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Magnon-driven skyrmion dynamics in antiferromagnets: Effect of magnon polarization
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Controllable magnetic skyrmion motion represents a highly relevant issue in preparing advanced skyrmion-
based spintronic devices. Specifically, magnon-driven skyrmion motion can be easily accessible in both metallic
and insulating magnets and thus is highly preferred over electric current control, further for the ultralow energy
consumption. In this paper, we investigate extensively the dynamics of skyrmion motion driven by magnons
in an antiferromagnet using the collective coordinate theory, focusing on the effect of magnon polarization. It
is theoretically revealed that skyrmion Hall motion driven by circularly polarized magnons becomes inevitable
generally, benefiting a comprehensive understanding of antiferromagnetic (AFM) skyrmion dynamics. More
importantly, the elastic scattering theory and numerical results unveil the strong interdependence between
linearly polarized magnons and skyrmion motion, suggesting the complicated dependence of skyrmion motion
on the polarization nature of driving magnons. On the reversal, the scattering from the moving skyrmion may lead
to decomposition of the linearly polarized magnon into two elliptically polarized magnon bands. Consequently,
a net transverse force acting on the skyrmion is generated owing to the broken mirror symmetry, which in
turn drives skyrmion Hall motion. Hall motion can be completely suppressed only in a specific condition
where the mirror symmetry is preserved. This paper unveils nontrivial skyrmion-magnon scattering behavior
in antiferromagnets, advancing AFM spintronics and benefiting high-performance devices.
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I. INTRODUCTION

During the past decades, the dynamics of skyrmions [1]
has attracted extensive attention for designing advanced
skyrmion-based spintronic devices such as race-track memory
and logic units [2,3]. Specifically, ferromagnetic skyrmions
have been observed in a series of chiral magnets [4–8] and
heavy metal/ferromagnetic films [9–12] with broken inver-
sion symmetry. Subsequently, it has been demonstrated that
skyrmion motion can be effectively driven by using various
external stimuli including electric current [13,14], gradient
magnetic field [15], oscillating and gradient electric field
[16,17], and polarized magnons [18–26]. Among these stim-
uli, magnons as the quanta of spin waves, driving skyrmion
motion without Joule heating due to the absence of charge
physical transport, are particularly attractive for the advantage
of low-energy consumption. In this case, polarized magnons
are deflected by the fictitious magnetic field from skyrmions,
which reversely drive skyrmion motion through the momenta
exchange [18,27,28].

Alternatively, antiferromagnetic (AFM) skyrmions have
been theoretically predicted [29,30] and experimentally ob-
served in antiferromagnets with synthetic structures and three
sublattices [31,32], which are of great interest in high-density
and high-speed [33,34] spintronic devices. Specifically, an
AFM skyrmion is comprised of two coupled spin structures
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with opposite topological numbers, resulting in strong anti-
interference capability and ultrafast magnetic dynamics
[35,36]. For example, it has been theoretically revealed that
the speed of the AFM skyrmion is much larger than ferromag-
netic skyrmions under the same electric current density [33].
Nevertheless, one may note that magnon driving rather than
electric current control would be highly preferred, not only for
energy saving, but also because magnon control works much
better in insulating systems, considering that plenty of anti-
ferromagnets are insulating. Therefore, an understanding of
AFM skyrmion motion driven by polarized magnons becomes
highly relevant.

Unlike the case in ferromagnets where magnons can only
be right-circularly polarized, magnons in antiferromagnets
can be both right- and left-circularly polarized, adding a
polarization degree of freedom including all linear and ellip-
tical polarizations [37,38]. Thus, magnon polarization could
be used in modulating AFM skyrmion dynamics and even
in encoding information in magnons. For instance, left-
and right-handed magnons are deflected by AFM skyrmions
toward opposite transverse directions due to their oppo-
site effective charges, resulting in the magnon spin Hall
effect. Consequently, circularly polarized magnons drive
skyrmion Hall motion even in antiferromagnets. Further-
more, Hall motion highly depends on magnon polarization,
which could be suppressed for linearly polarized magnons,
attributing to the equal superposition of the left- and right-
handed magnon bands, like current-driven AFM skyrmion
motion [39].
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These important works thus unveil interesting magnon-
driven skyrmion dynamics, benefiting future spintronic and
magnonic applications. However, the interplay between po-
larized magnons and AFM skyrmions could be more complex
than supposed earlier [37]. Theoretically, linearly polarized
magnons could be decomposed into magnon bands with el-
liptical polarizations, which breaks the mirror symmetry of
scattered spin-wave channels and generates a net transverse
force on the topological spin texture. In this case, different
spin dynamics such as skyrmion Hall motion could be also
induced by linearly polarized magnons. As a matter of fact, a
strong dependence of AFM domain wall motion on the polar-
ization of the injected magnons has been revealed [40–42]. In
the presence of the Dzyaloshinskii-Moriya interaction (DMI),
magnons with out-of-plane linear polarization drive the wall
forward, while in-plane linearly polarized magnons propagate
through the wall almost freely [40]. To some extent, strong in-
terdependence between linearly polarized magnons and AFM
skyrmion motion is expected, considering the relevance be-
tween these noncollinear magnetic textures. Thus, the effect
of magnon polarization on AFM skyrmion dynamics deserves
to be further clarified, considering its importance in AFM
spintronics and magnonics.

In this paper, we investigate AFM skyrmion dynamics
driven by injected magnons using theoretical analysis and
Landau-Lifshitz-Gilbert (LLG) simulations, focusing on the
effect of magnon polarization. The skyrmion motion equation
driven by circularly polarized magnons is derived based on the
collective coordinate theory, clarifying the physics underlying
the numerical simulations. In addition, strong interdepen-
dence between linearly polarized magnons and skyrmion
longitudinal motion is theoretically and numerically revealed,
allowing a comprehensive understanding of the driving mech-
anism. More importantly, we numerically demonstrate that
linearly polarized magnons are generally decomposed into
two elliptically polarized magnon bands with opposite hand-
edness. As a result, a net transverse force is induced owing to
the broken mirror symmetry, which in turn drives skyrmion
Hall motion.

II. MODEL AND METHODS

Like the earlier work [43], we study a two-dimensional
AFM model in the xy plane with two magnetic sublattices that
have magnetic moments m1 and m2, respectively, satisfying
condition |m1| = |m2| = S, with spin length S. The normal-
ized staggered Néel vector n is defined as n = (m1 − m2)/2S
[44] to describe the Lagrangian. Considering the exchange
energy, the anisotropy energy, and the interfacial DMI, one
has the Lagrangian density L [45]:

L = ρ2
0

2A0
ṅ2 − u0, (1)

with the thermodynamic free energy:

u0 = A∗(∇n)2

2
− Kn2

z

2
+ D[nz∇ · n − (n · ∇ )nz]

2
, (2)

where A0 and A∗ are the homogeneous and effective ex-
change constants, respectively, K is the easy z-axis anisotropy

constant, D is the DMI constant, and ρ0 = h̄S/a is the density
of the staggered spin angular momentum per unit cell [46],
with the lattice constant a and reduced Planck’s constant −h.

To describe the magnons, it is convenient to use a
global frame defined by three mutually orthogonal unit vec-
tors (e1, e2, e3) with e3 = n0/|n0| = e1×e2 where n0 is the
equilibrium configuration. A weakly excited state can be
parametrized as n = n0 + δxe1 + δye2, where δx and δy de-
scribe the amplitude components of the magnon. Then one
obtains the two monochromatic solutions with the complex
fields ψ∗ = δx ± iδy for right/left circularly polarized magnon
modes, which corresponds to the anticlockwise/clockwise
precession of n [47]. Moreover, the complex field can also be
rewritten in the form of plane wave ψ = exp[i(k · r − ωt )],
where k is the wave vector, r is the position vector with length
r and polar angle ϑ, and ω and t are frequency and time,
respectively.

Subsequently, the skyrmion dynamics driven by polarized
magnons is analytically calculated using the collective coor-
dinate and elastic scattering theories. Moreover, the position
and velocity of the skyrmion are also estimated using LLG
simulations of the discrete spin model to check the validity of
the theoretical analysis. LLG simulation details are presented
in Appendix A.

III. RESULTS AND DISCUSSION

A. Hall motion of skyrmions driven by circularly
polarized magnons

In this part, a scheme of collective coordinates for magnons
and skyrmions in a Lagrangian frame is used to formulate the
skyrmion dynamics driven by circularly polarized magnons.
Following the earlier work [25], we transform the z axis to
the equilibrium configuration n0 using the rotation matrix T
satisfying n0 = Tn′

0, with n′
0 = ez, where ez is the unit vector

along the z axis [48–50], to conveniently derive the emergent
electromagnetic field.

The Lagrangian density L can be divided into three parts:
L0 from the equilibrium texture, Lsw from the disturbance part,
and Lint from the skyrmion-magnon interactions (the detailed
derivation is presented in Appendix B):

L0 = (ρ0∂t n0)2

2A0
− u0,

Lsw = ρ2
0 (∂tψ

∗∂tψ )

2A0
− A∗(∂iψ

∗∂iψ )

2
+ K (ψ∗ψ )

2
,

Lint = − iρ2
0 (ψ∗∂tψ − ψ∂tψ

∗)a0
t

2A0
− j · atotal + ψ∗ψu0

− ψ∗ψ (ρ0∂t n0)2

2A0
, (3)

where i = 1, 2, and 3 denote the spatial derivatives with
respect to the x, y, and z axes, respectively. Here, a0

t =
−cosθ · ∂tϕ [25,49,51,52] coincides with the geometrical
scalar potential due to the basis variation, θ and ϕ are
the polarization angle and azimuth angle of n, respectively,
atotal = a0 + aD [49] is the total vector potential including
the contributions from the inhomogeneous magnetization
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FIG. 1. The spatial map of nx for the (a) left-circularly and (b) right-circularly polarized magnons injected from the bottom of the frame
and scattered by the AFM skyrmion (the black and white part).

a0 = –cosθ · ∇ϕ and from the DMI aD = –(D/2A∗)n0, and
j = –iA∗(ψ∗∇ψ−ψ∇ψ∗)/2 is the spin wave flux.

For a stable skyrmion whose position is characterized by
X = {Xi}, Thiele theory is used to describe its dynamics.
Moreover, one may use a set of collective coordinates x =
{xu} to characterize the position of a spin-wave packet [25]
and to estimate the magnon group velocity ∂ω/∂k. Then the
full Lagrangian Lz can be rewritten in terms of {Xi} and {xu}:

Lz = Mi jẊ 2
i − 2ωA0

i Ẋi

A0
− U0 + ρ

[
(ρ0ω)2

A0
− A∗k2

]

− 2ρA∗atotal · k, (4)

where the Einstein summation rules over the repeated indices,
Mi j = (1−2ρ )ρ2

0 ∫ dV (∂in0 · ∂ jn0)/2A0 is the dissipative ten-
sor describing the effective mass [53] due to the exchange
interaction between neighboring spins, Ẋ represents the
derivative with respect to time, U0 = ∫ dV (1−ψψ∗)u0 is
the total texture energy, A0

i = ρ2
0

∫
dV ψψ∗a0

i /2, and ρ =
∫ dV ψψ∗/2 is the total spin wave intensity.

Similarly, the Rayleigh function is rewritten as

R = α

2

[
2A0

ρ2
0

Mi jẊiẊ j +
(

ω2

2A∗

)
ψ∗ψ ẋ2

u

]
. (5)

After applying the Euler-Lagrange rule, we obtain two
coupled equations to describe the dynamics of skyrmions and
magnons:

2Mi jẌ j + ∂iU0 + 2ω

(
∂A0

j

∂Xi
− ∂A0

i

∂Xj

)
Ẋ j

A0
+ 2αA0Mi jẊ j

ρ2
0

= −2ρωρ2
0

(
∂av

∂Xi
− ∂ai

∂xv

)
ẋv

A0
, (6a)

2ρ4
0ω2

A2
0A∗ ẍu − 2∂uu0 + 2

ρ2
0ω

A0

(
∂a0

v

∂xu
− ∂a0

u

∂xv

)
ẋv + αω2

A∗ ẋu

= 2ω

(
∂au

∂Xj
− ∂a j

∂xu

)
Ẋ j

A0
. (6b)

To some extent, magnon scattering is equivalent to the clas-
sical motion of a massive particle subjecting to dissipation-

induced friction and effective magnetic field from the
skyrmion. Particularly, the third term in the left side of
Eq. (6b) is associated with the effective Lorentz force acting
on the spin-wave packet, which induces transverse motion of
the packet. Moreover, the effective field is reversed when the
sign of ω is changed, resulting in the topological spin Hall
effect, as demonstrated in Fig. 1, where the LLG simulated
spatial map of nx is presented. It is clearly shown that the left-
circularly polarized magnons with ω > 0 are deflected to the
left side [Fig. 1(a)] by the skyrmion, while the right-handed
magnons with ω < 0 are deflected to the right side [Fig. 1(b)].

For an injected magnon current, Eq. (6a) is updated to

2Mi jẌ + ∂iU0 + Ẋ × 2ωρ(4πQ · ez )

A0
+ 2αA0Mi jẊ

ρ2
0

= −2ρωρ2
0 ẋ×(4πQ · ez )

A0
, (7)

where Ẍ is the second-order derivative with respect to
time, and Q = ∫ dV (∇×a0)z/4π is the staggered topological
charge. It is noted that the right term is the driving force
acting on the skyrmion from the injected magnons, which can
be divided into the longitudinal (x direction) and transverse

FIG. 2. The temporal evolution of the position Xy of (a) skyrmion
and (b) antiskyrmion for the left- and right-handed polarized
magnons.
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FIG. 3. The simulated (empty circles) and fitted (solid line)
skyrmion speeds v as functions of (a) h2 for α = 0.01 with fitted
slope 2.4×10–4, and (b) 1/α for h = 0.04 J/μs with fitted slope
0.69×10–4.

(y direction) parts. Thus, both the transverse driving force
and the Magnus force (the third term in the left side) are
reversed for opposite ω [39,54] or opposite Q due to the
topological spin Hall effect, resulting in skyrmion Hall motion
whose direction is determined by the magnon handedness and
skyrmion charge.

To some extent, magnon-skyrmion scattering could be re-
lated to an analog of electrons passing through the magnetic
field. Specifically, the handedness of the magnon corresponds
to the sign of effective charge, while the topological charge
of the skyrmion determines the direction of the fictitious
magnetic field. The dependences of skyrmion Hall motion on
ω and Q are verified by the LLG simulations. Figure 2(a)
shows the temporal evolution of the transverse position of
the skyrmion, demonstrating that opposite transverse motions
are driven by the left- and right-handed magnons, respec-
tively. Furthermore, for an antiskyrmion with an opposite Q
stabilized by anisotropic DMI [55,56], the magnons drive
transverse motion opposite to that of the skyrmion, corre-
sponding to isotropic DMI, as shown in Fig. 2(b).

Considering stable motion with negligible deformation of
the skyrmion and neglecting ∂iU0, the solution of Eq. (7) gives
the skyrmion velocity:

v = ρ2
0ρFm

A0αMi j
, (8)

where ρ is square related to magnetic field h used to generate
magnons [57], and Fm = 4πωρ2

0 ẋ×(Q · ez ) + 4πωv×(Q · ez )

is the driving force. Thus, linear dependences of the skyrmion
speed v on h2 and 1/α are expected for a weak field.

To check the validity of the theory, the dependences of v on
various parameters are numerically simulated and analytically
fitted. Figure 3(a) gives the simulated v for various h2, clearly
demonstrating a linear relation. It is noted that the driving
force on the skyrmion is linearly correlated with h2, resulting
in the linear dependence of v on h2. On the other hand,
skyrmion mobility is reduced by an enhanced damping term,
resulting in the decrease of v with the increasing α, as shown
in Fig. 3(b), which clearly demonstrates the linear relation
between v and 1/α. Moreover, the speed of an AFM skyrmion
is expected to be larger than a ferromagnetic skyrmion be-
cause the magnons in antiferromagnets operate in the terahertz
regime, which is orders of magnitude higher than in typi-
cal ferromagnets. Taking a = 1 nm, J = 6.59×10–12 J/m, and
μs ≈ 1.7 μB as an example, the velocity is estimated to be
∼ 370 m/s for α = 0.001 under h = 0.04 J/μs.

B. Longitudinal velocity of skyrmions driven
by linearly polarized magnons

In this section, we analytically investigate the skyrmion
longitudinal velocity vx driven by linearly polarized magnons.
Here, the remaining massive fluctuation modes are repre-
sented by the dimensionless staggered field δ. The Néel vector
is expressed as

nx =
(

2sin2 θ

2
cos2ϕ − 1

)
δx + 2sin2 θ

2
cos ϕ sin ϕδy

+ sin θ cos ϕδz,

ny = 2sin2 θ

2
cos ϕ sin ϕδx +

(
2sin2 θ

2
sin2ϕ − 1

)
δy

+ sin θ sin ϕδz,

nz = sin θ cos ϕδx + sin θ sin ϕδy + cos θδz, (9)

with δz = (1−δ2
x −δ2

y )1/2.
First, we study skyrmion motion driven by x- and y-linearly

polarized magnons. Considering an elastic scattering process,
substituting Eq. (9) into Eq. (1) and conserving the second
order in the fluctuation field, one obtains the Hamiltonian
densities for the x- and y-linear polarizations Lx and Ly:

Lx = δxHxδx

2
+ ρ2

0 δ̇2
x

2A0
,

Ly = δyHyδy

2
+ ρ2

0 δ̇2
y

2A0
, (10)

with the Hamiltonians Hx and Hy, respectively:

Hx = −A∗
[
−sin2ϕ(∂rθ )2 + 2 cos θ (cos θ − 1) + sin2θsin2ϕ

r2

]
+ A∗∇2 − D

[
−sin2ϕ∂rθ + sin θ (1 − cos θ − cos θcos2ϕ)

r

]

+ K (sin2θcos2ϕ − cos2θ ),

Hy = −A∗
[
−cos2ϕ(∂rθ )2 + 2 cos θ (cos θ − 1) + sin2θcos2ϕ

r2

]
+ A∗∇2 − D

[
−cos2ϕ∂rθ + sin θ (1 − cos θ − cos θsin2ϕ)

r

]

+K (sin2θsin2ϕ − cos2θ ). (11)
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FIG. 4. Spatial map of (a) ny for the x-linearly and (b) nx for the y-linearly polarized magnons scattered by the skyrmion. The bidirectional
arrows and circles depict the injected linearly and scattered circularly polarized spin waves, respectively.

Applying the Euler-Lagrangian equation, we obtain the dy-
namic equations for the x- and y-linearly polarized magnons,
respectively:

ρ2
0 δ̈x

A0
= Hxδx,

ρ2
0 δ̈y

A0
= Hyδy. (12)

Considering the excited spin wave with a fixed fre-
quency, solving the dynamic equation becomes computing
the eigenproblem of −Hxyδxy = ρ2

0ω2δxy/A0. Here, the scat-
tering potential is calculated to be Hsx,sy = −H0 − Hx,y, where
H0 = –A∗∇2 + K is the ground-state Hamiltonian. Thus, the
difference between Hsx and Hsy could lead to different magnon
scattering behaviors and skyrmion longitudinal velocities.

It is worth noting that the elastic scattering process with an
unchanged magnon polarization is considered in the deriva-
tion of the Lagrangian density, which is inconsistent with the
fact that the linearly polarized magnon is generally decom-
posed into circularly or elliptically polarized magnon bands
by the skyrmion. However, the analytical argument on the

skyrmion longitudinal velocity also works in such an inelastic
scattering process, qualitatively at least. For example, dif-
ferent scattered magnon amplitudes for the x- and y-linear
polarizations are observed in the LLG simulations, as shown
in Fig. 4 where the spatial evolution of the n components are
plotted. It is clearly shown that the linearly polarized magnons
are decomposed into the left- and right-handed magnon bands,
while the scattered magnon amplitude for the y-linear polar-
ization [Fig. 4(b)] is obviously larger than that for the x-linear
polarization [Fig. 4(a)].

Consequently, vx is also dependent on the linear po-
larization direction of the injected magnons because the
driving force is related to the scattered magnon amplitude. In
Fig. 5(a), the simulated Xx (solid lines with the Néel skyrmion
helicity η = 0, and φ is the angle between the polarization di-
rection and the x axis) driven by the x- and y-linearly polarized
magnons are presented, demonstrating that vx for the y-linear
polarization with φ = π/2 is much larger than the x-linear
polarization with φ = π , which is consistent with the magnon
scattering behaviors.

Generally, the skyrmion scattering potential Hs depending on φ reads

Hs = A∗
[
−sin2(ϑ + φ + η)(∂rθ )2 + 2 cos θ (cos θ − 1) + sin2θsin2(ϑ + φ + η)

r2

]

+ D

(
−sin2(ϑ + φ + η)∂rθ + sin θ{1 − cos θ − cos θ [1 − sin2(ϑ + φ + η)]}

r

)

− K{sin2θ [1 − sin2(ϑ + φ + η)] − cos2θ + 1}. (13)

Thus, equal η + φ will result in the same vx, which
has been confirmed in the LLG simulated Xx of the Bloch
skyrmion with η = π/2, as shown in Fig. 5(a) (dashed lines).
It is clearly shown that vx of the Bloch skyrmion driven by
the x-/y-linearly polarized magnons is the same as that of
the Néel skyrmion driven by y-/x-linearly polarized magnons,
confirming the above theoretical argument.

As a matter of fact, vx depending on φ could be reason-
ably assumed to be vx = C1 sin2(ϑ + η + φ) + C2, with the
parameters C1 and C2 independent of φ, noting that the mo-
mentum transfer between skyrmions and magnons is mainly

determined by the scattering potential. The LLG simulated vx

for various φ are summarized in Fig. 5(b), which can be well
fitted by this equation (C1 = 5.6×10–4 and C2 = 6.7×10–4),
further confirming the validity of the elastic theory in studying
skyrmion longitudinal velocity driven by linearly polarized
magnons.

C. Transverse velocity of skyrmions driven by linearly
polarized magnons

Different from the earlier viewpoint, skyrmion Hall motion
driven by linearly polarized magnons is generally observed,
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FIG. 5. (a) The position Xx of the Néel skyrmion with η = 0
(solid lines) and Bloch skyrmion with η = π/2 (dashed lines) as
functions of time driven by the x (φ = 0 or π ) and y (φ = π/2)
linearly polarized magnons. (b) The simulated (empty circles) and
analytically fitted (solid line) vx as functions of φ.

as shown in Fig. 6(a), which gives the LLG simulated evo-
lutions of Xy for φ = 0.8π and 0.9π . It is demonstrated that
transverse motion is rather considerable and dependent on the
polarization direction. In Fig. 6(b), the simulated transverse
velocity vy as a function of φ is presented, exhibiting a sinu-
soidal dependence of vy on 2φ. This behavior is contrary to the
earlier conclusion that the AFM skyrmion has no transverse
motion when the injected magnons are linearly polarized.

To understand this unexpected phenomenon, we trace the
local magnetization precession trajectories at different po-
sitions and give the results in Fig. 7. Unlike the earlier
assumption that linearly polarized magnons are generally
decomposed into circularly polarized magnon bands, the sim-
ulations clearly demonstrate that the injected magnons are
decomposed into two elliptically polarized magnon bands
with opposite handedness, as shown in Figs. 7(a) and 7(b),
where we present the local magnetization precession trajecto-
ries for φ = 0.8π .

In this case, the left-/right-handed magnons scat-
tered by the skyrmion can be described by ψr/l =
A1cos(k · x − ωt ∓ ϕ0)n′

x + A2cos(k · x − ωt )n′
y, with the

φ-dependent amplitudes A1 and A2, and the phase ϕ0, as
demonstrated in Figs. 7(c) and 7(d), where we give the local

FIG. 6. (a) The evolutions of Xy for φ = 0.8π and 0.9π , and (b)
the simulated vy as functions of φ driven by the linearly polarized
magnons (black empty circles) and by isolated elliptically polarized
magnons (red empty triangles).

magnetization precession trajectories for φ = 0.9π . Thus, the
decomposed magnon bands break the mirror symmetry of
scattered spin-wave channels and in turn generate a net trans-
verse force acting on the skyrmion, resulting in skyrmion
transverse velocity. As a matter of fact, the transverse velocity
driven by two isolated magnon currents with left- and right-
hand elliptical polarizations is also simulated, and the results
are also given in Fig. 6(b). The good consistency between
the simulated vy for the linear polarization and elliptical po-
larizations strongly supports the revealed skyrmion-magnon
scattering picture.

Particularly, for y- and x-linearly polarized magnons,
the decomposed spin waves are parameterized by
ψr/l = Acos(k · x − ωt ∓ π/2)n′

x + Acos(k · x − ωt )n′
y

and ψr/l = Acos(k · x − ωt )n′
x + Acos(k · x − ωt ∓ π/2)n′

y,
respectively, which are exactly the circularly polarized
magnons. In each case, the mirror symmetry of scattered
spin-wave channels is preserved, and the transverse forces
from the left- and right-handed magnon bands are perfectly
canceled out, resulting in the suppression of skyrmion Hall
motion [37].

To some extent, the phenomenon of injected magnons
scattered by magnetic textures such as domain walls and
skyrmions are like optical waves interacting with a retarder
or wave plate, as has been revealed in an earlier report [41].
In this case, the decomposition of linearly polarized magnons
depends on the magnon polarization and the helicity of the
skyrmion. Specifically, the decomposition into circularly po-
larized magnons occurs for the angle between the polarization
and helicity (φ−η) = 0 or π /2, while the injected magnons
are decomposed into elliptically polarized magnon bands for
other (φ − η), as revealed in our numerical simulations.

Indeed, the skyrmion Hall effect may prohibit precise
control of skyrmion motion, which goes against future appli-
cations. Interestingly, electric current drives AFM skyrmion
motion straight along the current direction without path de-
viation, making AFM skyrmions attractive to device design.
However, electric current control is deficient for energy loss

FIG. 7. The local magnetization-precession trajectory at differ-
ent positions for (a) and (b) φ = 0.8π and (c) and (d) φ = 0.9π .
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and only works in metallic antiferromagnets, and thus, other
energy-saving controls such as using polarized magnons are
highly preferred. Importantly, the current simulations suggest
that linear polarization of injected magnons should be deli-
cately tuned to completely diminish skyrmion Hall effects.
Thus, this paper further clarifies the complex interplay be-
tween skyrmions and polarized magnons in antiferromagnets,
which is very meaningful for spintronic and magnonic appli-
cations.

IV. CONCLUSIONS

In conclusion, we have studied skyrmion dynamics driven
by polarized magnons in antiferromagnets using analytical
methods and numerical simulations. Skyrmion Hall motion
driven by circularly polarized magnons is explained based
on the collective coordinate theory. In addition, skyrmion
longitudinal velocity strongly depending on the linear polar-
ization of the injected magnons is revealed analytically and
numerically. More importantly, we demonstrate that linearly
polarized magnons are generally decomposed into elliptical
magnon bands, which drives skyrmion Hall motion owing
to the broken mirror symmetry. Thus, this paper unveils
skyrmion-magnon scattering mechanisms in antiferromag-
nets, benefiting future spintronic applications.
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APPENDIX A: NUMERICAL SIMULATIONS
OF THE ATOMISTIC SPIN MODEL

To check the validity of the theory, we also perform
numerical simulations of the discrete model. Here, the two-
dimensional Hamiltonian of the atomistic spin model is given
by

H = J
∑
〈i, j〉

Si · S j − D0

∑
i

(Si · Si+x×ey − Si · Si+y×ex )

− K0
(
Sz

i

)2
, (A1)

where the first term is the exchange interaction with J = 1
between the nearest neighbor spins, the second term is the
DMI with D0 = 0.11J and the unit vector ex/y along the x/y
axis, and the last term is the anisotropy energy with K0 =
0.02J . Experimentally, take the lattice constant a = 1 nm and
J = 6.59×10–12 J/m as an example. The values of DMI and
anisotropy constant are 7.25×10–4 J/m2 and 1.32×105 J/m3,
respectively, which are comparable with those in KMnF3 [33].
The dynamics of the AFM skyrmion is investigated by solving
the LLG equation:

∂Si

∂t
= −γ Si×Hi + αSi×∂Si

∂t
, (A2)

where Hi = −μs
–1∂H/∂Si is the effective field, and α = 0.01

is the damping constant. We use the fourth-order Runge-Kutta
method to solve the LLG equation on a 200×200 square
lattice.

The magnons are excited by applying the AC
magnetic field locally in the region of 60 � x < 64 and
0 < y � 200. Specifically, we generate right-/left-handed
magnons by applying AC magnetic field hR/hL =
h[cos(ω0t )ex ± sin(ω0t )ey] with the frequency ω0. Similarly,
the y- and x-linearly polarized magnons are generated
by applying hx = h cos(ω0t )ey and hy = hsin(ω0t )ex,
respectively. The absorbing boundary conditions are used
to eliminate the reflection of the magnons at the boundary.
The position of the skyrmion X is estimated by [20]

Xi =
∫

[in · (∂xn×∂yn)]dxdy∫
[n · (∂xn×∂yn)]dxdy

, i = x, y. (A3)

Then the velocity is numerically calculated by v = dX/dt .

APPENDIX B: THE DERIVATION
OF THE LAGRANGIAN DENSITY

In the local coordinate system, the Néel vector n reads
n′ = (δx, δy, δz ), with δz = (1 − δ2

x − δ2
y )1/2. Here, the rota-

tion matrix component is given by Ti j = 2PiPj − δi j , with
i = 1, 2, 3, the vector [23,47]

P =
(

sin
θ

2
cos ϕ, sin

θ

2
sin ϕ, cos

θ

2

)
, (B1)

and the Dirac delta function δi j . The Berry phase term is given
by

Lb = ρ2
0 ṅ2

2A0
= ρ2

0 [(∂t + iA)n′]2

2A0
, (B2)

where A = T–1∂t T. Substituting n′ into Eq. (B2) and conserving the second order in the fluctuation field, one obtains the Berry
phase

Lb = ρ2
0 [(1 − ψ∗ψ )ṅ2

0 + i(ψ∗∂tψ − ψ∂tψ
∗) cos θ∂tϕ + ∂tψ

∗∂tψ]

2A0
, (B3)

and the Hamiltonian density is [25]

utotal = u0 + iA∗(ψ∗∇ψ − ψ∇ψ∗)atotal

2
− ψ∗ψu0 + A∗∂iψ

∗∂iψ

2
− Kψ∗ψ

2
. (B4)
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