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Micro-Doppler signatures of subwavelength nonrigid bodies in motion
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Motion signatures of nonstationary electromagnetic bodies are imprinted in their scattering spectrum. While
the Doppler frequency shift holds information about the velocity of its center of mass, internal degrees of freedom
in a nonrigid body, such as rotation and vibration, introduce nontrivial spectral distortions, termed micro-
Doppler signatures. Contemporary analytic characterization of such signatures typically neglects subwavelength
electromagnetic coupling, which can dominate the scattering signatures of motion. To address this overlooked
scattering regime, a theory of moving coupled dipoles is used to model a moving nonrigid body. The method is
verified experimentally in the microwave regime, demonstrating remote sensing of subwavelength information.
The method can be useful for analyzing and characterizing effects that frequently emerge in radar science,
healthcare monitoring, optical manipulation of particles, and many other applications, where remote sensing and
classification of motion are important.
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I. INTRODUCTION

The Doppler effect, observed in waves reflected from mov-
ing scatterers, has been widely studied and employed for over
a century across such diverse fields as astronomy, optics,
radar, acoustics, and more. At the heart of the phenomenon
is the frequency shift of the echo wave by an amount that
is related to the velocity of the moving body, yet the mo-
tion of a nonrigid body can be more complex and consist of
translational and rotational degrees of freedom for all of its
constitutive parts. These in turn contribute to the modulation
of the backscattered wave, where the resulting collection of
spectral shifts is referred to as the micro-Doppler effect [1]—
largely due to the fact that it is often smaller than the main
Doppler shift, caused by the linear motion of the center of
mass. The micro-Doppler effect was first introduced in co-
herent laser radar systems where it was easier to observe [2],
but with technological improvements it became observable
in radar [3] and sonar [4] systems. Today, owing to the fact
that the micro-Doppler signatures are object specific, they
are extensively used for remote sensing and moving target
classification purposes in the radio-frequency regime [5,6], as
well as in the optical portion of the electromagnetic spectrum,
which is frequently employed to manipulate subwavelength
particles, gaining valuable information from their motion
signatures [7–10].

The Doppler and, by extension, the micro-Doppler ef-
fects are fundamentally nonstationary phenomena, and can
therefore produce new frequencies in the scattering spectrum.
While addressing electromagnetic interactions with fast mov-
ing relativistic bodies is extremely challenging, seeing as both
Maxwell’s equations and the material constitutive relations
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change in accelerating reference frames [11], nonrelativistic
motion can be approached more simply by treating it as a
parametric process. In this case, “quasistationary” principles
can be applied [12–14]; i.e., the moving body is assumed to
be instantaneously stationary in respect to the “fast time” of
the excitation, which is characterized by very fast propagation
velocity and high field oscillation frequency at any particular
time. The scattering problem may then be solved in the same
manner as any ordinary time-independent scenario. The next
step is to stitch the parametric solutions together forming the
so-called “slow time,” associated with the slow motion of the
body, forming the time-dependent solution. As a stand-alone
example it is worth noting a unique interaction regime, where
electromagnetic memory within a nonrelativistic body was
shown to play a role [10]. The stationary solutions can be
obtained via full-wave numerical simulation or with semi-
analytical tools, including the discrete dipole approximation
(DDA) [15]. This approach, where a complex body is divided
into a collection of subwavelength scatterers, allows obtain-
ing intuitive yet accurate solutions of scatting problems, e.g.,
[1,16–18]. In a nutshell, the formulation is based on self-
consistent matrix equations, where polarizabilities are used to
calculate the induced dipole moments on each element within
the discretized body, therefore allowing the calculation of the
scattered fields.

It is quite remarkable that in the radio-frequency com-
munity the main contemporary approach for micro-Doppler
analysis resembles the DDA, but with one distinctive differ-
ence. While the scatterer is subdivided into a grid of cells,
considering each cell as a pointlike scatterer, these points are
then considered independently and the scattering problem is
solved for each cell at a specific point in time without account-
ing for the coupling between adjacent cells. This procedure
is repeated for all cells and those partial contributions to the
overall scattering are coherently summed at the observation
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point [1,16]. This method, typically applied in radar science,
assumes that there is no significant coupling between the
different cells and neglects modulation contributed by sub-
wavelength motion. This approach resembles an old radar
concept of “trapping centers,” where the target is empirically
characterized by several points, which are the main con-
tributors to the reflected echoes [19]. For example, it could
be a collection of corner reflectors on a ship, or a number
of sharp corners on a car. Neglecting the coupling between
scattering centers greatly simplifies the analysis and is often
justified under conditions of short wavelength illumination or
weak scattering regime (e.g., the first Born approximation in
a broader sense [20]). Yet this approach is inadequate when
coupling becomes significant, such as in the case of long
wavelength excitation with subwavelength motion. Typical
examples here include motions of subwavelength parts of a
rigid body, the blinking eyelids of a pedestrian, a car antenna
flapping in the wind, or the rotation of a fan.

It is therefore evident that contemporary analysis is lacking
when the moving body is interrogated by long wavelength
sources, urging the extension of the DDA to account for qua-
sistationary time-dependent motion of the scattering scene,
improving the finesse of remote sensing. Furthermore, if the
internal degrees of freedom do not exhibit time-periodic evo-
lution, applying full-wave solutions within the quasistationary
approach becomes computationally challenging, while DDA
can often be solved analytically in closed form for many sim-
ple systems, or at least provide a considerable computational
advantage in cases where closed solutions do not exist.

In this paper, a time-dependent coupled dipoles theory is
developed and demonstrated experimentally by examining a
simple system of two subwavelength rotating scatterers lo-
cated close to each other. The scatterers are constructed from
metal wires (dipoles) illuminated by radar, while rotating with
some frequency and with an initial angle with respect to
each other. A few cases of interest are considered, discussed,
and then verified experimentally, revealing that the scattering
phenomena can be strongly affected by near-field coupling
in the low frequency regime, primarily encompassed in the
appearance of mixed harmonics in the spectra of the scattered
field, a phenomenon that cannot be accounted for by the
existing treatments of micro-Doppler signatures. While this
experiment is conducted in the electromagnetic microwave
frequency range, the time-dependent DDA is relevant to all
the electromagnetic spectral range, as well as for any other
types of waves traveling in an arbitrary medium where bodies
can be decomposed using the DDA approach.

II. TIME-DEPENDENT DISCRETE DIPOLE
APPROXIMATION

While the proposed theoretical approach can be straight-
forwardly extended to include multiple degrees of freedom,
here we will concentrate on a pair of near-field coupled ro-
tating dipoles, seeing as this simple configuration allows for
closed form solutions containing physical intuition into the
phenomena. The resulting model will be subsequently tested
experimentally.

Consider two dipoles rotating in the z-y plane, separated
by a distance d in the x direction, as depicted in Fig. 1. Both

FIG. 1. Experimental setup. A monochromatic wave interacts
with two rotating wires. Photo of the experimental setup in an ane-
choic chamber. (Inset) Scheme of the I/Q demodulator.

dipoles rotate around their center so that the angle between
their principal axis and the Z axis as a function of time is
given by θ1 = θ̇1t + θ10, θ2 = θ̇2t + θ20, where θ̇1, θ̇2 are the
angular rotation frequencies of each dipole and θ10, θ20 is the
initial angle between each dipole and the Z axis at time t = 0.
The dipoles are illuminated by a plane wave of the form Ē i =
E0e jkzŷ (the harmonic time convention throughout the text is
e jωt ). Using a coupled dipoles method similar to the one used
in [17,21], a self-consistent set of equations for the dipolar
electric moments may be written as

P̄1 = α1
(
Ē i

1 + Ē s
2

)
,

(1)
P̄2 = α2

(
Ē i

2 + Ē s
1

)
,

where Ē i
1 = Ē i

2 = E0ŷ, Ē s
1 = ε−1

0 A(d )P̄2 is the scattered field
by dipole 2 at the location of dipole 1 and similarly Ē s

2 =
ε−1

0 A(d )P̄1 is the scattered field of dipole 2 at the lo-

cation of dipole 1. A(d ) = e− jkd

4πd [(k2 − 1
d2 − jk

d )(ŷŷ + ẑẑ) +
2( 1

d2 + jk
d )x̂x̂] is the Green’s dyadic and the time-dependent

polarizabilities due to the rotational motion are given by [21]

αi(t ) =
⎛
⎝0 0 0

0 sin2[θi(t )] 1
2 sin[2θi(t )]

0 1
2 sin[2θi(t )] cos2[θi(t )]

⎞
⎠αi (2)

At this point it is important to note that a quasistatic, adi-
abatic approach is undertaken in the treatment above, where
the rotation frequency is considered to be far slower than the
frequency of incident field. In this case Fourier analysis is
used, while considering the polarizability αi(t ) as a parameter
that changes on a significantly slower timescale (e.g., [13,14]).
Equation (1) is a system of linear equations that can be solved
by inversion to reveal the time-dependent dipole moment of
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each scatterer:

P̄1 = [
I − ε−2

0 α1A(d )α2A(d )
]−1

α1
[
Ē i

1 + ε−1
0 A(d )α2Ē i

1

]
(3)

P̄2 = [
I − ε−2

0 α2A(d )α1A(d )
]−1

α2
[
Ē i

2 + ε−1
0 A(d )α1Ē i

1

]
,

which under the condition α1 = α2 ≡ α simplifies to

P̄1 = αE0

1 − v2(d )cos2(θ1 − θ2)

⎛
⎝ 0

cos2(θ1) + v(d )cos(θ1)cos(θ2)cos(θ1 − θ2)
cos(θ1)sin[θ1(t )] + v(d )sin(θ1)cos(θ2)cos(θ1 − θ2)

⎞
⎠,

P̄2 = αE0

1 − v2(d )cos2(θ1 − θ2)

⎛
⎝ 0

cos2(θ2) + v(d )cos(θ1)cos(θ2)cos(θ1 − θ2)
cos(θ2)sin[θ2(t )] + v(d )sin(θ2)cos(θ1)cos(θ1 − θ2)

⎞
⎠, (4)

where v(d ) = αe− jkd

4πε0d3 [dk(dk− j) − 1] is the coupling coefficient that depends on the distance d between the dipoles and I is the
unit matrix. Now that the dipole moments are known, the scattered field can be calculated. For a point located at a distance r on
the z axis, for example, the scattered field is given by

Es(t ) = ε−1
0 (Ar1P1 + Ar2P2) ≈ αE0ε

−1
0 Ar[cos2(θ1) + cos2(θ2) + 2v(d )cos(θ1)cos(θ2)cos(θ1 − θ2)]

1 − v2(d )cos2(θ1 − θ2)
ŷ ≡ Es(t )ŷ, (5)

where in the present geometry the two dyadics transforming the dipolar sources into the far field are approximately ( d
r � 1)

equal Ar1 ≈ Ar2 ≈ e− jkr k2

4πr (x̂x̂ + ŷŷ) ≡ Ar (x̂x̂ + ŷŷ). By expanding the denominator of Eq. (5) [v(d ) � 1], it becomes evident
that a frequency comb is expected to appear in the scattered field, containing frequencies that are combinations of the rotational
angular frequencies of the dipoles,

Es(t ) =
∞∑

n=−∞

∞∑
m=−∞

[Cmncos[(mθ̇1 + nθ̇2)t] + Smnsin[(mθ̇1 + nθ̇2)t]] (6)

where the coefficients Cmn and Smn can be obtained straight-
forwardly as will be done ahead for a few cases of interest
[Ẽ (�) is the slow time Fourier transform of Es(t )].

A. Same direction synchronous rotation: θ̇1 = θ̇2,
θ̇, θ̇10 = 0, θθ20 ≡ θ0

|Ẽs(� = 2θ̇ )| ∝
∣∣∣∣ cos(θ0)

1 − vcos(θ0)

∣∣∣∣. (7)

In this case the wires rotate together in the same direc-
tion and the micro-Doppler spectrum solely depends on the
angle between the dipoles. For strong coupling a deviation
of the amplitude from the cosine can be observed. When
the two dipoles are perpendicular (θ0 = π/2), their micro-
Doppler signatures interfere destructively at the observation
point, rendering them invisible; i.e., the imprint of motion in
this harmonic disappears. This is an expected result seeing
as two perpendicular dipoles rotating at the same frequency
are invariant to simultaneous rotation by an angle that is an
integer multiple of π/2. This means that the scattered field
at the observation point would have periodicity that produces
a harmonic at � = 4θ̇ . The expansion of Eq. (5) does not

predict this harmonic for this case. This is the result of the
dipolar approximation, which needs to be extended to higher
multipoles to obtain this result [22,23]. This scenario, though,
can be considered as a singular point of the theory and is not
expected to emerge in any practical situation.

B. Opposite direction synchronous rotation: θ̇1 = −θ̇2,
θ̇, θ10 = −θ20 ≡ θ0

2

Es(t ) ∝ 1 + cos(2θ̇t + θ0)

1 − vcos(2θ̇t + θ0)
,

(8)
|Ẽs(� = mθ̇ )| �= f (θ0) ∀m,

where the fact that the amplitude is not a function of the initial
angle follows from the observation that the temporal scattered
field Es(t ) contains θ0 as a mere shift which therefore only
affects the phase of the scattered field. This suggests none of
the scattered micro-Doppler harmonics [which can be written
down by expansion of the denominator of Eq. (8)] should have
amplitude dependence on the initial angle.

C. Asynchronous rotation θ̇1 �= θ̇2, θ10 = θ20 = 0

Es(t ) ∝ 1 + 1
2 (1 + v)[cos(2θ̇2t ) + cos(2θ̇2t )] + v

2 {1 + cos[2(θ̇1 − θ̇2)t]}
1 − v2cos2[(θ̇1 − θ̇2)t]

, (9)

In this case the nominator reveals that a mixed harmonic
of frequency 2(θ̇1 − θ̇2) emerges, the amplitude of which

is proportional to the strength of the coupling coefficient
v(d ). This new frequency is the direct result of the near-field
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FIG. 2. Comparing the experimental amplitudes of the micro-
Doppler harmonics (second, fourth, and sixth) as a function of the
initial angle θ0 between the dipoles, which rotate around the same
axis with angular frequency θ̇1 = θ̇2 = 16 rad/s at a distance of λ

4 .
The results are compared with the DDA theory for two cases. (a)
The dipoles are both rotating in the same direction [Eq. (7)]. (b) The
dipoles are rotating in opposite directions [Eq. (8)].

coupling, and depends on whether the two dipoles are rotating
in the same direction (producing a difference frequency) or in
opposite directions (producing a sum frequency). For strong
coupling the denominator of Eq. (9) may be expanded in a
similar fashion to Eq. (6), revealing a series of additional
mixed harmonics with amplitudes that depend on powers of
the coupling coefficient v(d ).

III. EXPERIMENTAL VERIFICATION

The experiment was performed in an anechoic chamber, as
shown in Fig. 1. The setup consisted of two dipoles made of
40 mm length copper wires, located at a controllable distance
d away from each other. The distance was varied between 5
and 65 mm. Both dipoles were allowed to rotate independently
around their axis using a stepper motor, controlled by a closed
loop system to ensure stable long-time operation. The dipoles
were illuminated by a continuous wave at 3.2 GHz (chosen
based on the length of the wires). The N5173B phased locked
signal generator was connected to a horn antenna, polarized
in the rotation plane of the dipoles. The same antenna was
used to receive the backscattered field. I/Q demodulation of
the echoes with a coherent homodyne scheme was performed
[Fig. 1(b)]. The resulting baseband signals were sampled and
recorded on a DSOX3104T scope.

The time-dependent signal was processed by applying a
complex fast Fourier transform to reveal the micro-Doppler
frequency comb, containing harmonics that are multiples of
the rotation frequencies of the dipoles, as predicted by Eq. (6).
In particular, the second and fourth harmonics were computed
in order to validate the theoretical results of Eqs. (7)–(9).
Recall that harmonics are related to the angular rotation
frequency of the wires and emerge at the baseband of the
scattered signal. First, the dependence of the initial angle on
these harmonics was inspected by repeating the experiment
for various initial angles between the two dipoles before ini-
tiating the rotation. The results appear in Fig. 2. It can be
seen that for the case of synchronous rotation in the same
direction (i.e., θ̇1 = θ̇2), the second harmonic behaves in a
periodic manner as a function of the initial angle between
the dipoles, as predicted by Eq. (7). As discussed in the text
following the derivation of the equation, the fourth harmonic

FIG. 3. Comparison between the experimental and DDA theory
micro-Doppler combs for two asynchronously (θ̇1 �= θ̇2) rotating
dipoles located at a distance of λ

4 . The angular rotation frequen-
cies are θ̇1 = 16 rad/s and θ̇2 = 39 rad/s. (a) Both dipoles rotate in
the same direction, producing a sum frequency at 2(θ̇2 + θ̇1). (b)
Both dipoles rotate in opposite directions, producing a difference
frequency at 2(θ̇2 − θ̇1). Stars indicate the mixed harmonic.

is not well modeled due to the necessity to account for higher
multipolar moments. The experimental results show that the
fourth harmonic is indeed maximal at θ0 = π/2 as expected.
It should also be noted that this periodic dependence on initial
angle is not a subwavelength effect; rather it is the result
of interference between the scattered fields of each dipole,
seeing as the effect should only have weak dependence on
the coupling coefficient. Regardless, this result supports the
framework of time-dependent DDA. In contrast, when the
dipoles are synchronously rotated in opposite directions (i.e.,
θ̇1 = −θ̇2), no dependence on initial angle is observed in any
of the harmonics, in complete agreement with Eq. (8).

Next the dipoles were rotated asynchronously (i.e., θ̇1 �=
θ̇2), while the micro-Doppler spectrum was recorded. In this
case too, a distinction between same and opposite directions
of rotation can be observed, as shown in Fig. 3. When the
dipoles rotate in the same direction, a difference harmonic
appears in the spectrum, while a sum harmonic appears when
the two rotate in opposite directions, exactly as suggested by
Eq. (9). The figure was normalized to the amplitude of the
second harmonic of the second dipole, which had slightly
higher amplitude than that of the first dipole, owing to slight
variations in their length, as well as small deviations from per-
fect alignment of the antenna. Another experimental feature
apparent in Fig. 3 is the fourth micro-Doppler harmonic for
the first wire, appearing clearly above noise level at about 64
rad/s. As discussed in Eq. (7), modeling the higher harmonics
for quarter wavelength wires requires additional multipoles
(or use of the Hallen integral [22]). In addition, the theoretical
plot in Fig. 3(a) predicts two more mixed harmonics at 14
and 92 rad/s, corresponding to 2θ̇2 − 4θ̇1 and 4(θ̇2 − θ̇1), re-
spectively. However, these additional harmonics are below the
noise floor and therefore cannot be observed experimentally.

The appearance of the mixed harmonics is clear indication
of coupling between internal degrees of freedom, which is
neglected in standard radar analysis. In order to further verify
this claim, the amplitude of the various harmonics presented in
Fig. 3 has been recorded as a function of the distance between
the rotating dipoles and plotted in Fig. 4. It can be seen that in
both cases the mixed harmonic decays with distance, while the
other harmonics behave in an oscillatory fashion as expected
in the case of interfering fields. This result shows the strength
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FIG. 4. Experimental validation for the subwavelength coupling
origin of the mixed harmonic. The experimental amplitudes of the
second and mixed micro-Doppler harmonics are plotted versus dis-
tance and compared to the theory. (a) The dipoles are both rotating in
the same direction. (b) The dipoles are rotating in opposite directions.

of DDA analysis for remote sensing applications, allowing the
extraction of information about the relative direction of rota-
tion between the two subwavelength bodies. Similar analysis
for more complex nonrigid body dynamics can help extract
additional information that can be used for micro-Doppler
based classification and identification.

IV. OUTLOOK AND CONCLUSION

Time-dependent DDA theory had been developed and ex-
perimentally tested on an example of two near-field coupled
rotating dipoles. It was shown that the coupling between time-
dependent degrees of freedom, originated from the motion of
constitutive parts of a nonrigid body, plays an important role
for long wavelength excitations. Furthermore, under certain
conditions, the scattered field spectra might be completely
governed by these interactions. As an outlook, the devel-
oped formalism can be further extended to consider scattering

processes form complex nonrigid bodies. Assuming that the
mechanical evolution of a system is known, the structure
can be divided into a set of polarizable volumetric cells,
interacting with each other. In contrary to static DDA, time-
dependent mutual interactions between the cells are taken
into account and form the overall response of a nonrigid
body. However, the choice of a partition, approximation of
coupling coefficients and several other body-specific aspects
(e.g., a combination of moving and stationary elements within
a structure), remain an open question. Nevertheless, the de-
veloped approach, having direct relation to micro-Doppler
signatures of radar targets, allows to perform studies of more
complex scenarios. Although initially applied to classification
of jet engines [24,25] and helicopter rotor blades [26,27],
micro-Doppler analysis starts to become a leading motive in
many modern applications, including humans detection be-
hind obstacles [28], relevant to rescue operations, autonomous
car safety [29], where the different motions of a busy street
need to be classified and categorized quickly, and the rapidly
growing need to identify unmanned flying drones [30,31]. The
method finds extensive use in the optical part of the spectrum
where light manipulates subwavelength particles, gaining
valuable insight from their signatures of motion [7–10]. Fi-
nally, a recent and exciting application concerns hand gesture
recognition, aimed at facilitating touchless interaction with
computers [32,33]. A quick review of new relevant topics
underlines the need of reliable theoretical models in the field.
Our investigation is an endeavor in this direction.

ACKNOWLEDGMENTS

The research was supported by ERC StG “In Motion”
(Grant No. 802279) and PAZY Foundation (Grant No.
01021248). D.F. acknowledges the Russian Science Foun-
dation under Project No. 20-19-00491 for supporting the
experimental part of the work.

[1] V. C. Chen, The Micro- Doppler Effect in Radar (Artech House,
Boston, 2011).

[2] V. C. Chen, D. Tahmoush, and W. J. Miceli, Radar Micro-
Doppler Signature Processing and Applications (IET Digital
Library, 2014).

[3] V. C. Chen, Micro-Doppler effect of micromotion dynamics:
A review, Proc. SPIE 5102, 240 (2013).

[4] Z. Zhang, P. Pouliquen, A. Waxmant, and A. G. Andreou,
Acoustic micro-Doppler gait signatures of humans, in 41st An-
nual Conference on Information Sciences and Systems (IEEE,
Piscataway, NJ, 2007), pp. 627–630.

[5] J. Lei, Pattern recognition based on time-frequency distributions
of radar micro-Doppler dynamics. 3. Micro-Doppler signature
pattern, in Proceedings of the Sixth International Conference on
Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing and First ACIS International
Workshop on Self-Assembling Wireless Networks (IEEE, Wash-
ington, DC, 2005).

[6] J. Lei and C. Lu, Target classification based on micro-Doppler
signatures, in Radar Conference, 2005 IEEE International
(IEEE, Washington, DC, 2005), pp. 1–5.

[7] A. Korobenko, A. A. Milner, J. W. Hepburn, and V. Milner, Ro-
tational spectroscopy with an optical centrifuge, Phys. Chem.
Chem. Phys. 16, 4071 (2014).

[8] A. A. Milner, A. Korobenko, J. W. Hepburn, and V.
Milner, Effects of Ultrafast Molecular Rotation on
Collisional Decoherence, Phys. Rev. Lett. 113, 043005
(2014).

[9] O. Faucher, E. Prost, E. Hertz, F. Billard, B. Lavorel, A.
A. Milner, V. A. Milner, J. Zyss, and I. S. Averbukh, Rota-
tional Doppler effect in harmonic generation from spinning
molecules, Phys. Rev. A 94, 051402 (2016).

[10] A. A. Milner and V. Milner, Controlling the degree of rotational
directionality in laser-induced molecular dynamics, Phys. Rev.
A 103, L041103 (2021).

[11] J. G. Van Bladel, Relativity and Engineering (Springer, Berlin,
1984).

[12] J. Van Bladel, Electromagnetic fields in the presence of rotating
bodies, Proc. IEEE 64, 301 (1976).

[13] V. Kozlov, S. Kosulnikov, D. Filonov, A. Schmidt, and P.
Ginzburg, Coupled micro-Doppler signatures of closely located
targets, Phys. Rev. B 100, 214308 (2019).

054307-5

https://doi.org/10.1117/12.488855
https://doi.org/10.1039/c3cp54598a
https://doi.org/10.1103/PhysRevLett.113.043005
https://doi.org/10.1103/PhysRevA.94.051402
https://doi.org/10.1103/PhysRevA.103.L041103
https://doi.org/10.1109/PROC.1976.10111
https://doi.org/10.1103/PhysRevB.100.214308


V. KOZLOV et al. PHYSICAL REVIEW B 104, 054307 (2021)

[14] V. Kozlov, S. Y. Kosulnikov, D. Vovchuk, and P. Ginzburg,
Memory effects in scattering from accelerating bodies, Adv.
Photonics 2, 056003 (2020).

[15] L. Novotny and B. Hecht, Principles of Nano-Optics (Cam-
bridge University Press, Cambridge, 2009).

[16] H. W. Victor and C. Chen, Micro-Doppler effect in radar: Phe-
nomenon, model, and simulation study, IEEE Trans. Aerosp.
Electron. Syst. 42, 02 (2006).

[17] V. Kozlov, D. Filonov, A. S. Shalin, B. Z. Steinberg, and
P. Ginzburg, Asymmetric backscattering from the hybrid
magneto-electric meta particle, Appl. Phys. Lett. 109, 203503
(2016).

[18] D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A.
Krasnok, P. Belov, and P. Ginzburg, Enhancement of artificial
magnetism via resonant bianisotropy, Sci. Rep. 6, 22546 (2016).

[19] Y. Chen, Micro-Doppler Characteristics of Radar Targets
(Elsevier, Amsterdam, 2017).

[20] M. Born and E. Wolf, Principles of Optics: Electromagnetic
Theory of Propagation, Interference and Diffraction of Light,
7th ed. (Cambridge University Press, Cambridge, 1999).

[21] D. Filonov, B. Z. Steinberg, and P. Ginzburg, Asymmetric
micro-Doppler frequency comb generation via magnetoelectric
coupling, Phys. Rev. B 95, 235139 (2017).

[22] V. Kozlov, D. Filonov, Y. Yankelevich, and P. Ginzburg, Micro-
Doppler frequency comb generation by rotating wire scatterers,
J. Quant. Spectrosc. Radiat. Transfer 190, 7 (2017).

[23] S. Mühlig, C. Menzel, C. Rockstuhl, and F. Lederer, Multipole
analysis of meta-atoms, Metamaterials 5, 64 (2011).

[24] J. Park, W. Yang, J. Bae, S. Kang, and N. Myung, Extraction of
jet engine modulation component weakly present in measured
signals for enhanced radar target recognition, J. Electromagn.
Waves Appl. 28, 963 (2014).

[25] H. Lim, N. H. Myung, H. Lim, and N. H. Myung, High
resolution range profile-jet engine modulation analysis of
aircraft models, J. Electromagn. Waves Appl. 25, 1092
(2011).

[26] A. Stefanov and S. Member, Helicopter rotor-blade modula-
tion of antenna radiation characteristics, IEEE Trans. Antennas
Propag. 49, 688 (2001).

[27] A. Cilliers and W. A. J. Nel, Helicopter parameter extraction
using joint time-frequency and tomographic techniques, in 2008
International Conference on Radar (IEEE, Washington, DC,
2008), pp. 598–603.

[28] M. Ritchie, M. Ash, Q. Chen, and K. Chetty, Through wall radar
classification of human micro-Doppler using singular value de-
composition analysis, Sensors 16, 1401 (2016).

[29] D. Belgiovane and C. Chen, Micro-Doppler characteristics of
pedestrians and bicycles for automotive radar sensors at 77
GHz, in 11th European Conference on Antennas and Propa-
gation (IEEE, PIscataway, NJ, 2017), pp. 2912–2916.

[30] J. Michael, Z. Lu, and V. C. Chen, Experimental study on
radar micro-Doppler signatures of unmanned aerial vehicles, in
Radar Conference (RadarConf ’17) (IEEE, Washington, DC,
2017), pp. 854–857.

[31] A. K. Singh and Y.-H. Kim, Automatic measurement of blade
length and rotation rate of drone using W-band, IEEE Sens. J.
18, 1895 (2018).

[32] Y. Kim, S. Member, and B. Toomajian, Hand gesture recogni-
tion using micro-Doppler signatures with convolutional neural
network, IEEE Access 4, 7125 (2016).

[33] B. Dekker, S. Jacobs, A. S. Kossen, M. C. Kruithof, and A. G.
Huizing, Gesture recognition with a low power FMCW radar
and a deep convolutional neural network, in 14th European
Radar Conference (IEEE, Piscataway, NJ, 2017), pp. 163–166.

054307-6

https://doi.org/10.1117/1.AP.2.5.056003
https://doi.org/10.1109/TAES.2006.1642557
https://doi.org/10.1063/1.4967238
https://doi.org/10.1038/srep22546
https://doi.org/10.1103/PhysRevB.95.235139
https://doi.org/10.1016/j.jqsrt.2016.12.029
https://doi.org/10.1016/j.metmat.2011.03.003
https://doi.org/10.1080/09205071.2014.899168
https://doi.org/10.1163/156939311795762088
https://doi.org/10.1109/8.929622
https://doi.org/10.3390/s16091401
https://doi.org/10.1109/JSEN.2017.2785335
https://doi.org/10.1109/ACCESS.2016.2617282

