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Spin pumping of two-dimensional electron gas with Rashba and Dresselhaus spin-orbit interactions
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We theoretically consider spin pumping in a junction between a ferromagnetic insulator (FI) and a two-
dimensional electron gas (2DEG) in which the Rashba and Dresselhaus spin-orbit interactions coexist. Using
second-order perturbation theory, we derive an increase in linewidth in the case of an interfacial exchange
coupling in a ferromagnetic resonance (FMR) experiment. We clarify how the enhancement of Gilbert damping
depends on the resonant frequency and spin orientation of the FI. We show that this setup of an FMR experiment
can provide information on the spin texture of 2DEG at the Fermi surface.
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I. INTRODUCTION

Spin pumping has been studied intensively in the field
of spintronics as a versatile method to generate spin current
using magnetization dynamics [1,2]. Spin pumping is used
for injecting spins from a ferromagnet into an adjacent mate-
rial in various heterojunction systems, such as ferromagnetic
metal/normal metal (NM) junctions [3–6] and ferromagnetic
insulator (FI)/NM junctions [7]. As the back-action of the
spin injection, the Gilbert damping of the ferromagnet is
modulated. Therefore, spin pumping can be used as a probe
of nonequilibrium spin states of materials in the sense that
information on spin transport due to an adjacent material is
reflected in the modulation of the Gilbert damping.

An attractive strategy is spin pumping of semiconduc-
tor microstructures because highly developed semiconductor
technologies can be utilized [8,9]. In particular, a two-
dimensional electron gas (2DEG) in a semiconductor het-
erostructure is an easily controlled physical system that has
been used in spintronics devices [10–13]. A 2DEG system
has two types of spin-orbit interaction, Rashba [14,15] and
Dresselhaus [16,17]. By combining these two interactions, we
can control the spin polarization of conduction electrons in a
way that is dependent on the propagation direction [18]. In
fact, electron transport reflecting the spin texture on the Fermi
surface has been observed through, e.g., the Aharonov-Casher
effect [19–24] and the persistent spin helix state [25–31].

In our work, we focus on spin pumping of a 2DEG in
semiconductor heterostructures. It is remarkable that there al-
ready exist experimental studies on the injection of spins into
two-dimensional electron systems with the Rashba spin-orbit
interaction in surfaces [32,33], atomic layer materials [34,35],
transition oxides [36,37], and bulk semiconductors [38,39].
However, to the best of our knowledge, spin pumping in a
junction system composed of an FI and a 2DEG in which the

Rashba and Dresselhaus spin-orbit interactions coexist has not
been studied yet.

In this study, we consider a planar junction composed of
an FI and a 2DEG in a semiconductor heterostructure (see
Fig. 1). By taking both Rashba and Dresselhaus spin-orbit
interactions in a 2DEG into account, we theoretically show
an enhancement in Gilbert damping in the FI within the
second-order perturbation with respect to interfacial exchange
coupling [40–45]. We investigate how the linewidth increase
in a ferromagnetic resonance (FMR) experiment depends on
the resonant frequency and the spin orientation of the FI. We
show that a spin pumping measurement can directly detect the
complex spin texture of a 2DEG with spin-orbit interactions.

The rest of this work is organized as follows. In Sec. II, we
theoretically show an enhancement in Gilbert damping due
to the exchange interaction with a 2DEG within second-order
perturbation. In Sec. III, we show how the enhancement of the
Gilbert damping depends on the spin orientation of the FI. We
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FIG. 1. Schematic picture of a junction composed of a ferro-
magnetic insulator (FI) and a two-dimensional electron gas (2DEG)
in a semiconductor heterostructure. Spin current is induced at the
interface under microwave irradiation, whose frequency is chosen to
be near the frequency of the spin precession of the FI.
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also discuss the experimental relevance of our result. Finally,
we summarize our results in Sec. IV. In the Appendixes, we
give a detailed derivation of the equations in Sec. II.

II. FORMULATION

In this section, we analytically formulate the damping rate
of the spin precession in a FMR experiment when the FI is
coupled with a 2DEG through an interfacial interaction. First,
we introduce the model of the 2DEG and the FI in Secs. II A
and II B. Next, we consider the interfacial coupling between
the 2DEG and the FI in Sec. II C. Finally, we calculate the
second-order perturbation with respect to the interfacial cou-
pling in Sec. II D. Throughout this paper, we will use the
laboratory coordinates shown in Fig. 1; the xy plane is parallel
to the 2DEG, while the z axis is perpendicular to the junction
area.

A. Two-dimensional electron gas

We consider a 2DEG with both Rashba and Dresselhaus
interactions. The Hamiltonian for the kinetic energy and the
spin-orbit interactions is given as

Hkin =
∑

k

(c†
k↑ c†

k↓)ĥk

(ck↑
ck↓

)
, (1)

ĥk =
(

h̄2
(
k2

x +k2
y

)
2m∗ −μ

)
Î + α(kyσx − kxσy) + β(kxσx − kyσy),

(2)

where ĥk is a 2 × 2 matrix, σa (a = x, y, z) are the Pauli matri-
ces, Î is an identity matrix, and ckσ is the annihilation operator
of conduction electrons with wave number k = (kx, ky) and
the z component of a spin σ (= ↑,↓). The first term of ĥk

describes the kinetic energy of an electron with chemical
potential μ and effective mass m∗. The second and third
terms of ĥk describe the Rashba and Dresselhaus spin-orbit
interactions, respectively, and α and β denote the amplitudes
of the respective spin-orbit interactions.

Hereafter, we assume that the Fermi energy is much larger
than the other energy scales, such as the temperature and the
amplitude of the spin-orbit interactions. The energy dispersion
is then approximated as ξk ≡ h̄2k2/2m∗ − μ � vF(|k| − kF),
where kF and vF are the Fermi wave number and the Fermi
velocity, respectively. We also approximate the spin-orbit in-
teraction using (kx, ky) � (kF cos ϕ, kF sin ϕ), where ϕ is the
azimuth angle of the conduction electrons. Accordingly, the
Hamiltonian matrix can be rewritten as ĥk = ξk Î − heff · σ,
where

heff � kF(−α sin ϕ − β cos ϕ, α cos ϕ + β sin ϕ, 0) (3)

is the effective magnetic field that acts on the spin of a con-
duction electron propagating in the direction of ϕ. Note that
the effective magnetic field heff characterizes the spin texture
of conduction electrons as a function of the azimuth angle of
the electron wave number. Figures 2(a) and 2(b) show profiles
of the effective magnetic field on the Fermi surface [46] for
α/β = 1 and 3. The spin texture is simplified for the special
case of α/β = 1; the direction of the effective field is always
parallel to the straight line ky = −kx.

FIG. 2. Schematic picture of the effective magnetic field heff (ϕ)
that acts on the spins of conduction electrons.

By diagonalizing ĥk, we obtain the spin-dependent electron
dispersion,

E±
k = ξk ± heff (ϕ), (4)

heff (ϕ) ≡ |heff (ϕ)| � kF

√
α2 + β2 + 2αβ sin 2ϕ. (5)

Note that 2heff (ϕ) corresponds to the spin-splitting energy for
a conduction electron propagating at the azimuth angle ϕ.
When α = β (α = −β), the spin-splitting energy vanishes at
ϕ = 3π/4 (ϕ = π/4).

The Green’s function at finite temperature is defined as a
2 × 2 matrix ĝ(k, τ ), whose elements are

gσσ ′ (k, τ ) = −h̄−1〈ckσ (τ )c†
kσ ′ 〉 (6)

for 0 < τ < h̄β, where ckσ (τ ) = eHkinτ/h̄ckσ e−Hkinτ/h̄ is the
Heisenberg representation for the imaginary-time evolution
and β is inverse temperature. Note that there are off-diagonal
components in the Green’s function that are due to spin-flip
processes by the spin-orbit interactions. The Fourier transform
of the Green’s function is defined as

ĝ(k, iωn) =
∫ h̄β

0
dτ eiωnτ ĝ(k, τ ), (7)

where ωn = π (2n + 1)/h̄β are the Matsubara frequencies for
fermions. For the Hamiltonian Hkin, the Green’s function is
calculated as

ĝ(k, iωn) = (ih̄ωn − ξk)Î − heff · σ

(ih̄ωn − E+
k )(ih̄ωn − E−

k )
. (8)

We also consider the effect of impurity scattering in a
2DEG by the Hamiltonian,

Vimp = u
∑
i∈imp

∑
σ


†(Ri )
(Ri ), (9)


(r) = 1√
A

∑
k

ckσ eik·r, (10)

where i ∈ imp indicates the impurity site, u is the strength
of the impurity potential, A is the junction area, and Ri is
the position of the impurity site. The total Hamiltonian for
the 2DEG is thus H2DEG = Hkin + Vimp. Through second-order
perturbation with respect to the impurity potential, the Green’s
function is calculated as

ĝ(k, iωn) = [ih̄ωn − ξk + i�sgn(ωn)/2]Î − heff · σ∏
ν=±

[
ih̄ωn − E ν

k + i�sgn(ωn)/2
] , (11)
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FIG. 3. Relation between laboratory coordinates (x, y, z) and
magnetization-fixed coordinates (x′, y′, z′) for FI.

where � = 2πniu2D(εF) is level broadening and D(εF) =
kF/(2π h̄vF) is the density of states per spin per unit volume.
For a detailed derivation, see Appendix A.

B. Ferromagnetic insulator

We assume that the magnetization of the FI is in the xy
plane parallel to the 2DEG. We define the direction of the
in-plane ordered spin measured from the x axis as θ . Ac-
cordingly, the expectation value of the ordered spin in FI is
expressed as

〈Si〉 = (〈Sx
i

〉
,
〈
Sy

i

〉
,
〈
Sz

i

〉) = (S0 cos θ, S0 sin θ, 0), (12)

where i is the index of a localized spin site and S0 is the
amplitude of the average spin per site. To simplify the subse-
quent calculation, we introduce a new coordinate, (x′, y′, z′),
for which the direction of the ordered spin is fixed to the x′
axis, as shown in Fig. 3. The average spin is expressed in this
new coordinate as (〈Sx′

i 〉, 〈Sy′
i 〉, 〈Sz′

i 〉) = (S0, 0, 0). The spin
operators for the new coordinates are related to the ones for
the original coordinates as

Sx′
i = cos θSx

i + sin θSy
i , (13)

Sy′
i = − sin θSx

i + cos θSy
i , (14)

Sz′
i = Sz

i . (15)

The Hamiltonian of the FI is written in the new coordinates as

HFI =
∑
〈i, j〉

Ji j
(
Sx′

i Sx′
j + Sy′

i Sy′
j + Sz′

i Sz′
j

) − h̄γ hdc

∑
i

Sx′
i ,

(16)

where 〈i, j〉 indicates a pair of nearest-neighbor sites, Ji j is the
ferromagnetic exchange coupling, γ (<0) is the gyromagnetic
ratio, and hdc is the static magnetic field. We assume hdc < 0,
for which the direction of the spin (the magnetization) be-
comes +x′ (−x′).

We further assume that the temperature is much lower than
the magnetic transition temperature. In addition, we assume
S0 � 1, to which the spin-wave approximation can be applied.
The Hamiltonian of the FI can then be rewritten as

HFI =
∑

k

h̄ωkb†
kbk, (17)

h̄ωk = Dk2 + h̄γ hdc, (18)

where bk is the annihilation operator of a magnon and D is
spin stiffness. A detailed derivation is given in Appendix B.

We define the imaginary-time spin correlation function of
the FI as

G(k, τ ) = −1

h̄

〈
Sx′+

k (τ ), Sx′−
k (0)

〉
, (19)

G(k, iωn) =
∫ h̄β

0
dτ G(k, τ )eiωnτ , (20)

where ωn = 2πn/h̄β are the Matsubara frequencies for
bosons. This spin correlation function can be calculated
within the spin-wave approximation as

G(k, iωn) = 2S0/h̄

iωn − ωk + iαG|ωn| . (21)

Here, we have introduced a phenomenological dimensionless
parameter αG that describes the strength of the Gilbert damp-
ing.

C. Interfacial exchange interaction

We consider an interfacial exchange interaction between
the FI and the 2DEG with the Hamiltonian

Hint =
∑

k

(
TkSx′+

k sx′−
k + T ∗

k Sx′−
k sx′+

k

)
, (22)

where Tk is an exchange interaction at the interface and
Sx′±

k = Sy′
k ± iSz′

k are creation and annihilation operators of the
localized spins in the FI. Here, the interface is assumed to
be sufficiently flat that the momentum of spin excitation is
conserved. The effective field (the exchange bias) which acts
on the conduction electrons via the interfacial coupling is also
assumed to be much smaller than the effective magnetic field
heff . The spin ladder operators for conduction electrons sx′±

k
are defined as follows. First, we define the spin operators in
the magnetization-fixed coordinates as

sx′
k = cos θ sx

k + sin θ sy
k, (23)

sy′
k = − sin θ sx

k + cos θ sy
k, (24)

sz′
k = sz

k, (25)

using the spin operators in the original coordinates defined as

sa
k =

∑
σσ ′

∑
k′

c†
k′σ (σa)σσ ′ck′+kσ (a = x, y, z). (26)

Here, σa are the Pauli matrices. We define the spin ladder
operators as

sx′+
k ≡ sy′

k + isz′
k , (27)

sx′−
k ≡ (

sx′+
k

)† = sy′
−k − isz′

−k. (28)

Using Eqs. (23)–(26), these ladder operators are rewritten as

sx′±
k = 1

2

∑
σ,σ ′

∑
k′

c†
k′σ (σ̂ x′±)σσ ′ck′±kσ ′, (29)

σ̂ x′± = − sin θ σx + cos θ σy ± iσz. (30)

D. Second-order perturbation

Let us consider a second-order perturbation with respect
to the interfacial exchange interaction Hint to the bulk system
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described by H2DEG + HFI. The spin correlation function is
written in the form

G(k, iωn) = 1

(G0(k, iωn))−1 − �(k, iωn)
, (31)

�(k, iωn) = |Tk|2
4β

∑
k′,iωm

Tr[σ̂ x′−ĝ(k′, iωm)

× σ̂ x′+ĝ(k′ + k, iωm + iωn)], (32)

where G0(k, iωn) is the unperturbed part of the Green’s func-
tion given in Eq. (21) and �(k, iωn) is the self-energy due
to the interfacial exchange coupling. Since a uniform spin
precession is induced in FMR experiments, we calculate only
the self-energy for k = 0. To simplify the notation, we will
rewrite the Green’s function ĝ(k, iωn) as

ĝ(k, iωn) = A(iωn)Î − heff · σ

D(iωn)
, (33)

A(iωn) = ih̄ωn − ξk + i�sgn(ωn)/2, (34)

D(iωn) =
∏
ν=±

(ih̄ωn − E ν
k + i�sgn(ωn)/2). (35)

By a straightforward calculation using the algebra of the Pauli
matrices, we obtain

�(q = 0, iωn) = |T0|2
β

∑
k,iωm

A − heff · m̂
D

A′ + heff · m̂
D′ ,

(36)

where m̂ = (cos θ, sin θ, 0) indicates the spin orientation
of the FI, A = A(iωm), A′ = A(iωm + iωn), D = D(iωm),
and D′ = D(iωm + iωn) (for the detailed derivation, see
Appendix C). For further calculation, we evaluate the sum
with respect to the Matsubara frequency ωm by using the stan-
dard procedure based on the contour integral. Then, we obtain
the retarded component by analytic continuation: iωn → ω +
iδ (the details of the calculation are in Appendix D).

We will focus on the increase in the FMR linewidth due to
the exchange coupling with the 2DEG and consider only the
imaginary part of the self-energy. Using the unperturbed spin
correlation function (21), we obtain the retarded component
of the spin (magnon) correlation function as

GR(q = 0, ω) � 2S0/h̄

ω − ωq=0 + i(αG + δαG)ω
, (37)

δαG(ω) ≡ −2S0

h̄ω
Im �R(q = 0, ω). (38)

For αG + δαG � 1, which holds for a standard setup of spin
pumping, the linewidth of the ferromagnetic resonance is suf-
ficiently small, allowing us to replace ω with the resonance
frequency ωq=0 to express the enhancement of the damping
constant in Eq. (38). Hereafter, the resonance frequency is
simply written as �(≡ ωq=0). Then, Im �R(q = 0,�) corre-
sponds to the increase in the linewidth in the FMR experiment.
Analytic calculation of Im �(q = 0,�) gives a correction for

the Gilbert damping as

δαG(�) � −2S0

h̄�
Im �R(q = 0,�)

= αG,0

∑
ν,ν ′=±1

∫ 2π

0

dϕ

2π
F [h̄� + (ν − ν ′)heff ]

× 1 − νĥeff (ϕ) · m̂
2

1 + ν ′ĥeff · m̂
2

, (39)

F (x) = �/π�0

(x/�0)2 + (�/�0)2
, (40)

where ϕ describes the propagation direction of conduction
electrons, αG,0 = 2πS0|T0|2AD(εF)/�0 is a dimensionless
parameter, and ĥeff (ϕ) = heff (ϕ)/heff (ϕ) is a unit direction
vector of the effective magnetic field. Here, we have intro-
duced the unit of energy �0, which is the amplitude of the
Dresselhaus spin-orbit interaction kFβ. The enhancement of
the Gilbert damping can be separated into three parts:

δαG = δαG,1 + δαG,2 + δαG,3, (41)

δαG,1 = αG,0

∫ 2π

0

dϕ

2π
F (h̄�)

1 − (ĥeff · m̂)2

2
, (42)

δαG,2 = αG,0

∫ 2π

0

dϕ

2π
F (h̄� − 2heff )

(1 + ĥeff · m̂)2

4
, (43)

δαG,3 = αG,0

∫ 2π

0

dϕ

2π
F (h̄� + 2heff )

(1 − ĥeff · m̂)2

4
. (44)

These expressions indicate the physical mechanism of the
enhancement of the Gilbert damping as follows. The first
contribution, δαG,1, comes from elastic spin flipping of con-
duction electrons caused by the transverse component of
the effective magnetic field heff via the interfacial exchange
coupling. In fact, δαG,1 vanishes when heff is parallel or an-
tiparallel to the magnetization of FI m̂. Since this process is
elastic, the frequency-dependent part is just a Lorentzian form
F (h̄�), which has a peak at � = 0. The second contribution
δαG,2 originates from the magnon absorption process. This
is a dynamical process, as indicated by the peak shift of
the Lorentzian form; the peak of F (h̄� − 2heff ) is shifted to
� = 2heff (ϕ)/h̄, at which the magnon energy coincides with
the spin-splitting energy gap of conduction electrons. The
second contribution takes a maximum when ĥeff is parallel
to m̂. This is consistent with the fact that a spin of a con-
duction electron is converted from a low-energy state ĥeff to
a higher state −ĥeff by receiving a spin carried by a magnon
that is in the direction of −m̂. We should also note that the
second contribution vanishes when ĥeff is antiparallel to m̂.
The third contribution, δαG,3, comes from the magnon emis-
sion process. This process is usually not important in FMR
experiments because the frequency � is taken to be positive.

III. RESULTS

A. Enhancement of Gilbert damping

Figure 4 illustrates the enhancement of the Gilbert damp-
ing δαG as a function of the resonant frequency � for �/�0 =
0.5. In particular, Figs. 4(a) and 4(b) show the enhancement
for α/β = 1 and 3, respectively. We note that δαG depends
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FIG. 4. Enhancement of Gilbert damping δαG due to coupling to
a 2DEG plotted as a function of FMR resonance frequency �. (a)
α/β = 1. (b) α/β = 3.

on the resonant frequency, in contrast to the Gilbert damping
coefficient for the bulk FI αG. In both cases, the enhancement
δαG clearly depends on the spin orientation of the FI. A peak
at � = 0 is caused by the static part δαG,1, while the struc-
ture at a finite � comes from the magnon-absorption process
described by δαG,2. Note that the broad structure indicated
by δαG,2 is produced by the variation in the energy splitting
2heff (ϕ) when the azimuth angle ϕ changes from 0 to 2π . The
range of 2heff (ϕ) is obtained from Eq. (5) as 0 � 2heff � 4�0

for α/β = 1 and 4�0 � 2heff � 8�0 for α/β = 3. This vari-
ation in the spin splitting corresponds to the range of the broad
structure at finite � shown in Figs. 4(a) and 4(b).

When the azimuth angle of the spin polarization in the FI θ

is varied, the enhancement of the Gilbert damping is modified,

as shown in Fig. 4. Its general properties are summarized as
follows. First, δαG is independent of the spin orientation of the
FI for α = 0 or β = 0. Second, the result for α < 0 is related
to that for α > 0 through

δαG(α, θ,�) = δαG(−α, θ − π/2,�). (45)

Third, δαG has symmetry relations with respect to θ as

δαG(θ,�) = δαG(θ + π,�) = δαG(π/2 − θ,�). (46)

To see the spin-orientation dependence in more detail, we
show a contour plot of δαG as a function of θ and � in Fig. 5.
For α = 0, δαG is independent of θ [Fig. 5(a)]. The same
result is obtained for β = 0 after replacing �0 with kFα. The
spin-orientation dependence becomes strongest for α/β = 1
[Fig. 5(b)]. For this special case, the direction of ĥeff is fixed:

ĥeff = ±(1/
√

2,−1/
√

2, 0). (47)

For the spin texture of this special case, see Fig. 2(a). There-
fore, the θ -dependent part in Eqs. (42)–(44) can be taken out
of the integrals:

δαG,1 ∝ 1 − (ĥeff · m̂)2

2
, (48)

δαG,2, δαG,3 ∝ 1 + (ĥeff · m̂)2

4
, (49)

where we have used the fact that the term proportional to
ĥeff · m̂ vanishes after the integration with respect to ϕ. From
this expression, the spin-orientation dependence shown in
Fig. 5(b) can be explained as follows. The peak at � = 0
that is caused by δαG,1 takes a maximum (a minimum) when
ĥeff ⊥ m̂ (ĥeff ‖ m̂) or, equivalently, when θ = π/4, 5π/4
(θ = 3π/4, 7π/4). This observation supports the conclusion
that the enhancement in Gilbert damping at � = 0 is in-
duced by the transverse component of the effective magnetic
field heff . In contrast, the broad structure at finite frequencies
in the range of 0 � h̄� � 4�0, which is caused by δαG,2,
takes a maximum (a minimum) when ĥeff ‖ m̂ = 0 (ĥeff ⊥ m̂).
This is consistent with the fact that this contribution comes
from the magnon absorption accompanying spin flips of the
conduction electrons. Figure 5(c) shows the spin-orientation
dependence for α/β = 3. Although the θ dependence cannot
be expressed in a simple form for α/β = 3, the qualitative
features are the same as in the case of α/β = 1, as indicated
by comparing Figs. 5(b) and 5(c), except that the finite-
frequency broad structure shifts toward the high-frequency
region 4�0 � h̄� � 8�0.

FIG. 5. Contour plot of the enhancement of Gilbert damping in a 2DEG for (a) α/β = 0, (b) α/β = 1, and (c) α/β = 3. The horizontal
axis is the FMR frequency �, and the vertical axis is the azimuth angle of the spin orientation of the FI θ .
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B. Relevance to experiments

Our results indicate that the spin-orientation dependence
provides information on spin-orbit interactions in 2DEG, in
which both the Rashba and Dresselhaus spin-orbit interactions
coexist. Let us estimate a necessary condition for the observa-
tion of the present result. For GaAs/AlGaAs heterostructures
[47], the magnitude of the spin-orbit interactions is given as
α ∼ β ∼ 4 meV Å, leading to �0 = kFβ ∼ 0.10 meV for the
electron density 5 × 1011 cm−2. Because the FMR frequency
for yttrium iron garnet under a magnetic field of 1 T is
about h̄� = 0.06 meV, the ratio h̄�/�0 is of the order of 1.
This indicates that both the elastic contribution δαG,1 and the
magnon absorption contribution δαG,2 can be observed exper-
imentally using a magnetic field of a few teslas. Note that the
Rashba spin-orbit interaction can be controlled by applying
an electric field to the sample. The amplitude of the spin-orbit
interactions depends on the aspects of bulk semiconductors as
well as on sample fabrication considerations. For example, in
asymmetric InAs heterostructures [48,49], the magnitude of
the Rashba spin-orbit interaction is about α ∼ 400 meV Å,
leading to kFα ∼ 14 meV for electron density of 1012 cm−2.
In this case, the dependence of the spin orientation of FI is
governed by the elastic contribution δαG,1. However, by using
symmetric InAs heterostructures [50], it is possible to reduce
the magnitude of the Rashba spin-orbit interaction down to
the same order as in GaAs/AlGaAs heterostructures. In such
heterostructures, we can also observe the contribution from
magnon absorption δαG,2.

IV. SUMMARY

We theoretically investigated spin pumping from a fer-
romagnetic insulator into a two-dimensional gas with both
Rashba and Dresselhaus spin-orbit interactions. We consid-
ered the interfacial coupling through the tunnel Hamiltonian
in which the momentum of spin excitation is conserved and
derived an increase in the linewidth in a ferromagnetic res-
onance experiment that is induced by the 2DEG within a
second-order perturbation with respect to the interfacial cou-
pling. We found that there are three processes that enhance
the Gilbert damping: (i) an elastic process, (ii) a magnon
absorption process, and (iii) a magnon emission process. The
elastic process is induced by spin flips through the transverse
component of the effective magnetic field felt by conduc-
tion electrons that originate from the spin-orbit interaction
in the 2DEG. This elastic process is dominant when the
FMR frequency is sufficiently low compared with the energy
scale of the spin-orbit interaction. In contrast, the magnon
absorption/emission process is a dynamical one that changes
the number of magnons in the FI and affects the Gilbert
damping when the FMR frequency is comparable to the
spin-splitting energy by spin-orbit coupling in the 2DEG. We
discussed how these three processes of enhancing the Gilbert
damping depend on the spin orientation in the FI. We also
showed that our results can be detected in an FMR experiment
using a GaAs/AlGaAs heterostructure under a magnetic field
of a few teslas. Our work provides a helpful experimental
method for the detection of the spin texture of conduction
electrons at the Fermi surface.

FIG. 6. Feynman diagram of second-order perturbation with re-
spect to the impurity potential.
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APPENDIX A: IMPURITY SCATTERING

In this study, we consider the effect of impurity scattering
within a second-order perturbation with respect to an impurity
potential by taking a random average. This approximation cor-
responds to the Born approximation, whose diagram is shown
in Fig. 6. In this approximation, the temperature Green’s func-
tion is written as

[ĝ(k, iωn)]−1 = [ĝ0(k, iωn)]−1 − �̂(iωn), (A1)

�̂(iωn) = niu
2
∫

d2k
(2π )2

ĝ0(k, iωn), (A2)

where ni is the number of impurity sites. We assume that the
scattering rate is much smaller than the bandwidth of the con-
duction electrons. Accordingly, the self-energy is calculated
as

�̂(iωn) = −i
niu2kF

2vF
sgn(ωn)Î ≡ −i

�

2
sgn(ωn)Î, (A3)

where � denotes the impurity scattering rate. Using the Dyson
equation (A1), the retarded component of the Green’s function
is obtained as Eq. (11).

APPENDIX B: SPIN-WAVE APPROXIMATION

We derive the Hamiltonian within the spin-wave approx-
imation by using the Holstein-Primakov transformation. For
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S0 � 1, it is written as

Sx′−
i �

√
2S0b†

i , (B1)

Sx′+
i �

√
2S0bi, (B2)

Sx′
i = S0 − b†

i bi, (B3)

where bi (b†
i ) is an annihilation (creation) operator defined at

site i. We replace the spin operators with these boson operators
and take the Fourier transform,

bi = 1√
NF

∑
k

eik·ri bk, (B4)

where NF is the number of unit cells in the FI. The Hamil-
tonian of the FI is modified into Eqs. (17) and (18). When
we consider the cubic lattice model with only the nearest-
neighbor exchange coupling J , the dispersion is given as
h̄ωk = h̄ω

(0)
k + h̄γ hdc, where

h̄ω
(0)
k = 2JS0[3 − cos(kxa) − cos(kya) − cos(kza)]

� JS0a2k2. (B5)

and a is a lattice constant of the FI. The last equation is the
long-wavelength approximation.

APPENDIX C: DERIVATION OF EQUATION (36)

Here, we derive Eq. (36). We rewrite Green’s function of
the conduction electrons as

ĝ(k, iωn) = 1

D(iωn)
[A(iωn)Î + b · σ], (C1)

where a = (− sin θ, cos θ, i) and b = −heff . Then, the trace in
Eq. (32) is rewritten as

I ≡ Tr[σ̂ x′−ĝ(k, iωm)σ̂ x′+ĝ(k, iωm + iωn)]

= 1

DD′ Tr[a∗ · σ(AÎ + b · σ )a · σ(A′Î + b · σ )]. (C2)

Using the identity

(a · σ )(b · σ) = (a · b)Î + i(a × b) · σ, (C3)

Tr [σa] = 0, Tr [Î] = 2, (C4)

a straightforward calculation gives

I = 2

DD′ [AA′a∗ · a + iA′(a∗ × b) · a + iAa∗ · (a × b)

− (a∗ × b) · (a × b) + (a∗ · b)(a · b)]. (C5)

We obtain Eq. (36) by substituting the explicit forms of a
and b.

APPENDIX D: ANALYTIC CONTINUATION

Here, we perform the summation in the self-energy by
using analytic continuation. Using the identities

A

D
= 1

2

∑
ν=±

1

ih̄ωm − E ν
k + i�/2 sgn(ωm)

, (D1)

FIG. 7. Contour on the complex plane.

heff · m̂
D

= 1

2

∑
ν=±

νĥeff · m̂
ih̄ωm − E ν

k + i�/2 sgn(ωm)
(D2)

and the counterparts for A′ and D′, the self-energy is rewritten
as

�(0, iωn) = |T0|2
4

∑
k

∑
ν=±

∑
ν ′=±

(1 − νĥeff · m̂)

× (1 + ν ′ĥeff · m̂)Ikνν ′ , (D3)

Ikνν ′ = 1

β

∑
iωm

1

ih̄ωm − E ν
k + i�/2 sgn(ωm)

× 1

ih̄ωm + ih̄ωn − E ν ′
k + i�/2 sgn(ωm + ωn)

, (D4)

where ĥeff = heff/heff . By using analytic continuation, Ikνν ′

can be expressed as a contour integral,

Ikνν ′ = −
∫

C

dz

2π i
f (z)

1

z − E ν
k + i�/2 sgn(Im z)

× 1

z + ih̄ωn − E ν ′
k + i�/2 sgn(Im z + ωn)

, (D5)

where f (z) = (eβz + 1)−1 and C is a contour surrounding the
poles of f (z).

We modify the contour C to be a sum of C1,
C2, C3, and C4, as shown in Fig. 7, and change the
integration variable to z = E + iη for C1, z = E − iη
for C2, z = E − iωn + iη for C3, and z = E − iωn − iη
for C4, where η is a positive infinitesimal. Then, we
obtain

Ikνν ′ = −
∫

dE

2π i
f (E )

×
[ −i�(

E − E ν
k

)2 + (�/2)2

1

E + ih̄ωn − E ν ′
k + i�/2

+ 1

E − ih̄ωn − E ν
k − i�/2

−i�(
E − E ν ′

k

)2 + (�/2)2

]
.

(D6)
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By changing the variable to E ′ = E − E ν
k for the first

term and to E ′ = −(E − E ν ′
k ) for the second term, we

obtain

Ikνν ′ = −
∫

dE ′

2π i

−i�

E ′2 + (�/2)2

×
[

f (E ′ + E ν
k ) − f

( − E ′ + E ν ′
k

)
E ′ + ih̄ωn + E ν

k − E ν ′
k + i�/2

]
. (D7)

The summation with respect to the wave number can be re-
placed with an integral,

1

A
∑

k

Ikνν ′ � D(εF)
∫ ∞

−∞
dξ

∫ 2π

0

dϕ

2π
Ikνν ′ , (D8)

where A is the junction area and ξ ≡ ξk. Using the integral
formulas ∫ ∞

−∞
dξ

[
f
(
E ′ + E ν

k

) − f
( − E ′ + E ν ′

k

)]
= −(

2E ′ + E ν
k − E ν ′

k

)
, (D9)

∫ ∞

−∞

dx

2π

a2

x2 + (a/2)2

x + b/2

(x + b + c)2 + (a/2)2

= − ac

(b + c)2 + a2
(a > 0), (D10)

we finally obtain

Im �R(0, ω)

= −|T0|2AD(εF)

4

∑
ν,ν ′

∫ 2π

0

dϕ

2π
[1 − νĥeff (ϕ) · m̂]

× [1 + ν ′ĥeff (ϕ) · m̂]
�h̄ω(

h̄ω + E ν
k − E ν ′

k

)2 + �2
. (D11)

Note that the final result does not depend on the temperature.
This feature emerges when the density of states for conduc-
tion electrons is approximated as being constant near the
Fermi energy. In general, one can derive a small temperature-
dependent correction by using a Sommerfeld expansion that
takes into account the energy dependence of the density of
states.
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