomes

S1 =
+∞∑

l=−∞

(
ei 2π

L1
l (x1−x′

1 ))
,

S2 =
+∞∑

l=−∞

(
ei 2π

L1
(2l )(x1−x′

1 ) + ei 2π
L1

(2l+1)(x1−x′
1 ))

,

S3 =
+∞∑

l=−∞

(
ei 2π

L1
(3l )(x1−x′

1 ) + ei 2π
L1

(3l+1)(x1−x′
1 )

+
+∞∑

l=−∞
ei 2π

L1
(3l+2)(x1−x′

1 )

)
, respectively.

Notice that the total sum runs over all integers, and in this way,
one can write that

Sp =
p−1∑
q=0

+∞∑
l=−∞

ei 2π
L1

(pl+q)(x1−x′
1 ) =

+∞∑
r=−∞

ei 2π
L1

r(x1−x′
1 )
.

Hence, we have reached the second completeness relation

Sp =
+∞∑

r=−∞
ei 2π

L1
r(x1−x′

1 ) = L1δ(x1 − x′
1), (A6)

that once added to Eq. (A5) gives the anticommuting relation
given by Eq. (A1) and so to Eq. (30).

APPENDIX B: KINETIC ENERGY AND THE BOUNDARY
OF THE UNIT CELL

The kinetic energy is expressed in a more convenient way,

K = 1

2m

∫
d2x(�† �D2�) + h̄2

4m

∫
d2x �∇2ρ, (B1)

where ρ ≡ �†�. In this Appendix we show that the second
integral vanishes due to the periodicity of the state. To derive
Eq. (B1) we write ( �D�)†( �D�) = (ih̄ �∇�† − (e/c) �A�†) · �α,
with �α ≡ �D�. Using that �∇�† · �α = �∇ · (�† �α) − �†( �∇ · �α),
one gets that

( �D�)†( �D�) = �†(−ih̄ �∇ − (e/c) �A) · �α + ih̄ �∇ · (�† �α).

The kinetic energy becomes

K = 1

2m

∫
d2x(�† �D2�) + ih̄

2m

∫
d2x �∇ · (�† �D�), (B2)

and its complex conjugate

K∗ = 1

2m

∫
d2x( �D2�)†� − ih̄

2m

∫
d2x �∇ · (( �D�)†�).

(B3)
The kinetic energy is real, thus summing Eqs. (B2) and (B3)
and dividing by two gives that

K = 1

4m

∫
d2x �† �D2� + ( �D2�)†�

+ ih̄

4m

∫
d2x �∇ · (�† �D� − �( �D�)†).
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FIG. 5. The integration scheme and the definition of the vector �n
perpendicular to the surface.

The two terms in the first integral are shown to be equal
�† �D2� = ( �D2�)†�, and in the second integral it holds that
�† �D� − ( �D�)†� = �∇(�†�). In this way we obtain the
symmetrized kinetic energy given in Eq. (B1).

The second integral (B1) simply vanishes in case of a
periodic state, as shown below. We write it as a surface integral

h̄2

4m

∫
d2x �∇2ρ = h̄2

4m

∮
( �∇ρ) · �n dl, (B4)

where �n is a vector normal to the border lines of the unit cell
where the above integration is taken and performed, using the
theorem

∮
c

�F · �n dl = ∫
S

�∇ · �F d2x for a vector function �F in
the plane (x1, x2). The integral of Eq. (B4) is illustrated in
Fig. 5. Notice that the line integrals along the path dl = dx1

are obtained by taking �n = −x̂2 for x2 = 0, and �n = x̂2 for
x2 = L2. The integrals along the path dl = dx2 have �n = −x̂1

for x1 = 0 and �n = x̂1 for x1 = L1, then Eq. (B4) is written as

h̄2

4m

∮
( �∇ρ) · �n dl

= h̄2

4m

{∫ L1

0
dx1

(∇ρ(x1, L2)

∇x2
− ∇ρ(x1, 0)

∇x2

)

+
∫ L2

0
dx2

(∇ρ(L1, x2)

∇x1
− ∇ρ(0, x2)

∇x1

)}
. (B5)

Recall that ρ is periodic and, so, the integrals in opposite sides
of the rectangular unit cell annihilate each other, resulting that

h̄2

4m

∮
( �∇ρ) · �n dl = 0. (B6)

APPENDIX C: de HAAS–van ALPHEN OSCILLATIONS

In this Appendix we show that the present formalism
describes the well-known results of de Hass–van Alphen os-
cillations, which essentially describe how the energy and the
magnetization change according to the magnetic field. There
are N spinless fermions distributed in n′ + 1 Landau levels,
the first n′ ones, n = 0, 1, 2, . . . , n′ − 1, are totally filled and

the highest one n′ can be partially filled with p′ electrons.
Previously we have developed a set of orthonormal wave
functions φn,q(x1, x2, p), defined by Eqs. (21) and (22), where
p is the number of trapped magnetic fluxons in the unit cell.
The second-quantization formalism shows that there are p
available states in the Landau level since q = 0, . . . , p − 1,
but not all of them have to be filled. Therefore, the number of
fermions is a free parameter and for this reason λ is introduced
and is associated to the highest Landau level n′, that is only
partially filled:

p′ = λp, where λ ∈ [0, 1). (C1)

We define a filling variable

ν ≡ N

p
(C2)

that determines the number of occupied Landau levels accord-
ing to the number of electrons

ν = n′ + λ. (C3)

Notice that ν and λ are continuous variables whereas n′ is a
discrete variable. A new critical field H ′

3 is defined associated
to the density of electrons N/A,

H ′
3 ≡ N

A
�0, (C4)

where A = L1L2 is the unit-cell area. As the applied field H3

is associated to p, one obtains that

ν = H ′
3

H3
. (C5)

A new way is obtained to write the filling factor ν:

ν = 2πNh̄2

Am

1

h̄ωc
. (C6)

The Landau levels are filled in multiples of H ′
3 since n′ = [ H ′

3
H3

],
and the incomplete filling λ becomes

λ = H ′
3

H3
−

[
H ′

3

H3

]
. (C7)

The notation [α] means to take the largest equal or smaller
integer contained in a number α.

Further physical insight into the filling factor ν is achieved
by introducing the magnetic length l0 = √

h̄c/eH3. This
length describes the classical orbit of the electron in presence
of the magnetic field. It stems from the origin of the centripetal
force that renders mv2/r = qvH3/c, where v is the velocity
and r the radius of the circular orbit. Added to Bohr’s angular
momentum condition, mvr = n0 h̄, where n0 is an integer, it
leads to the quantization of the orbits r = √

n0l0. There are
two possible areas associated to the disk defined by magnetic
orbit π l2

0 and to the electronic density A/N . The filling factor
corresponds to their ratio ν = 2π l2

0 /(A/N ). In case that many
Landau levels are filled, n′ � 1, the filling factor is large,
ν � 1. In this limit, the electronic orbits overlap, l0 � √

A/N ,
and the classical picture of an electronic orbit in this collective
state no longer holds.

The total energy of the fermionic electrons requires the
summation over all levels and this is readily obtained from the
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FIG. 6. The oscillations of the energy, normalized by its zero magnetic field, are shown here, as obtained from Eq. (C14). The left plot
shows this energy ratio as a function of the inverse of the filling factor ν−1 = H3/H ′

3, whereas the right one is with respect to the filling factor
ν = H ′

3/H3. ν describes the number of filled Landau levels and H ′
3 is required to locate all electrons in the lowest Landau level. Notice the

periodicity in both H3 and 1/H3.

Hamiltonian of Eq. (35) by computing the energy expectation
value

Ep = 〈�|H|�〉 = (E0 p + E1 p + · · · + En′−1 p) + En′ p′

= p
n′−1∑
n=0

En + En′ p′, (C8)

where En = h̄ωc(n + 1
2 ) is given by Eq. (6), and En′ =

h̄ωc(n′ + 1
2 ). In summary, total energy Ep takes the

contribution of n′ fully filled Landau levels p
∑n′−1

n=0 En, added
to the highest level n′, that may be partially filled En′ p′. In-
troducing Eq. (C1) and the sum

∑n′−1
n=0 (n + 1

2 ) = n′2/2, one
obtains that

Ep =
[

n′2

2
+

(
n′ + 1

2

)
λ

]
h̄ωc p. (C9)

The energy Ep is shown to be explicitly periodic with respect
to the filling factor ν, or to its inverse ν−1, the latter being
proportional to the applied field H3. We combine Eqs. (C9)
and (C2) to obtain the energy per electron as a function of the
applied field:

ε(H3) ≡ Ep

N
=

[
n′2

2
+

(
n′ + 1

2

)
λ

]
h̄ωc

ν
. (C10)

Using Eq. (C6) one obtains that

ε(H3) = ε(0) + h̄ωc

2ν
λ(1 − λ), (C11)

where ε(0) is the energy per electron in the absence of field

ε(0) = Nπ h̄2

Am
. (C12)

This is done by first casting the energy as ε(H3) = (n′2 +
2n′λ + λ) h̄ωc

2ν
, and then adding a term ±λ2 inside the paren-

theses to obtain that ε(H3) = [(n′ + λ)2 + λ − λ2] h̄ωc
2ν

. Next,
using that ν = n′ + λ [Eq. (C3)], one obtains that

ε(H3) = 1

2
ν h̄ωc + h̄ωc

2ν
λ(1 − λ). (C13)

We briefly review the derivation of the average energy per
electron without the applied field, given by Eq. (C12). This

can be achieved by direct arguments without the inclusion
of the applied field. By integrating over the Fermi surface
disk, one obtains that N/A = k2

F /4π and that the total energy
per electron is ET /N = EF /2, EF = (h̄kF )2/2m. Hence, one
finds the zero-field energy per electron of Eq. (C12), that is,
ET /N = ε(0). Hence, the ratio between the energy in presence
of a field ε(H3) and without a field ε(0) becomes

ε(H3)

ε(0)
= 1 +

(
H3

H ′
3

)2

λ(1 − λ). (C14)

The above expression is plotted in Fig. 6 and shows the oscil-
lations with respect to the filling factor. Since ν−1 = H3/H ′

3
the left plot shows that the period of oscillations increases
for increasing H3. The amplitude of oscillations smoothly
increases proportional to H2

3 according to Eq. (C14), while λ

is a periodic function of 1/H3. The same data are also plotted
in the right plot, in this case with respect to ν, and both plots
show a periodicity.

The magnetization M is obtained from

M = −∂ε(H3)

∂H3
, (C15)

where ε(H3) is given by Eq. (C11), that once combined with
Eqs. (5) and (C7) gives that

ε(H3) = μB

{
2π h̄cN

Ae

+H2
3

H ′
3

(
H ′

3

H3
−

[
H ′

3

H3

])(
1 − H ′

3

H3
−

[
H ′

3

H3

])}
. (C16)

M/μB is obtained by deriving Eq. (C16) with respect to H3:

M

μB
= 1 − 2λ − 2λ(1 − λ)

λ + n′ . (C17)

Figure 7 plots the magnetization versus ν = λ + n′ as given
by Eq. (C17). Notice that although the energy is a continu-
ous function of H3, its derivative is discontinuous when the
Landau level is totally filled. Consider the field H3 near to a
multiple of H ′

3. In this neighborhood there is a change in ν =
λ + n′ by going from λ = 1− (slightly below 1.0) to λ = 0+
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FIG. 7. The magnetization, given by Eq. (C17), as a function of
ν = H ′

3/H3, where H ′
3 = N/(A�0), according to Eq. (C4). Notice the

periodicity of the magnetization with respect to 1/H3.

(slightly above 0). A discontinuity arises in the magnetization
since M(λ=1− )

μB
≈ −1.0 and M(λ=0+ )

μB
≈ 1.0, as shown in Fig. 7.

In case many Landau levels are filled, namely, case n′ � 1,
Eq. (C17) becomes

M

μB
≈ 1 − 2λ, (C18)

which shows that the magnetization M is a periodic function
of 1/H3 with the period given by

�

(
1

H3

)
= 1

H ′
3

= A

N�0
. (C19)

Using that N = 4π/k2
F (spinless fermions) we retrieve the

de Haas–van Alphen result that the oscillations are inversely
proportional to the Fermi surface area AF ≡ πk2

F :

�

(
1

H3

)
= 2πe

h̄c

1

AF
. (C20)
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