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Topologically driven three-spin chiral exchange interactions treated from first principles
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The mechanism behind the three-spin chiral interaction (TCI) included in the extended Heisenberg Hamilto-
nian and represented by an expression worked out recently [Phys. Rev. B 101, 174401 (2020)] is discussed. It
is stressed that this approach provides a unique set of the multispin exchange parameters that are independent
of each other either due to their different order of perturbation or due to different symmetry. This ensures in
particular the specific properties of the TCI that were demonstrated previously via fully relativistic first-principles
calculations, and that result from the common influence of several issues not explicitly seen from the expression
for the TCI parameters. Therefore, an interpretation of the TCI is suggested, showing explicitly its dependence
on the relativistic spin-orbit coupling and on the topological orbital susceptibility (TOS). This is based on an
expression for the TOS that is worked out on the same footing as the expression for the TCI. Using first-principles
calculations, we demonstrate in addition numerically the common topological properties of the TCI and TOS.
To demonstrate the role of the relativistic spin-orbit coupling (SOC) for the TCI, a so-called “topological” spin
susceptibility is introduced. This quantity characterizes the SOC-induced spin magnetic moment on the atom
in the presence of noncollinear magnetic structure, giving a connection between the TOS and TCI. Numerical
results again support our conclusions.
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I. INTRODUCTION

A. Interatomic exchange interaction parameters
and their calculation

The classical Heisenberg model for interacting spins is
a powerful platform used for the investigation of magnetic
properties of materials, taking into account only two-site
bilinear exchange interactions. Various schemes have been
developed to calculate the corresponding model parameters
on a first-principles level. Most of these are based on the
evaluation of the energy change due to a distortion of the
magnetic subsystem caused by a tilting of the magnetic mo-
ments with respect to their orientation for a suitable reference
spin configuration, which can be chosen either collinear or
noncollinear. It should be noted that such an approach, in con-
trast to model calculations, does not rely on a certain specific
exchange mechanism and is therefore in principle applicable
to any type of systems. If there are contributions from different
types of exchange mechanism, additional investigations may
be required to clarify the details concerning the origin of the
exchange interaction (see, e.g., Refs. [1,2]).

Many calculations of the exchange parameters reported
in the literature rely on the idea of the Connolly-Williams
(CW) method [3]. Using the parametrized form of the energy
in the Heisenberg model, exchange parameters are evaluated
within this approach by fitting them to the total energy cal-
culated from first principles for different spin configurations
[4,5]. An alternative scheme applied to calculate the exchange
parameters in the momentum space relies on the energies cor-
responding to spin-spiral structures characterized by specific
wave vectors [6–9]. In contrast to this, one may calculate

the interatomic exchange interaction parameters directly by
evaluating the energy change due to a change of the relative
orientation of the magnetic moments on two atoms. Such
a scheme has been implemented using the Green function
(GF) formalism in combination with the multiple scattering
[Korringa-Kohn-Rostoker (KKR)] as well as linear muffin-tin
orbital (LMTO) band-structure methods [10–14].

Despite the obvious success of the classical Heisenberg
model for many applications, it fails to describe more sub-
tle properties of magnetic materials without the extension
of the Heisenberg Hamiltonian accounting for, among other
things, higher-order multisite terms [15–23]. Similar to the
bilinear interaction term, the parameters of the extended
Heisenberg Hamiltonian may be provided by using the results
of electronic-structure calculations. So far, only a few first-
principles calculations have been reported in the literature
for that. For example, the fourth-order interactions (two-site
and three-site) for Cr trimers [5] were calculated using a
CW-like method, demonstrating their significant magnitude
compared to bilinear interactions. The fourth-order chiral
interactions for a deposited Fe atomic chain [24] were cal-
culated using the energies for different spin configurations.
In Refs. [25,26], he biquadratic, three-site four-spin and four-
site four-spin interaction parameters have been obtained using
the energies calculated for different spin configurations and
applying a CW-like method. However, this scheme becomes
more and more demanding when including higher-order mul-
tispin interaction parameters, with the difficulties caused by
the correspondingly increasing number of spin configurations
required to map their first-principles energies to the increas-
ing number of parameters. Another more flexible mapping
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scheme using perturbation theory within the KKR Green
function formalism was only recently reported by Brinker
et al. [27,28] and by the present authors [29]. Note that in
contrast to the energy-fitting scheme for the determination of
multispin interaction parameters, the latter approach allows a
safe extension of the series of contributing terms to the spin
Hamiltonian, such that including higher-order terms has no
impact on the lower-order terms.

Finally, one has to stress that the exchange coupling param-
eters may depend substantially on the chosen reference spin
configuration, as was shown, e.g., in Refs. [30,31] by com-
paring the bilinear isotropic exchange parameters obtained
for disordered local moment (DLM) and ferromagnetic (FM)
states. This implies that the reference configuration should be
close to the magnetic state to be described, as the correspond-
ing calculated exchange parameters ensure a better description
of the magnetic properties of the system. This allows us in
particular to minimize the contribution of higher-order terms
in the spin Hamiltonian. A technique developed for the calcu-
lation of the exchange parameters for a noncollinear reference
state has been reported by Szilva et al. [32,33]. The resulting
spin Hamiltonian obtained on the basis of a “predefined spin
configuration” is classified as a local Hamiltonian by these
authors [34] and is expected to need no further multispin
expansion as the bilinear terms should account for these con-
tributions. The authors demonstrate that within this approach,
a term similar to the Dzyaloshinskii-Moriya interaction (DMI)
term may occur even in cases when the standard prerequisites
for the occurrence of the DMI in the case of collinear magnetic
systems, i.e., spin-orbit coupling (SOC) and a lack of inver-
sion symmetry, are not given [33,35]. This finding has been
associated with the contributions of multispin interactions
incorporated in this DMI-like term. However, as a restriction
intrinsic to this approach, one has to keep in mind that the
parameters calculated for a “predefined spin configuration”
are reliable only in the vicinity of this configuration.

The approaches mentioned so far are of restricted use for
an energy mapping when the system is brought out of equilib-
rium, e.g., by a strong and ultrafast laser pulse, as this situation
requires a calculation of the exchange parameters beyond
the adiabatic approximation. A corresponding theoretical for-
malism based on nonequilibrium Green functions developed
by Secchi et al. [36] gives access only to pair dynamical
exchange parameters that are expected also to represent con-
tributions of multispin interactions. Similar to the findings for
the noncollinear reference state [33,35], the authors report the
occurrence of a DMI-like exchange coupling, called “twist
exchange,” that has a nonrelativistic origin and is attributed
by the authors to higher-order three-spin interactions.

Formally, the multisite expansion includes terms character-
izing the interaction of any number of spin moments. Among
these interactions, the three-site three-spin chiral interactions
(TCIs) attracted special attention. On the one hand, TCIs can
play a crucial role for the proprieties of chiral spin liquids, as
was discussed in the literature [19–21]. On the other hand,
the occurrence of this term [as well as other (2n + 1)-spin
interactions] has recently been questioned [37,38] because of
the time-inversion asymmetry of the three-spin interaction.
The explicit calculation in our previous work [29] of the TCI
parameter and its properties, in particular with respect to time

reversal, shows that the energy contribution due to the TCI
is invariant with respect to time reversal, and for this reason
it should be considered in the spin Hamiltonian. Another
origin for a three-spin chiral interaction stems from four-spin
interactions, as suggested by Grytsiuk et al. [39], stressing that
such a term may give rise to a three-spin interaction invariant
with respect to time reversal. In line with this, dos Santos Dias
et al. [38] considered the three-spin chiral interactions treated
as a particular case of the “proper chiral four-spin interaction”
as worked out in Ref. [39]. Based on their work, dos San-
tos Dias et al. conclude that the TCI discussed in Ref. [29]
seems to be misinterpreted in spite of the numerical results
presented in Ref. [29] that are not doubted by these authors.
Among other things, our presentation below demonstrates the
misleading character of their arguments.

B. Multisite expansion of the spin Hamiltonian: General
remarks

Discussing the multisite extension of the Heisenberg
Hamiltonian in our recent work [29], the total energy
calculated from first principles is mapped onto the spin Hamil-
tonian,

H = −
∑
i, j

Js
i j (ŝi · ŝ j ) −

∑
i, j

�Di j · (ŝi × ŝ j )

− 1

3!

∑
i, j,k

Ji jk ŝi · (ŝ j × ŝk )

− 2

p!

∑
i, j,k,l

Js
i jkl (ŝi · ŝ j )(ŝk · ŝl )

− 2

p!

∑
i, j,k,l

�Di jkl · (ŝi × ŝ j )(ŝk · ŝl ) + · · · , (1)

where p specifies the number of interacting atoms or spins,
respectively, and the parameters (Js

i j, �Di j , etc.) represent the
various types of interatomic interaction [29]. Note that terms
giving rise to magnetic anisotropy are omitted in Eq. (1), as
we are going to discuss only pure exchange interaction terms.

As in our previous work, we assume that the dependence of
the total energy on the magnetic configuration is obtained by
perturbation theory with respect to a suitable reference state.
In the following, we discuss the implication for the mapping
on the Hamiltonian given in Eq. (1).

First, one should note that each interaction term in Eq. (1)
is characterized by its intrinsic properties with respect to a
permutation of the interacting spin moments, i.e., it is sym-
metric, antisymmetric, or nondefined with respect to such a
permutation. This symmetry is determined by the combina-
tion of scalar and vector products of different pairs of spin
moments, occurring in a specific way.

Second, the first-principles expressions for the exchange
parameters are derived in a one-to-one manner following the
properties of the spin-products characterizing different terms
of the spin Hamiltonian, thus ensuring unique permutation
properties for the corresponding exchange interaction term.
Treating the p-spin exchange interactions Ji1,i2,...,ip

(where J

indicates hidden indices of the tensor J
ν1ν2,...,νp

i1,i2,...,ip
, νi = {x, y, z}

written here as superscripts only for the sake of convenience)
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in terms of the rank-p tensor in the 3p-dimensional subspace
of the interacting spin moments {ŝi1 , ŝi1 , . . . , ŝip}, this implies
a symmetrization of the tensor with respect to the permuta-
tion of a certain set of indices. Or, the other way around,
different types of p-spin exchange interactions can be asso-
ciated with the tensor forms symmetrized or antisymmetrized
with respect to a permutation of certain indices. For instance,
one can distinguish between different symmetrized ten-
sor forms [40]: J (i, j),(k,l ) = (1/4)(Ji, j,k,l + J j,i,k,l + Ji, j,l,k +
J j,i,l,k ), J (i, j),[k,l] = (1/4)(Ji, j,k,l + J j,i,k,l − Ji, j,l,k − J j,i,l,k ),
or J [i, j],[k,l] = (1/4)(Ji, j,k,l − J j,i,k,l − Ji, j,l,k + J j,i,l,k ) char-
acterizing the four-spin interaction terms associated with the
(ŝi · ŝ j )(ŝk · ŝl ), (ŝi · ŝ j )(ŝk × ŝl ), and (ŝi × ŝ j )(ŝk × ŝl ) spin
products, respectively. Note that also the shape of each sym-
metrized element J is determined by the symmetrization with
respect to permutations, as was demonstrated by Udvardi et al.
[13] for the DMI, as a particular case of bilinear interactions.
The symmetrized interactions cannot be transformed one into
another as they correspond to different representations of
the permutation group. In particular, there is no connection
between the J [i, j],[k,l] and J (i, j),(k,l ) interaction parameters
despite Lagrange’s identity (ŝi × ŝ j )(ŝk × ŝl ) = (ŝi · ŝk )(ŝ j ·
ŝl ) − (ŝi · ŝl )(ŝ j · ŝk ) that relates the mixed cross product of
the spin moments to a combination of scalar products.

Third, each higher-order term in Eq. (1) can be related
in a one-to-one manner to a higher-order term of an energy
expansion connected with the perturbation caused by spin tilt-
ings [24,28,29,39]. As a consequence, they give an additional
energy contribution missing in the lower-order energy expan-
sion. This implies that carrying the expansion to higher and
higher order does not change the results for the lower-order
terms—in contrast to a fitting procedure. Moreover, having
the same symmetry properties with respect to a permutation of
the indices, the higher-order term can be seen as a correction
to a corresponding lower-order term, e.g., as it takes place in
the case of DMI and four-spin DMI-like terms.

Finally, it should be added that one has to distinguish the
chiral properties of the DMI-like interactions arising from
local inversion symmetry being absent and the topologically
driven chiral properties of the TCI considered in Ref. [29].
This implies among other things that the four-spin chiral
interactions discussed in Refs. [24,39] have no connection
with the TCI worked out in Ref. [29] and considered here.
Nevertheless, the SOC plays a central role in both cases.

In the present contribution, we are going to discuss in more
detail the origin of the TCI that was derived in Ref. [29] and
its specific features in comparison with the chiral interactions
represented by the expressions worked out in Refs. [24,39].
For this, we give in Sec. II A the expression for TCI [29]
based on a fully relativistic approach, accompanied by some
comments concerning its properties. In Sec. II B we will show
explicitly the role of the relativistic spin-orbit interaction for
the TCI, which is different when compared to its role for the
expressions reported in Refs. [24,39]. Moreover, we demon-
strate in this section an explicit interconnection of the TCI
with the topological orbital susceptibility (TOS) for triples
of atoms, which determines the chiral properties of the TCI.
Details of the properties of the TOS will be discussed in
Sec. II C. For this, the corresponding expression is derived
within the fully relativistic approach on the same footing as

for the TCI. We will compare the results for the topological
orbital moment (TOM) calculated by means of the TOS with
results obtained self-consistently for embedded three-atomic
clusters. To allow a more detailed discussion of the TCI, we
introduce in Sec. II D the “topological” spin susceptibility
(TSS), in analogy to the topological orbital susceptibility.
All discussions and formal developments are accompanied by
corresponding numerical results supporting our conclusions
on the TCI’s origin. Some more technical aspects of this
work concerning the properties of the TCI with respect to
time reversal, computational details, and the expression for
the TOM are dealt with in some detail in three Appendixes.

II. THREE-SPIN CHIRAL EXCHANGE INTERACTIONS
FROM FIRST PRINCIPLES

In the following, we discuss some specific properties of
the TCI term in the spin Hamiltonian. These properties ensure
that it cannot be represented in terms of interactions having
different permutation properties.

A. TCI via fully relativistic approach

Focusing on the properties of the TCI, we give here the
expression derived within the multiple-scattering formalism
[29],

Ji jk = 1

4π
Im Tr

∫ EF

dE (E − EF )

×[T i,x τ i jT j,y τ jkOk τ ki − T i,y τ i jT j,x τ jkOk τ ki

−T i,x τ i jO j τ jkT k,y τ ki + T i,y τ i jO j τ jkT k,x τ ki

+Oi τ i jT j,x τ jkT k,y τ ki − Oi τ i jT j,y τ jkT k,x τ ki], (2)

where the matrix elements of the torque operator T i,α
��′ and the

overlap integrals Oi
��′ are defined as follows [41]:

T i,α
��′ =

∫
Vi

d3r Zi×
� (�r, E )

[
βσαBi

xc(�r)
]

Zi
�′ (�r, E ) (3)

and

Oi
��′ =

∫
Vi

d3r Zi×
� (�r, E ) Zi

�′ (�r, E ). (4)

Here �Bxc(�r) is the spin-dependent part of the exchange-
correlation potential, �σ is the vector of 4 × 4 Pauli matrices,
and β is one of the standard Dirac matrices [42,43]; Zn

�1
(�r, E )

and Jn
�1

(�r, E ) are the regular and irregular solutions of the
single-site Dirac equation, and τ nn′

is the scattering path oper-
ator matrix [43].

As one can see, the expression in Eq. (2) ensures the
properties specific only for the TCI, i.e., (i) the antisymmetry
with respect to permutation of any two spin indices, and (ii)
the invariance with respect to a cyclic permutation of the spin
indices in the i, j, k sequence, which is the result of the invari-
ance of the trace upon cyclic permutation of the product of
matrices. In addition, it was shown in our previous work [29]
that the TCI parameter is antisymmetric with respect to time
reversal, leading to an invariance with respect to time reversal
for the energy contribution associated with this interaction
(see also Appendix A).
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Obviously, an energy expansion to higher orders, as in-
dicated in Eq. (1), includes more interaction terms that are
antisymmetric with respect to permutations of the three in-
dices i, j, k, giving the energy contribution ∼J(i,[ j,k]),l,...,n(ŝi ·
[ŝ j × ŝk]) · · · . These contributions, however, have a more
complicated dependence on the magnetic configuration when
compared to the TCI, as noted already in Ref. [29], because
more spins are involved in the interaction. Moreover, in accor-
dance with the discussion above, one has to stress once again
that the TCI is uniquely determined by symmetry and cannot
be represented in terms of other interactions that have higher
order or different symmetry with respect to a permutation of
the spin indices. This implies, in particular, an independence
of the parameters ∼J(i,[ j,k]),l and those given in the previous
section, when discussing the fourth-order interactions.

B. TCI and relativistic spin-orbit coupling in terms
of nonrelativistic Green functions

In this section, we discuss the mechanism responsible for
the TCI reported in Ref. [29], to distinguish it from the fourth-
order three-spin interactions suggested by Grytsiuk et al. [39].
Using the nonrelativistic Green-function-based description,
one can factorize the expression for the TCI to represent it in
terms of the relativistic SOC and the TOS. This factorization
allows us to show explicitly the role of the SOC for the
mechanism leading to the TCI [29], and to demonstrate that
it is different when compared to the mechanism responsible
for three-spin chiral interaction discussed in Refs. [38,39].

According to the latter work, the three-spin chiral inter-
action is associated with a topological orbital moment �LTO

i jk
induced on the atoms of every triangle formed by magnetic
atoms, 	i jk , due to the noncoplanar orientation of their spin
magnetic moments. As was suggested for the case of all atoms
being equivalent, the TCI term can be written as ∼ ξχTO

i jk ŝi ·
(ŝ j × ŝk )(n̂i jk · 〈ŝ〉), where 〈ŝ〉 = 1

3 (ŝi + ŝ j + ŝk ), χTO
i jk is the

topological orbital susceptibility, and ξ is the relativistic spin-
orbit interaction parameter corresponding to atom i with spin
moment �si. This expression shows explicitly the dependence
of the three-spin interaction on the orientation of a sum of the
interacting spin magnetic moments with respect to the normal
vector n̂i jk of a triangle 	i jk . In particular, it implies that the
TCI is proportional to the flux of the local spin magnetization
through the triangle area.

Here we discuss in more detail the mechanism giving rise
to the TCI reported in Ref. [29]. As a reference, we start from
the ferromagnetic (FM) state of the system with the magneti-
zation aligned along the ẑ direction, and its electronic structure
characterized by the Green function G0. To demonstrate ex-
plicitly the role of the spin-orbit interaction, we consider the
Green function G0 in the nonrelativistic (or scalar-relativistic)
approximation. For the FM state considered, it has spin-block-
diagonal form in the global frame of reference. Creating a
noncoplanar magnetic configuration characterized by a finite
scalar spin chirality, we assume infinitesimal tilting angles of
the spin moments on the interacting atoms, which enables us
to use perturbation theory to describe the Green function G of
the system with tilted spin moments as

G = G0 + 	G, (5)

where 	G is induced by the tilting of three spin moments ŝi,
ŝ j , and ŝk represented by the tilting vectors δŝi, δŝ j , and δŝk ,
respectively. As is already well known, the chiral magnetic
structure induces a persistent electric current in the magnetic
system, thus creating a finite orbital moment in addition to that
induced by the relativistic SOC [44–46]. Note that the current
can be split into a delocalized part and one localized on the
atoms [47]. For the sake of simplicity, we will focus on the
latter one coupled to the spin degree of freedom of the elec-
trons responsible for the spin magnetic moments of each atom.
In this case, one can speak about a spin magnetic moment δm
on the atoms, induced via SOC by the orbital moment created
by the chiral magnetic structure. The induced spin magnetic
moment leads in turn to a change of the exchange-correlation
energy,

	Exc =
∫

d3r
∂Exc[n, m]

∂ �m · δ �m(�r) = −
∫

d3r �Bxc(�r) · δ �m(�r),

(6)

where �Bxc(�r) = m̂Bxc[n, m](�r) is an effective exchange field
characterizing the spin-dependent part of the exchange-
correlation potential. Here m̂ is the direction of the magne-
tization, and for the sake of simplicity �Bxc(�r) is supposed to
be collinear within the cell.

The energy change due to the spin moment induced on the
atom i of the considered trimer is given by the integral over its
volume Vi,

	Exc,i(δŝi, δŝ j, δŝk ) = −
∫

Vi

d3rBxc(�r) m̂ · δ �mi(�r) (7)

with �r ∈ Vi and

δ �mi(�r, δŝi, δŝ j, δŝk ) = − 1

π
Im Tr

∫ EF

dE
∫

V	

d3r′ �σ G0(�r, �r ′, E )

×VSOC(�r) (�σ · �̂l ) 	G(�r ′, �r, E ), (8)

where we stress the dependency on the tilting vectors δŝi, δŝ j ,
and δŝk by including them in the argument list.

As we discuss the TCI arising due to the noncoplanar
orientation of the interacting spin moments, the corre-
sponding change of the Green function can be written as
	G(�r ′, �r, E ) = 	G(�r ′, �r, E , δŝi, δŝ j, δŝk), for which the ex-
plicit form is discussed in Ref. [29]. Furthermore, V	 in
Eq. (8) is the volume corresponding to the interacting atoms

i, j, k, �̂l is the angular momentum operator, and VSOC(�r) =
1
c2

1
r

∂V (r)
∂r for a spherical scalar potential V (r). This can be

rewritten as follows:

	Exc,i(δŝi, δŝ j, δŝk )

= 1

π
Im Tr

∫ EF

dE
∫

Vi

d3r
∫

V	

d3r′Bxc(�r)

×(m̂ · �σ )G0(�r, �r ′, E )VSOC(�r) (�σ · �̂l ) 	G(�r ′, �r, E )

= 1

π
Im Tr

∫ EF

dE
∫

Vi

d3r
∫

V	

d3r′Bxc(�r)

×G0(�r, �r ′, E )VSOC(�r) (m̂ · �̂l ) 	G(�r ′, �r, E ), (9)
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FIG. 1. Geometry of the smallest three-atom clusters in the
monolayer of 3d-atoms on the M(111) surface (M = Au,Ir): M-
centered triangle 	1 and hole-centered triangle 	2.

where we used the expression

(�σ · m̂)(�σ · �̂l ) = m̂ · �̂l + i�σ · (m̂ × �̂l ). (10)

Taking into account the spin-block-diagonal form of the non-
perturbed Green function, one can show that the second part
of Eq. (10) can be omitted, as the traces (see Ref. [29])
Tr(σx(y)σxσy) and Tr(σx(y)σyσx ) are equal to zero. The behav-
ior under time reversal of the energy change in Eq. (9) is
discussed in detail in Appendix A.

The three-spin interaction is determined by the chirality-
induced energy change according to Eq. (9), i.e., Ji jk ∼
	Exc,i(δŝi, δŝ j, δŝk ). Moreover, the calculations of the ex-
change parameters are performed assuming infinitesimal
tilting of the spin magnetic moments in every trimer, which
implies the same orientation ŝi = ŝ j = ŝk = m̂ for the refer-
ence FM configuration, which gives the dependence of the
three-spin interactions on the orientation of the magnetization
with respect to the surface normal vector n̂ of the triangular
area. Or, the other way around, this implies also that the
angle-dependent behavior of the TCI is fully determined by
the projection of the TOM (i.e., for vanishing SOC) onto the
direction of the magnetization. This will be shown below by
calculating the orbital moment along the magnetization direc-
tion oriented along the z axis for the lattice and the normal
vector n̂ rotated by an angle γ within the plane perpendicular
to the rotation axis.

To demonstrate the dependence of the TCI on the relativis-
tic SOC, corresponding calculations of J	 = Ji jk − Jik j (see
the definition below) have been performed for 1 ML Fe on Au
(111) for the two smallest triangles 	1 and 	2 centered at an
Au atom or hole site, respectively (see Fig. 1 for a presentation
of the geometry and Appendix B for computational details
concerning these calculations). Figure 2 gives the parameters
J	1 (ξSOC) and J	2 (ξSOC) calculated using Eq. (2), which was
derived within the approach reported in our previous work
[29]. Note that setting the SOC scaling factor ξSOC = 0 im-
plies a suppression of the SOC, while ξSOC = 1 corresponds
to the fully relativistic case. As expected from Eq. (9), we
find indeed a nearly linear variation of J	(ξSOC) with the SOC

FIG. 2. TCI parameters J	 calculated for Fe on Au (111) on the
basis of Eq. (2) as a function of SOC scaling parameter ξSOC for
the smallest triangles 	1 and 	2. Full symbols represent the results
obtained when scaling the SOC for all elements in the system, while
open symbols show the results when scaling only the SOC for Au.

scaling parameter ξSOC applied to all elements in the system,
shown in Fig. 2 by full symbols. This shows in particular that
the SOC is the ultimate prerequisite for a finite J	 and with
this for the occurrence of the TCI. In addition, open symbols
in Fig. 2 represent the parameters J	(ξSOC) calculated when
scaling the SOC only for Au. In this case, one can see only
weak changes of the TCI, reflecting a minor impact of the
SOC of the substrate on these interactions, in contrast to the
DMI-like interactions that normally depend strongly on the
SOC for the substrate atoms.

C. TCI and topological orbital moment

In a next step, we derive an expression for the above-
mentioned TOS on the same footing as for the TCI [29],
i.e., within a fully relativistic approach using the multiple
scattering GF formalism. By performing the calculations on
the basis of the expressions derived for the TOS and for the
TCI, we will demonstrate the common properties of these
quantities. On the other hand, we will perform complementary
calculations for the TOM using the self-consistent embedded
cluster technique to confirm that the derived expression for
the TOS indeed gives rise to the chirality-induced orbital
moment. The comparison of the results confirms in particular
the topological origin of the TCI.

Thus, for our purposes we represent the TOM as a sum
over the products of the TOS χTO

i jk determined for the triples
of atoms (i jk) and the corresponding scalar spin chirality
ŝi · (ŝ j × ŝk ), which has to be seen as an effective inducing
magnetic field:

LTO = 1

3!

∑
i �= j �=k

χTO
i jk [ŝi · (ŝ j × ŝk )]. (11)

Here we restrict ourselves to the component LTO = LTO
z along

the axis ẑ of the global frame of reference, which is taken
parallel to the magnetization �m of the FM reference system,
i.e., ẑ‖m̂ (see Sec. II B). As one can see, Eq. (11) has by
construction a form similar to the energy contribution due
to the TCI, i.e., the third term in Eq. (1). Therefore, we will
follow Ref. [29] to derive an expression for the TOS χTO

i jk .
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As a first step, we consider the energy change in the mag-
netic system due to the interaction of a magnetic field with
the topological orbital magnetic moment that is induced by
a noncoplanar chiral magnetic structure, characterized by a
nonzero scalar spin chirality ŝi · (ŝ j × ŝk ). The free-energy
change (at T = 0 K) in the presence of an external field �B
is given by

	E = − 1

π
Im Tr

∫ EF

dE (E − EF ) GĤBG, (12)

with the perturbation operator to ĤB = −�̂l · �B, and �̂l is the
angular momentum operator. In this way, we simplify the
problem by accounting for the orbital moment associated
with the electrons localized on the atoms and neglecting the
contribution from the nonlocal component of the topological
orbital moment discussed, e.g., in Ref. [48]. The reason why
we are interested here only in this part of the induced orbital
moment is related to the interpretation of the TCI discussed
previously [29]. In this case, the TCI is characterized by the
energy change due to the interaction of the spin magnetiza-
tion with the orbital moment induced by the chiral magnetic
configuration.

Next, we assume a noncollinear magnetic structure in the
system, which is treated as a perturbation leading to a change
of the Green function G0 for a collinear magnetic system
according to

G = G0 + G0V G0 + G0V G0V G0 + · · · , (13)

where V = V (q1, q2) is a perturbation due to the 2q spin
modulation given by Eq. (C5) and discussed in Ref. [29] when
considering the three-spin exchange interaction parameters.
Using the expression in Eq. (12), we keep here only the terms
giving the three-site energy contribution corresponding to the
topological orbital susceptibility χTO

i jk :

	E (3) = − 1

π
Im Tr

∫ EF

dE (E − EF ) [G0V G0V G0ĤBG0

+ G0V G0ĤBG0V G0 + G0ĤBG0V G0V G0]. (14)

As is shown in Appendix C, Eq. (14) can be transformed to
the form

	E (3) = 1

3

1

π
[Im Tr

∫ EF

dE [V G0V G0ĤBG0

+V G0ĤBG0V G0 + ĤBG0V G0V G0]. (15)

This leads to an expression for the three-spin TOS responsi-
ble for the TOM induced in the trimer due to the magnetic
configuration characterized by a finite scalar spin chirality:

χTO
i jk = − 1

4π
Im Tr

∫ EF

dE

×[T i,x τ i jT j,y τ jk lk
z τ ki − T i,y τ i jT j,x τ jk lk

z τ ki

−T i,x τ i j l j
z τ jkT k,y τ ki + T i,y τ i j l j

z τ jkT k,x τ ki

+l i
z τ i jT j,x τ jkT k,y τ ki − l i

z τ i jT j,y τ jkT k,x τ ki]. (16)

As was mentioned above, the TOS given by Eq. (16) char-
acterizes the topological orbital moment along the z-axis in

the global frame of reference, which is aligned with the mag-
netization direction of the FM reference system. Moreover,
for the system under consideration, with all magnetic atoms
equivalent, one has LTO

1 = LTO
2 = LTO

3 = LTO for the trimers
	1 and 	2. This implies that the expression for the TOS, χTO

i jk ,
given in Eq. (16), gives access to the TOM LTO

i = LTO
i,z induced

on atom i that has its spin orientation ŝi||ẑ for the FM reference
state.

Using the expression in Eq. (16), calculations of the three-
spin topological orbital susceptibility together with the TCI
have been performed for 1 ML of 3d metals on an Ir (111)
surface. Corresponding values calculated for a Fe overlayer
are represented in Fig. 3 as a function of the angle γ be-
tween the magnetization direction and the normal n̂ to the
surface plane (see Fig. 4). These results give evidence for
the common dependence of the TCI and the TOS on the
flux of the spin magnetization through the triangle area. The
calculations have been performed for the two smallest trimers,
	1 and 	2, centered at the Ir atom and the hole site in the
Ir surface layer, respectively (Fig. 1). As both quantities, Ji jk

and χTO
ik j , follow the permutation properties of the product

ŝi · (ŝ j × ŝk ), we introduce the quantities J	 = Ji jk − Jik j and
χTO

	 = χTO
i jk − χTO

ik j , which allow us to avoid double sum-
mation over the counterclockwise and counteranticlockwise
contributions upon a summation over the lattice sites in the
energy or orbital moment calculations. Note also that in the
present case with all magnetic atoms equivalent, J	 = Ji jk −
Jk ji = Ji jk − Jjik as well as χTO

	 = χTO
i jk − χTO

k ji = χTO
i jk − χTO

jik .
As one can see, both J	(γ ) and χTO

	 (γ ) are in perfect agree-
ment with the functions J	(0) cos(γ ) and χTO

	 (0) cos(γ ) in
line with Eq. (9) to be considered here for the situation m̂‖ẑ,

i.e., m̂ · �̂l ∼ cos(γ ).
The result for χTO

	 can be compared to the pure TOM
LTO(γ ) that is derived directly from the electronic structure
when the SOC is suppressed. Corresponding calculations have
been done for three-atom Fe clusters (	1 or 	2, as is shown
in Fig. 1) embedded in a Fe monolayer on the Ir(111) sur-
face. For this, the Fe spin moments ŝ1, ŝ2, and ŝ3 of the
cluster given by ŝi = ( sin(θ ) cos(φi), sin(θ ) sin(φi ), cos(θ ))
(with φi+1 − φi = 120◦) are tilted by the angle θ with respect
to the “average” spin direction 〈ŝ〉 = 1/3(ŝ1 + ŝ2 + ŝ3), as is
shown in Fig. 4.

It should be emphasized that a one-to-one comparison of
two approaches is only sensible when performing the corre-
sponding calculations under identical conditions. This implies
here an orientation of the spin magnetic moment ŝi as well
as of the topological orbital moment L̂TO

i = L̂TO
i,z on the atom

i along the global ẑ axis, i.e., L̂TO
i ||ŝi||ẑ, identical to the

conditions used within the perturbational approach. In the
calculations for the embedded cluster with finite spin-tilting
angles, this condition can be met only for one atom of the
trimer at a time, e.g., for atom 1 [see Fig. 4(b)]. The angle γ

characterizes the relative orientation of the spin direction ŝ1

and the normal n̂ to the surface (i.e., the plane of the trian-
gle), as is shown in Fig. 4(c). The initial spin configuration
(γ = 0) used in the embedded cluster calculations shown in
Fig. 4(b) can be obtained from the configuration shown in
Fig. 4(a) by a corresponding rotation R1 according to ŝ(b)

1 =
R1ŝ(a)

1 , ŝ(b)
2 = R1ŝ(a)

2 , and ŝ(b)
3 = R1ŝ(a)

3 , such that R1ŝ(a)
1 ||ẑ.

054418-6



TOPOLOGICALLY DRIVEN THREE-SPIN CHIRAL … PHYSICAL REVIEW B 104, 054418 (2021)

(deg)

(deg)

(deg)

(deg)

FIG. 3. (a) Three-spin chiral exchange interaction parameters
J	(γ ) and (b) TOS for SOC = 0, calculated for Fe on Ir (111), as
a function of the angle between the magnetization and normal n̂ to
the surface, for the smallest triangles 	1 and 	2. The dashed lines
represent J	(0) cos(γ ) (a) and χTO

	 (0) cos(γ ) (b), respectively. To
stress the relation between J	 and χTO

	 , we plot −J	 in panel (a).
(c) Topological orbital moment LTO(γ ) (calculated for SOC = 0)
induced by a three-site chiral spin tilting by θ = 10◦, for trimers 	1

(red squares, centered at an Ir atom) and 	2 (blue circles, centered by
the hole in the Ir layer). The solid line represents the results obtained
for LTO(γ ) = χTO

	 ŝi · (ŝ j × ŝk ), while the dashed line represents the
results of a direct calculation of LTO(γ ) for an embedded three-
atomic Fe cluster. (d) Orbital moments LTO

i (γ ) on a three-atomic
embedded Fe cluster 	1 in Fe monolayer on Ir (111), induced at
SOC = 0 due to the tilting of magnetic moments by θ = 10◦ with
respect to the magnetization direction. The dashed line represents
the average orbital moment.

FIG. 4. Spin orientation in a three-atom cluster in the magnetic
monolayers on Ir (111): (a) θ , the angle of tilting tilting of magnetic
moments ŝi of the trimer with respect to the magnetization direction;
(b) initial spin configuration used in the calculations of the TOM on
the atom i, for the embedded cluster; (c) γ , the angle between the
direction of spin magnetic moment ŝi and the normal to the surface
n̂i, within the plane perpendicular to the rotation axis.

The TOMs of atoms 2 and 3, LTO
2 (γ ) and LTO

3 (γ ), respectively,
and their dependency on the angle γ , can be obtained from
corresponding spin configurations obtained by applying the
rotations R2 and R3, fixed by the requirement R2ŝ(a)

2 ||ẑ and
R3ŝ(a)

3 ||ẑ, respectively.
As one notices from Fig. 3(d) for the cluster 	1, the vari-

ation of the calculated TOM LTO
i (γ ) with the tilting angle

γ is somewhat different for the various atoms in the cluster,
with the difference increasing with increasing θ . Figure 3(c)
represents by full symbols the dependence of the correspond-
ing averaged TOM LTO(γ ) = 1/3(LTO

1 + LTO
2 + LTO

3 ) on the
angle γ , with LTO

i (γ ) induced due to the tilting of all spin
moments by the angle θ = 10◦ (see Fig. 4). Rotating the
lattice, the direction of the normal vector n̂ rotates with respect
to the fixed ẑ axis, leading to an increase of the angle γ and to a
decrease of the topological orbital moment of the three-atomic
cluster.

As one can see in Fig. 3(c), for both considered clusters the
results for LTO(γ ) are in good agreement with the TOM (given
by open symbols) evaluated via LTO

	 (γ ) = χTO
	 ŝi · (ŝ j × ŝk )

on the basis of the TOS plotted in Fig. 3(b). These findings
clearly support the concept of the topological orbital suscep-
tibility as well as the interpretation of the topological orbital
moment.

In Fig. 5 we represent in addition the dependence of the
directly calculated TOM on the occupation of the electronic
states, which is considered for embedded Fe and Mn three-
atomic clusters 	1 and 	2, for 1 ML Fe (a) and 1 ML Mn
(b), respectively, on the Ir (111) surface. Such an energy-
resolved representation may allow us to monitor differences
for the various quantities considered concerning their origin
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FIG. 5. Topological orbital moment (calculated for SOC = 0)
induced by a three-site chiral spin tilting by θ = 10◦, for the smallest
triangles 	1 (red, centered at an Ir atom) and 	2 (blue, centered by
the hole in the Ir layer) in 1 ML of Fe (a) and Mn (b) on Ir (111),
as a function of the occupation. The solid line represents the results
obtained for χTO

	 ŝi · (ŝ j × ŝk ), while the dashed line represents the
results directly calculated for the embedded three-atomic Fe cluster.

in the electronic structure. The TOM plotted in Fig. 5 by a
dashed line is calculated for atom 1 in the embedded cluster
with magnetic moments on the atoms tilted by θ = 10◦ with
respect to the average spin direction 〈ŝ〉. In turn, 〈ŝ〉 is tilted by
γ = 10◦ to have an orientation of ŝ1 along the normal n̂ to the
surface [see Fig. 4(b)]. The solid line represents the orbital
moment calculated using the three-spin topological orbital
susceptibility χTO

	 scaled by the scalar spin chirality factor,
i.e., LTO

	 = χTO
	 ŝ1 · (ŝ2 × ŝ3). As one can see, both results are

close to each other, and the difference can be attributed to a
finite θ angle in the case of the embedded cluster calculations.
Comparing the results for Fe and Mn, one can also see that
the different sign of the induced topological orbital moments
on Fe and Mn atoms (this implies E − EF = 0 in Fig. 5) is
mainly a result of a different occupation of the electronic
states in these materials. Thus, the presented results give
clear evidence that the susceptibility calculated using Eq. (16)
characterizes an orbital moment on the atoms as a response to
the effective magnetic field represented by scalar spin chirality
for every three-atomic cluster. It has a form closely connected
to that for the TCI and therefore should be seen as a source for
the TCI according to Eq. (6).

D. Topological spin susceptibility

Discussing in Sec. II B the role of the SOC for the TCI
using a description of the electronic structure in terms of the
nonrelativistic Green functions, we have shown its responsi-
bility for the induced spin magnetic moment in the presence

(deg)

FIG. 6. “Topological” spin susceptibility χTS
	 calculated for

trimers 	1 and 	2 in Fe on Au (111): (a) as a function of ξSOC and
(b) as a function of the angle between the magnetization and normal
n̂ to the surface.

of a chiral magnetic structure governing the TOM. The ap-
pearance of the spin moment induced due to a chiral magnetic
structure can also be demonstrated explicitly within the fully
relativistic approach, which gives access to an estimate for the
TCI based on Eq. (9). This can be done by introducing a TSS
in analogy to the TOS that is given explicitly by the expression
in Eq. (16). Following the discussion of the role of the SOC
for the induced spin magnetization given by Eq. (8) that is
based on a nonrelativistic reference system, one obviously
has to account for the SOC when dealing with the TSS χTS

i jk .
This is done here by working on a fully relativistic level and
representing the underlying electronic structure in terms of the
retarded Green function evaluated by means of the multiple-
scattering formalism (see above). This approach allows us to
write for χTS

i jk the expression

χTS
i jk = − 1

4π
Im Tr

∫ EF

dE

×[T i,x τ i jT j,y τ jkσ k
z τ ki − T i,y τ i jT j,x τ jkσ k

z τ ki

−T i,x τ i jσ j
z τ jkT k,y τ ki + T i,y τ i jσ j

z τ jkT k,x τ ki

+σ i
z τ i jT j,x τ jkT k,y τ ki − σ i

z τ i jT j,y τ jkT k,x τ ki].

(17)

Using this expression, χTS
	 = χTS

i jk − χTS
ik j was calculated as a

function of the SOC scaling parameter ξSOC, as well as the
angle γ defined above, for 1 ML Fe on the Au(111) surface.
Figure 6(a) represents the dependence of χTS

	 on ξSOC, clearly
demonstrating the relativistic origin of this quantity giving rise
to the corresponding contribution to the TCI [see Eq. (8)].
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These results can be compared with the ξSOC dependence of
the TCI plotted in Fig. 2. As was shown in Fig. 3, when
comparing J	 and χTO

	 , one finds a different sign for J	 and
χTS

	 .
On the other hand, χTS

	 should follow the angle γ between
the magnetization and surface normal n̂, as was obtained for
χTO

	 . As one can see in Fig. 6(b), χTS
	 (γ ) is well represented

by χTS
	 (0) cos(γ ), demonstrating a common behavior of the

topological spin susceptibility χTS
	 and the TOS χTO

	 .
Using the results in Fig. 6(a) together with the ground-

state spin moment mFe = 3μB and the approximate exchange
splitting 	xc ∼ 3 eV calculated for 1 ML Fe/Au(111), one
can give the crude estimate 1 eV/μB for the effective B-field
Beff ≈ 	xc/mFe giving access to the TCI connected with the
TSS χTS

	 . Using Eq. (6) approximated by J	 ≈ Beff χTS
	 , one

obtains the values J	1 ≈ −0.14 and J	2 ≈ −0.57 meV for
ξSOC = 1, which are in reasonable agreement with the prop-
erly calculated values shown in Fig. 2 supporting the concept
of a TSS as introduced here.

III. SUMMARY

To summarize, we have stressed that the TCI derived in
Ref. [29] is fully in line with the symmetry properties of a
fully antisymmetric rank-3 tensor, specific only for this type
of interaction. This interaction should be distinguished from
the four-spin DMI-like exchange interactions obtained in a
different order of perturbation theory and characterized by
different properties with respect to a permutation of the spin
indices.

We suggest an interpretation of the TCI showing its depen-
dence on the relativistic SOC and on the TOS as a possible
source. Concerning the SOC, an analytical expression based
on a perturbative treatment of the SOC as well as numerical
results for the TCI parameter demonstrate the role of the SOC
as an ultimate source for a nonzero TCI. An expression for the
TOS that reflects the topological origin of the TOS and that is
very similar to that for the TCI parameters has been derived.
Numerical results again demonstrate the intimate connection
between both quantities.

To allow for a more detailed discussion of the TCI, the TSS
has been introduced as a quantity that reflects the impact of
the SOC in the presence of a noncollinear magnetic structure,
leading to a nonvanishing TCI. Corresponding numerical re-
sults also demonstrated the connection of the TSS to the TCI
parameters.

In summary, the work presented not only revealed details of
the mechanism giving rise to the TCI and its connection with
related quantities, but also clearly rebutted the misleading
criticism raised by dos Santos Dias et al. [38].
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APPENDIX A: PROPERTIES OF THE TCI WITH RESPECT
TO TIME REVERSAL

In the following, we address the properties of the TCI with
respect to time reversal. Considering the TCI parameter as a
“conventional” scalar quantity invariant with respect to time
reversal together with the scalar spin chirality ŝi · (ŝ j × ŝk )
in the third term of the spin Hamiltonian given in Eq. (1)
being antisymmetric with respect to this operation, one is
erroneously led to the conclusion that the TCI should not
contribute to the energy expansion in Eq. (1).

Concerning this, we remind the reader here that the expres-
sion for the corresponding TCI parameter was derived in Ref.
[29] by considering spin tiltings as a perturbation to a FM
reference system that led to a noncollinear spin modulation.
Using a representation of the electronic structure of the FM
state by means of its Green function G0, the change in energy
in second-order with respect to the perturbation is given by
[29]

	E = − 1

π
Im Tr

∫ EF

dE (E − EF ) G0 	V G0 	V G0, (A1)

with the perturbation 	V ,

	V =
∑

i

β(�σ · ŝi − σz )Bxc, (A2)

and all spatial arguments and corresponding integrals omitted.
As the change in energy due to an arbitrary perturbation

should be invariant with respect to time reversal, this should
hold in particular for the term given in Eq. (A1) that is sec-
ond order concerning the perturbation 	V . This property is
demonstrated in the following, making use of the simplified
version of Eq. (A1),

	E = − 1

π
Im Tr

∫ EF

dE ( �Bxc · �σ )

×G0 ξSOC(�σ · �̂l ) G0 	V G0 	V G0, (A3)

as given in Eq. (9), with SOC treated as a perturbation. Treat-
ing the FM state otherwise on a nonrelativistic level, its Green
function G0 is block-diagonal with respect to the spin index:

G0 = 1

2
(G↑↑

0 + G↓↓
0 ) + 1

2
(G↑↑

0 − G↓↓
0 )σz

= G01σ0 + G02σz, (A4)

with σ0 the unit 2 × 2 matrix, and the perturbation

	V =
∑

i

[σxsi
x + σysi

y + σz(si
z − 1)]Bxc. (A5)

Inserting Eqs. (A4) and (A5) into Eq. (A3) leads, among other
things, to contributions of the form

∼ Im Tr[(Bi
xcσz )(G01σ0) ξ i

SOC(σz l̂z )

×G01σ0(σxB j
xc) (G01σ0)(σyBk

xc)(G02σz )],

which are invariant with respect to time reversal, as will be
shown next. A corresponding application of the time-reversal
operator T = −iσyK, with K the operator of complex conju-
gation, to the Green function leads to

T (G01σ0 + G02σz )T −1 = (G∗
01σ0 − G∗

02σz ), (A6)
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while the operators 	V and (σz l̂z ) are invariant under this
operation. Accordingly, one has for the contribution given
above

∼ Im Tr[(Bi
xcσz )(G∗

01σ0) ξ i
SOC(σz l̂z )

×G∗
01σ0(σxB j

xc) (G∗
01σ0)(σyBk

xc)(−G∗
02σz )].

Making use of the specific properties of the various operators
involved, one can rewrite this as

∼ −Im Tr[(Bi
xcσz )(G01σ0) ξ i

SOC(σz l̂z )

×G01σ0(σxB j
xc) (G01σ0)(σyBk

xc)(G02σz )]∗,

i.e., the original expression is recovered. From this we may
conclude that when using Eq. (A1) within a more general fully
relativistic framework, contributions occur that are also invari-
ant under time reversal and therefore characterize a stationary
state of the perturbed system.

As a next step in the derivation of an expression for the TCI
interaction parameters, the change in energy 	E in Eq. (A1)
was mapped to the third term of the spin Hamiltonian given by
Eq. (1) [29]. Representing the Green function G0 by means of
the multiple scattering formalism 	E could be expressed by
a sum over products of the TCI parameters Ji jk given Eq. (2)
and the corresponding scalar spin chirality ŝi · (ŝ j × ŝk ).

As was pointed out in Sec. II, the derivation of the TCI
term accounts automatically for the symmetry properties of
the scalar spin chirality ŝi · (ŝ j × ŝk ). This implies that mul-
tiplying the TCI parameters by ŝi · (ŝ j × ŝk ) and summing
over all sites should in particular conform with the behavior
under time reversal of the initial expression, i.e., the result
should be invariant under time reversal. Following the discus-
sions in Sec. II C and in Ref. [29], the TCI term in the spin
Hamiltonian can be contracted to a form accounting for only
the counterclockwise contributions when summation over the
sites:

H (3) = − 1

3!

∑
i, j,k:�

J	ŝi · (ŝ j × ŝk ), (A7)

with J	 = Ji jk − Jik j giving the nonzero contributions to the
energy. As a consequence of the mapping properties men-
tioned above, this parameter is antisymmetric with respect
to time reversal applied to the total system. This important
property was verified by electronic-structure calculations with
the exchange field changed in sign, which indeed led to a flip
in sign for the TCI parameters as well. This property ensures

that the energy given by Eq. (A7) is time-reversal invariant as
a consequence of the properties of the corresponding energy
change given by Eq. (A1). Connected with this, it should be
stressed once more that the expansion leading to Eq. (A1) is
based on a—in principle arbitrary—reference state (see also
the corresponding discussion in Ref. [29]) that addresses all
other parameters in the spin Hamiltonian given by Eq. (1).
Accordingly, it represents the energy landscape in the vicinity
of this state in dependence on the actual spin configuration.
If the reference state is changed, e.g., by time reversal, the
expansion coefficients may change as well.

Finally, it is worthwhile to compare with the energy map-
ping giving access to the DMI term, where the standard
vector form of the DMI parameters ensures corresponding
scalar energy contributions. In contrast to this situation, the
time-reversal antisymmetry of the TCI parameters, that nev-
ertheless give finite energy contributions invariant under time
reversal, is hidden.

APPENDIX B: COMPUTATIONAL DETAILS

The first-principles exchange coupling parameters are cal-
culated using the spin-polarized relativistic KKR (SPR-KKR)
Green function method [49,50]. The fully relativistic mode
was used except for the cases in which scaling of the spin-orbit
interaction was applied. All calculations have been performed
using the atomic-sphere approximation (ASA), within the
framework of the local spin density approximation (LSDA) to
spin density functional theory (SDFT), using a parametriza-
tion for the exchange and correlation potential as given by
Vosko et al. [51]. A cutoff lmax = 2 was used for the angu-
lar momentum expansion of the Green function. Integration
over the Brillouin zone (BZ) has been performed using a
43 × 43 × 7 k-mesh.

The calculations for 1 ML of 3d metals on an M(111)
surface (M = Ir,Au) have been performed in the supercell
geometry with (1 ML Fe/3 ML M) layers separated by two
vacuum layers. This decoupling was sufficient in the present
case to demonstrate the properties of the exchange interaction
parameters for the 2D system. The lattice parameters used
were a = 7.22 a.u. for fcc Ir and a = 7.68 a.u. for fcc Au.

APPENDIX C: TOM

Equation (14) can be modified by using the sum rule for
GF, dG

dE = −GG, and integration by parts,

	E (3) = − 1

π
Im Tr

∫ EF

dE (E − EF ) [V G0V G0ĤBĠ0 + V G0ĤBG0V Ġ0 + ĤBG0V G0V Ġ0]

= 1

π
Im Tr

∫ EF

dEV G0V G0ĤBG0 + 1

π
Im Tr

∫ EF

dEV G0ĤBG0V G0 + 1

π
Im Tr

∫ EF

dEĤBG0V G0V G0]

− 1

π
Im Tr(E − EF )V G0V G0ĤBĠ0|EF + 1

π
Im Tr

∫ EF

dE (E − EF )
d

dE
[V G0V G0ĤB]G0

− 1

π
Im Tr(E − EF )V G0V G0ĤBĠ0|EF + 1

π
Im Tr

∫ EF

dE (E − EF )
d

dE
[V G0ĤBG0V ]G0

− 1

π
Im Tr(E − EF )V G0V G0ĤBĠ0|EF + 1

π
Im Tr

∫ EF

dE (E − EF )
d

dE
[ĤBG0V G0V ]G0
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= 1

π
Im Tr

∫ EF

dEV G0V G0ĤBG0 + 1

π
Im Tr

∫ EF

dEV G0ĤBG0V G0 + 1

π
Im Tr

∫ EF

dEĤBG0V G0V G0]

+ 1

π
Im Tr

∫ EF

dE (E − EF )
d

dE
[V G0V G0ĤB]G0

+ 1

π
Im Tr

∫ EF

dE (E − EF )
d

dE
[V G0ĤBG0V ]G0 + 1

π
Im Tr

∫ EF

dE (E − EF )
d

dE
[ĤBG0V G0V ]G0. (C1)

After partial integration, the terms without involving an integral should vanish due to the factor (E − EF )|EF . Taking the
energy derivatives in the last three integrals, we obtain

− 1

π
Im Tr

∫ EF

dE (E − EF ) [V G0V G0ĤBĠ0 + V G0ĤBG0V Ġ0 + ĤBG0V G0V Ġ0]

= 1

π
Im Tr

∫ EF

dE V G0V G0ĤBG0 + 1

π
Im Tr

∫ EF

dE V G0ĤBG0V G0 + 1

π
Im Tr

∫ EF

dE ĤBG0V G0V G0

+ 1

π
Im Tr

∫ EF

dE (E − EF ) [V Ġ0V G0ĤB]G0 + 1

π
Im Tr

∫ EF

dE (E − EF ) [V G0V Ġ0ĤB]G0

+ 1

π
Im Tr

∫ EF

dE (E − EF ) [V Ġ0ĤBG0V ]G0 + 1

π
Im Tr

∫ EF

dE (E − EF ) [V G0ĤBĠ0V ]G0

+ 1

π
Im Tr

∫ EF

dE (E − EF ) [ĤBĠ0V G0V ]G0 + 1

π
Im Tr

∫ EF

dE (E − EF ) [ĤBG0V Ġ0V ]G0. (C2)

Using the invariance of the trace of matrix product with respect to cyclic permutations, one can combine the latter integrals
and bring them to the left. With this one arrives at the expression

	E (3) = 1

3

1

π

[
Im Tr

∫ EF

dEV G0V G0ĤBG0 + Im Tr
∫ EF

dEV G0ĤBG0V G0 + Im Tr
∫ EF

dEĤBG0V G0V G0

]
. (C3)

Representing the Green functions in terms of the multiple-scattering formalism, this expression can be reduced to the expression

	E (3) = 1

3

1

π

∑
i �= j �=k

Im Tr
∫ EF

dE [〈Zi|ĤB|Zi〉τi j〈Zj |δv j |Zj〉τ jk〈Zk|δvk|Zk〉τki + 〈Zi|δvi|Zi〉τi j〈Zj |ĤB|Zj〉τ jk〈Zk|δvk|Zk〉τki

+〈Zi|δvi|Zi〉τi j〈Zj |δv j |Zj〉τ jk〈Zk|ĤB|Zk〉τki], (C4)

which has a similar form to the expression for the energy associated with the three-spin chiral interactions given previously [29].
Here the perturbation δvi in the system is associated with the non-coplanar magnetic texture. Following the idea used to derive
the expression for the TCI [29], we create a 2q spin modulation according to

ŝi = ( sin(�q1 · �Ri ) cos(�q2 · �Ri ), sin(�q2 · �Ri ), cos(�q1 · �Ri ) cos(�q2 · �Ri )), (C5)

which is characterized by two wave vectors, �q1 and �q2, orthogonal to each other. Taking the second-order derivatives with respect
to �q1 and �q2 in the limit q1 → 0, q2 → 0, Eq. (C4) can be reduced to the form

	E (3) = 1

3!

∑
i �= j �=k

ŝi · (ŝ j × ŝk )
1

4π
Im Tr

∫ EF

dE
[
T i,x τ i jT j,y τ jkHk

B τ ki − T i,y τ i jT j,x τ jkHk
B τ ki

−T i,x τ i jH j
B τ jkT k,y τ ki + T i,y τ i jH j

B τ jkT k,x τ ki + Hi
B τ i jT j,x τ jkT k,y τ ki − Hi

B τ i jT j,y τ jkT k,x τ ki
]
. (C6)

That in turn (taking into account ĤB = −�̂l · �B) leads to the topological orbital moment

LTO = 1

3!

∑
i �= j �=k

χTO
i jk ŝi · (ŝ j × ŝk )

= − 1

3!

∑
i �= j �=k

ŝi · (ŝ j × ŝk )
1

4π
Im Tr

∫ EF

dE
[
T i,x τ i jT j,y τ jk lk

z τ ki − T i,y τ i jT j,x τ jk lk
z τ ki

−T i,x τ i j l j
z τ jkT k,y τ ki + T i,y τ i j l j

z τ jkT k,x τ ki + l i
z τ i jT j,x τ jkT k,y τ ki − l i

z τ i jT j,y τ jkT k,x τ ki
]
. (C7)
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