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Charge transport in organic semiconductors is affected by the complex interaction between charge carriers
and molecular vibrations. A common way to treat the molecular vibrations in hopping approaches is by
condensing them into a single analytical parameter, the reorganization energy. In contrast, here we present a
nonadiabatic hopping transport approach that avoids this approximation by dividing the vibrational spectrum of
organic molecules into three distinct analytical classes, namely the quasistatic, low-frequency dynamic, and
high-frequency dynamic modes. The quasistatic and dynamic regimes are separated time consistently with
respect to the timescale of the hopping events, which results in charge transfer events driven by a set of strongly
coupling driving modes. Using these time-consistent hopping rates, we compute the charge carrier mobilities
for a set of hopping transport materials and a control set of band-transport materials and compare them to
experimental values. The resulting mobilities are consistent for both sets by showing similar values for the
hopping transport materials and lower values for the control set of band-transport materials due to the absence of
coherent transport contributions. We further study other popular hopping approaches such as the Marcus theory
and the Levich-Jortner theory and observe substantial inconsistencies for them.
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I. INTRODUCTION

Organic semiconductors enable electronic devices such
as organic light emitting diodes, organic photovoltaic cells,
and organic transistors, all of which rely on charge-transfer
(CT) and charge-transport processes [1–12]. The theoretical
description of these processes in molecular systems is inten-
sively discussed. Various aspects of electronic transport are
debated [13–23] and it remains a challenge to predict the
charge carrier mobility even in well-defined systems such
as molecular crystals while treating the molecular vibrations
physically consistent. The main reason is that the vibrational
modes that affect the electronic properties are distributed
over a large range of vibration frequencies even for small
molecules [24,25].

To deal with such complexity, elaborate approaches have
been proposed [22,26–30], where the vibrations are usually
treated either dynamically in polaron theories [31–33] or qua-
sistatically, such as in transient localization theory [34,35].
These simplifications enable the calculation of the charge
carrier mobility using approximate phonons at a large scale
[36]. Also polaron hopping models can efficiently deal with
a large number of structures and are widely used [15,37–
40]. They have the advantage of being applicable to not
only crystalline systems, but also disordered systems (such
as polycrystalline ones or blends) due to their low computa-
tional demands. These charge transport theories usually fall
into two categories, namely adiabatic approaches [41,42] and
nonadiabatic approaches, such as the Marcus hopping (MH)
theory [43,44]. In these approaches the complex interplay
of electrons and molecular vibrations is approximated by

collecting all vibrational modes into a single parameter, the
reorganization energy �. However, given that the vibrational
spectrum of organic semiconductors covers several orders
of magnitude in mode energy (see Fig. 1), the significance
of the full reorganization energy � is questionable and it
should be avoided [45,46]. An improvement is performed
in the Levich-Jortner hopping (LJH) theory [47], where, in
the original form, intramolecular high-frequency modes and
environmental fluctuations are distinguished and treated dif-
ferently. Another improvement is achieved by a fully quantum
mechanical treatment of molecular vibrations [29,48]. Despite
these improvements, polaron hopping approaches commonly
treat the intramolecular vibrations dynamically. However, a
dynamical treatment of the slowest molecular vibrations be-
comes inappropriate for elevated hopping rates, which leads
to a self-consistency problem for the hopping time [49,50].

In this work we study a time-consistent hopping (TCH)
approach based on the Kubo formalism and avoid Fermi’s
golden rule, which allows separating the molecular vibrations
into slow quasistatic and fast dynamic modes. The latter are
further split into low-frequency and high-frequency modes
in the spirit of LJH to obtain a hopping rate that is numeri-
cally easy to process without loss in accuracy. Based on the
time-consistent separation of quasistatic and dynamic modes
(see, e.g., the intramolecular vibrational spectrum in Fig. 1
for the molecule NTMTI), we find that the charge transfer is
driven by strongly coupling driving modes, analogous to cases
described by adiabatic approaches [41,42], but here obtained
by a fully quantum-mechanical treatment of the molecular
vibrations. When the TCH approach is applied to crystalline
organic semiconductors with moderate mobility, for which
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FIG. 1. Exemplary separation of the intramolecular vibrations in
the TCH approach based on the spectral distribution of the vibration-
mode-resolved reorganization energy of NTMTI.

the conditions for nonadiabatic hopping (e.g., the limit of
narrow electronic bands) are estimated to be valid, it quan-
titatively reproduces experimental mobilities. When applied
to a reference set of high-mobility organic crystals, for which
the hopping limit is not valid and transport occurs via more
delocalized states, the TCH approach yields mobilities that are
systematically lower than experimental mobilities, since it de-
scribes only the incoherent hopping contribution to transport.
Finally, the widely used MH and LJH theories are analyzed,
which reveals that both theories violate time consistency.

II. DERIVATION OF THE HOPPING RATE EXPRESSION

A. Theoretical framework

We first present the derivation of the hopping approach
within the Kubo formalism and the mode separation into
quasistatic and dynamic modes. In the Kubo formalism the
charge carrier mobility in transport direction reads [51–53]

μ = 1

N0e0

1

2kBT

∫ ∞

−∞
dt〈 j(t ) j(0)〉H , (1)

where the brackets are defined as 〈A〉H = Tr[ρA] with the
equilibrium density operator ρ and j(t ) = e

itH
h̄ je− itH

h̄ . N0 is the
carrier density, kB is the Boltzmann constant, e0 is the elemen-
tary charge, and T is the absolute temperature. Equation (1) is
evaluated for the Holstein-Hamiltonian [31,52],

H = Hel + Hph + Hel-ph

=
∑
MN

εMN a†
MaN +

∑
λ

h̄ωλ

(
b†

λbλ + 1

2

)

+
∑

M

∑
λ

h̄ωλgλ
M (b†

λ + bλ)a†
MaM . (2)

It uses a molecular site representation with on-site ener-
gies εMM ≡ εM and transfer integrals εMN . The linear, local
electron-phonon coupling constant gλ

M describes the coupling
of mode λ to the electron at site M. The restriction to linear
electron-phonon coupling is a good approximation for typical
organic semiconductors [54]. Albeit nonlocal couplings (the
coupling of the molecular vibrations to the transfer integrals)
can take an active localizing role in systems with delocalized
charge carriers [16,55], for materials in the hopping regime
with large local couplings and small transfer integrals they
tend to give rise to only minor corrections [23]. Thus, the
restriction to local coupling does not change the qualitative
findings of this work, while significantly reducing the compu-
tational and analytical load.

Using the expression j = e0
ih̄

∑
M[RMa†

MaM, H] for the cur-
rent operator yields the correlation function

F =
∫ ∞

−∞
dt

(e0

ih̄

)2 ∑
MNKL

εMNεKLRKLRMN
θ

Z
,

θ = 〈e−βH eκH a†
MaN e−κH a†

K aL〉,
Z = 〈e−βH 〉, (3)

with β = 1/(kBT ) being the inverse temperature. For rea-
sons of brevity of notation, we use the abbreviation κ =
it
h̄ in the time evolution. The angular brackets denote the
trace over electrons and all vibrations in the considered
electron-phonon product spaces. A common way to treat the
entanglement of the electronic and the vibrational degrees
of freedom in θ stemming from Eq. (2) is to perform the
Lang-Firsov transformation [56] with A → Ã = eSAeS†

, S =∑
M CMa†

MaM , and CM = ∑
λ gλ

M (b†
λ − bλ). This transforma-

tion is the usual starting point for polaron theories, in which
molecular vibrations are treated dynamically. Following the
idea to separate the modes into different frequency regimes,
the transformation includes only the fast, dynamic modes
(dyn): S = ∑

M

∑dyn
λ gλ

M (b†
λ − bλ)a†

MaM in the following. In
contrast, for slow modes, the charge carriers (on a given site
M) experience only a fraction of the vibration period and slow
modes should be excluded from the transformation. Physical
intuition would suggest to replace the vibration coordinate
by a frozen displaced one [57]. For longer timescales, the
dynamics of these modes may become relevant, which moti-
vates the term quasistatic (qs) that is used in the following. To
perform the aforementioned separation of the vibrations into
the two frequency regimes, we formally split the sums over
the vibrational modes in Hph and Hel-ph in Eq. (2). The phonon
Hamiltonian, for example, reads

Hph = Hqs
ph + Hdyn

ph

=
qs∑
λ

h̄ωλ

(
b†

λbλ + 1

2

)
+

dyn∑
λ

h̄ωλ

(
b†

λbλ + 1

2

)
. (4)

Using this notation, we define the quasistatic and dynamic
phonon Hamiltonians as Hqs = Hqs

ph + Hqs
el-ph and Hdyn =

Hdyn
ph + Hdyn

el-ph and rewrite the Holstein-Hamiltonian Eq. (2) as

H = Hel + Hdyn + Hqs. (5)

The precise cutoff frequency (inverse hopping time τhop) for
the separation is subject to a time-consistency condition and
will be addressed in Sec. III.

B. Evaluation of the quasistatic modes

We first consider the slow motion of the quasistatic modes.
More precisely, we model a situation in which the quasistatic
modes cannot generate quantum entanglement. We therefore
use the short-time approximation

eκ (Hel+Hdyn+Hqs ) ≈ eκ (Hel+Hdyn )eκHqs
el-ph eκHqs

ph (6)

by neglecting the commutators between the separated parts
of the Hamiltonian, namely [Hqs

el-ph, Hqs
ph] and [Hel, Hqs

el-ph] as
well as higher-order nested commutators. For instance, the
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neglected term that is quadratic in time in the exponent
1
2κ2[Hqs

el-ph, Hqs
ph] is smaller than the linear-in-κ terms on the

right of Eq. (6) for the considered timescale (the hopping
time τhop) and the low-frequency quasistatic modes. The same
argument applies to 1

2κ2[Hel, Hqs
el-ph] for small transfer inte-

grals. Note that, at this point, the full electronic bandwidth is
still contained in its entangled form with the high-frequency
modes in eκ (Hel+Hdyn ), which will be discussed later. As a result
of this approximation, the quasistatic phonon Hamiltonian
Hqs

ph eventually vanishes from the time evolution in Eq. (3),
reflecting the quasistatic nature of these modes. With this sep-
aration, the time evolution of the electronic operators evaluate
to

a†
M (κ ) ≡ eκH a†

Me−κH = ā†
Meκ

∑qs
λ h̄ωλgλ

M (b†
λ+bλ),

aN (κ ) ≡ eκH aN e−κH = e−κ
∑qs

λ h̄ωλgλ
N (b†

λ+bλ)āN , (7)

where the short-hand notation

āN ≡ aN (κ )el,dyn = eκ (Hel+Hdyn )aN e−κ (Hel+Hdyn ) (8)

is used and indicates that the time evolution driven by Hel +
Hdyn has yet to be evaluated. By inserting the electronic oper-
ators of Eq. (7) into θ in Eq. (3), one obtains

θ = 〈e−β(Hel+Hdyn )e−βHqs
eκ

∑qs
λ h̄ωλgλ

M (b†
λ+bλ)

× e−κ
∑qs

λ h̄ωλgλ
N (b†

λ+bλ)ā†
MāN a†

K aL〉. (9)

Here the statistical operator of the quasistatic modes e−βHqs

is separated similar to the time evolution above by neglecting
the commutator in e

1
2 (−β )2[Hel,H

qs
el-ph].

The thermal averages with respect to the quasistatic modes
and dynamic modes plus electrons can now be evaluated sep-
arately, as expressed in the form

θ = 〈
e−β(Hel+Hdyn )θ

qs
MN ā†

MāN a†
K aL

〉
el,dyn. (10)

Here θ
qs
MN is defined as the targeted thermal average over the

quasistatic modes:

θ
qs
MN = 〈e−βHqs

eκ
∑qs

λ h̄ωλgλ
M (b†

λ+bλ)

× e−κ
∑qs

λ h̄ωλgλ
N (b†

λ+bλ)〉qs. (11)

In the thermal average in Eq. (11) we employ (in full anal-
ogy to the time-evolution above) the decoupling e−βHqs =
e−β(Hqs

el-ph+Hqs
ph ) = e−βHqs

el-ph e−βHqs
ph . Evaluation with Wick’s theo-

rem yields

θ
qs
MN = Zqse

1
2

∑qs
λ (1+2Nλ )(−β

∑
P h̄ωλgλ

Pa†
PaP+κ h̄ωλgλ

M−κ h̄ωλgλ
N )2

,

(12)

where Nλ = (e
h̄ωλ
kBT − 1)−1 is the Bose-Einstein distribution

function for the mode λ and Zqs = 〈e−βHqs
ph 〉qs. We now assume

that every mode λ is located at a particular molecular site (say
Q), for which the coupling constant gλ

Q is finite and gλ
P �=Q is

zero. This allows us to disentangle the exponential functions
in Eq. (12) with respect to different sites, since the emerging
products of couplings to different sites vanishes gλ

Qgλ
P �=Q = 0.

We obtain

θ
qs
MN = Zqse

1
2

∑qs
λ

(1+2Nλ )
∑

P �=M,N [−β h̄ωλgλ
Pa†

PaP]2

× e
1
2

∑qs
λ

(1+2Nλ )[(κ−βa†
M aM )h̄ωλgλ

M]2

× e
1
2

∑qs
λ

(1+2Nλ )[(−κ−βa†
N aN )h̄ωλgλ

N ]2

. (13)

C. Description with random disorder

We continue with the observation that the exponentials of
electron operators occurring in Eq. (13) can be written with
a Gaussian random variable ξλ for each quasistatic mode λ

according to

e
1
2

∑qs
λ

(1+2Nλ )(κ−βa†
M aM )2

(h̄ωλgλ
M )2

= 1

R

R∑
i

e(κ−βa†
M aM )

∑qs
λ

(h̄ωλgλ
M )

√
(1+2Nλ )ξλ

i , (14)

where the index i runs over all possible configurations of the
quasistatic modes (i.e., random values of ξλ

i ) R. We remember
from above that each vibrational mode couples to only one
specific site. As a consequence, the set of modes λ coupling to
site M and the set of modes λ′ coupling to site N are described
by independent Gaussian random values ξλ

i and ξλ′
i , yielding

e
1
2

∑qs
λ

(1+2Nλ )[(κ−βa†
M aM )h̄ωλgλ

M]2

× e
1
2

∑qs
λ

(1+2Nλ )[(−κ−βa†
N aN )h̄ωλgλ

N ]2

= 1

R

R∑
i

e(κ−βa†
M aM )VM (ξi )+(−κ−βa†

N aN )VN (ξi ), (15)

with the short-hand notation

VM (ξi ) =
qs∑
λ

(h̄ωλgλ
M )

√
(1 + 2Nλ)ξλ

i . (16)

Here we have introduced ξi = (ξ 1
i , . . . , ξ

nqs

i ) as a vector nota-
tion for the set of all independent Gaussian random values ξλ

i
generating the random configuration i. The same argument is
applied to the remaining sites P �= M, N occurring in Eq. (13).
For a specific configuration ξi, θ

qs
MN becomes

θ
ξi
MN = Zqse(κ−βa†

M aM )VM (ξi )+(−κ−βa†
N aN )VN (ξi )

× e
∑

P �=M,N (−βa†
PaP )VP (ξi ), (17)

where one has to keep in mind that an average over a sufficient
number of realizations ξi has to be performed. We further
abbreviate ξi as ξ and suppress the explicit dependence of V
on ξ in the notation for readability. For a specific configuration
ξ, Eq. (10) becomes

θ ξ = Zqs〈e−β(Hel+Hdyn )e(κ−βa†
M aM )VM−(κ+βa†

N aN )VN

× e
∑

P �=M,N (−βa†
PaP )VP ā†

MāN a†
K aL〉el,dyn. (18)

Since the new random disorder terms e−βVPa†
PaP are diagonal in

the electronic operators, we define the new condensed statisti-
cal operator corresponding to the electronic on-site disorder
e−βHdis = e−β

∑
P VPa†

PaP , which indicates that each electronic
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site experiences an energetic shift caused by the quasistatic
modes. By rearranging the terms we obtain

θ ξ = Zqseκ�Eqs
MN 〈e−β(Hel+Hdyn )e−βHdis ā†

MāN a†
K aL〉el,dyn, (19)

with �Eqs
MN ≡ VM − VN . We now assume equal molecules on

site M and N , that is for every mode λ coupling to site M
with gλ

M there is an equivalent mode λ′ coupling to site N with
gλ′

N = gλ
M . Thus, by utilizing the properties of Gaussian ran-

dom variables the random energy difference �Eqs
MN between

sites M and N can finally be expressed by a random variable
following a Gaussian distribution of variance

(σ qs)2 =
qs∑
λ

2h̄2ω2
λ(gλ

M )2(1 + 2Nλ). (20)

D. Treatment of dynamic modes and electronic trace

We now carry out the remaining traces in Eq. (19). For
moderate transfer integrals (which we consider for the TCH
approach to be valid), a polaronic treatment of the dynamic
modes is suitable. We therefore perform the Lang-Firsov
transformation with the dynamic modes according to A →
Ã = eSAeS†

with S = ∑dyn
M,λ gλ

M (b†
λ − bλ)a†

MaM and obtain

θ ξ = Zqseκ�Eqs
MN 〈e−β(H̃el+H̃dyn )e−βHdis ˜̄a†

M
˜̄aN ã†

K ãL〉el,dyn, (21)

where H̃dyn = Hdyn
ph + Hdyn

rel has been transformed into a form
that separates electron and phonon operators. One obtains the
particularly simple form

Hdyn
rel = −

dyn∑
M,λ

(gλ
M )2h̄ωλa†

MaM = −
∑

M

�dyna†
MaM , (22)

with the definition of the polaron shift �dyn = ∑dyn
λ (gλ

M )2h̄ωλ

(assuming gλ
M = gλ′

N ). The nondiagonal electronic Hamilto-
nian Hel = ∑

MN εMN a†
MaN is transformed to

H̃el =
∑
MN

a†
MeCM εMN e−CN aN , (23)

with CM = ∑dyn
λ gλ

M (b†
λ − bλ). Considering that only the dy-

namic modes contribute to the Lang-Firsov transformation,
the resulting renormalization of the electronic couplings εMN

by CM can be estimated by performing the trace over these
modes:

〈H̃el〉dyn =
∑

M

εMa†
MaM +

∑
M �=N

ε̃MN a†
MaN ,

ε̃MN = εMN e− ∑dyn
λ (1+2Nλ )(gλ

M )2

. (24)

These fast dynamic modes therefore lead to a narrowing (re-
duction) of the transfer integrals to ε̃MN . If the bare transfer
integrals are small or if the narrowing of the transfer inte-
grals due to the fast dynamic modes is significant (which is
the application regime of the hopping approach), the energy
ε̃MN is smaller than the other terms in the time evolution
and statistical operator and will be neglected in the following
(“narrow-band limit”). That is, we assume that the transfer in-
tegral is too small to cause a significant expansion of the wave
packet before the actual hopping event driven by molecular

vibrations takes place. The consistency of this approxima-
tion for the studied molecules will be discussed further
below and in Appendix A. We define the resulting electronic
Hamiltonian:

H̃ ′
el = 〈H̃el〉dyn + Hdyn

rel =
∑

M

(εM − �dyn)a†
MaM , (25)

which is diagonal in the electronic sites. With ãL = e−CL aL

and ã†
K = a†

K eCK we can now evaluate the remaining time
evolution of the electronic operators in Eq. (21):

˜̄aN =eκHdyn
ph eκH̃ ′

el ãN e−κH̃ ′
el e−κHdyn

ph

=e−κ (εN −�dyn )e−CN (t )aN ,

˜̄a†
M =a†

MeCM (t )eκ (εM−�dyn ),

(26)

with CN (t ) = ∑dyn
λ gλ

N (b†
λeiωλt − bλe−iωλt ). By collecting the

results of the previous steps into Eq. (21) we obtain

θ ξ = Zqseκ�Eqs
MN 〈e−βHdyn

ph e−β(H̃ ′
el+Hdis )eCM (t )eκ (εM−�dyn )

× e−κ (εN −�dyn )e−CN (t )eCK e−CL a†
MaN a†

K aL〉el,dyn. (27)

The energy difference generated by the quasistatic modes
in eκ�Eqs

MN and the on-site energy difference in eκ (εM−εN ) can be
collected into a single exponential term eκ�ĒMN with �ĒMN =
(VM − VN ) + (εM − εN ), reflecting that the quasistatic dis-
order alters the on-site energies. In the same way we can
condense the statistical operators e−βH̃ ′

el and e−βHdis in a single
statistical operator: e−βH̄el = e−β

∑
M (εM−�dyn+VM )a†

M aM .
The trace over the electronic and dynamic phonon degrees

of freedom can now be separated to arrive at

θ ξ = Zqseκ�ĒMN 〈e−βH̄el a†
MaN a†

K aL〉el

× 〈
e−βHdyn

ph eCM (t )e−CN (t )eCK e−CL
〉
dyn. (28)

The electronic contribution is evaluated first to obtain

〈e−βH̄el a†
MaN a†

K aL〉el

= Zel[δMNδKLnMnK + δMLδNK nM (1 − nN )], (29)

with the Fermi-Dirac distribution function nM =
[exp( εM−�dyn+VM

kBT ) + 1]−1 and Zel = 〈e−βH̄el〉el. There the
quasistatic modes affect the on-site energies εM by the energy
shift VM and the dynamic modes lead to the polaron shift �dyn.
We recall the geometric prefactors in the original expression
Eq. (3) and find that only the second term in Eq. (29), which
is proportional to ∝ δMLδNK , contributes. The remaining trace
over the dynamic phonons evaluates to [52]〈

e−βHdyn
ph eCM (t )e−CN (t )eCK e−CL

〉
dynδMLδNK

= Zdyne−2φ(0)e2φ(t )δMLδNK , (30)

with φ(t ) = ∑dyn
λ (gλ

M )2[(Nλ + 1)e−iωλt + Nλeiωλt ] and

Zdyn = 〈e−βHdyn
ph 〉dyn. By collecting all terms we obtain

θ ξ = ZdynZqsZeleκ�ĒMN eφdyn(t )δMLδNK nM (1 − nN ),

φdyn(t ) = − 2φ(0) + 2φ(t ). (31)

Note that, when calculating the correlation function F using
Eq. (3), the first three terms ZdynZqsZel in Eq. (31) cancel with
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the partition function Z in Eq. (3), which is evaluated to Z =
ZdynZqsZel = 〈e−βHdyn

ph 〉dyn〈e−βHqs
ph 〉qs〈e−βH̄el〉el by applying the

aforementioned transformations in an analogous fashion. This
gives the final correlation function

F =
(e0

h̄

)2 ∑
MN

ε2
MN R2

MN nM (1 − nN )F̄ (�ĒMN ),

F̄ (�ĒMN ) =
∫ ∞

−∞
dteit�ĒMN /h̄eφdyn(t ), (32)

with the Fourier transform F̄ (�ĒMN ) at the argument of the
on-site energy difference �ĒMN = �EMN + �Eqs

MN , whereby
�Eqs

MN realizes the potential shifts due to the quasistatic
modes and follows the Gaussian distribution defined by
Eq. (20).

Inserting Eq. (32) into Eq. (1) and considering a single
charge carrier (low density limit) in the hopping process, we
obtain the mobility in transport direction α:

μα = e0

h̄2

1

2kBT

∑
MN

ε2
MN R2

MNαF̄ (�ĒMN ). (33)

Utilizing the Einstein-Smoluchowski relation [58,59] μα =
e0Dα

kBT and identifying the diffusion constant as Dα = 〈x2
α〉

2t =
1
2

∑
MN R2

MNανMN , we finally obtain the expression for the
hopping rate νMN :

νMN (�EMN ) = ε2
MN

h̄2

∫ ∞

−∞
dte

it
h̄ (�EMN +�Eqs

MN )eφdyn(t ),

φdyn(t ) = −2
dyn∑
λ

(gλ
M )2(2Nλ + 1)

+ 2
dyn∑
λ

(gλ
M )2(Nλ + 1)e−iωλt

+ 2
dyn∑
λ

(gλ
M )2Nλeiωλt .

(34)

Equation (34) is the central hopping rate obtained from
linear-response theory, which generalizes structurally sim-
ilar hopping rates derived previously from perturbation
theory [29,47,48,60] by including quasistatic intramolecu-
lar modes in �Eqs

MN additionally to the dynamic modes
in φdyn(t ).

E. Analytic separation of the dynamic modes into
low-frequency and high-frequency modes

In order to simplify the analytic expressions, the time inte-
gration in Eq. (34) is calculated in the spirit of Levich-Jortner
theory [47] by a separation of the dynamic modes into low-
frequency (lf) and high-frequency (hf) dynamic modes. This
is a reasonable approximation for the vibrational spectrum
of organic molecules as shown in Appendix B. By means
of the convolution theorem, one can distinguish the contri-
butions of the low-frequency and high-frequency dynamic
modes in

F (�ĒMN ) =
∫ ∞

−∞
dteit�ĒMN /h̄eφdyn(t ) (35)

according to

F (�ĒMN ) = 1

h̄

∫ ∞

−∞
dζF lf(�ĒMN + ζ )F hf(−ζ ). (36)

The terms F lf and F hf are defined in full analogy to Eq. (35),
but with sums in φdyn(t ) that are restricted to the respective
class of modes, i.e.,

F hf(−ζ ) =
∫ ∞

−∞
dte−itζ/h̄eφhf (t ),

φhf(t ) = −2
hf∑
λ

(gλ
M )2(2Nλ + 1)

+ 2
hf∑
λ

(gλ
M )2(Nλ + 1)e−iωλt

+ 2
hf∑
λ

(gλ
M )2Nλeiωλt .

(37)

The high-frequency dynamic modes are periodic at the con-
sidered timescales and show a vanishing occupation Nλ at
room temperature. They are gathered into an effective mode

of energy h̄ωeff = 2
∑

λ(gλ
M )2 h̄ωλ

Seff
and coupling strength Seff =

2
∑

λ(gλ
M )2, which leads to the analytical expression

F hf(−ζ ) = e−Seff
∑

k

h

k!
Sk

effδ(ζ + kh̄ωeff ). (38)

The low-frequency dynamic modes gathered in F lf do not os-
cillate through a full period during the considered timescales
and we thus apply the short-time approximation [60]. In this
limit, the expansion of the exponential functions in φlf(t ) up
to the quadratic order in t yields

F lf(�Ē + ζ ) =
√

2π

Dlf
exp

(
−(�Ē + ζ − �red)2

2Dlfh̄2

)
. (39)

Here we introduce the reduced reorganization energy [45]
�red = 2

∑lf
λ (gλ

M )2h̄ωλ, which is obtained by summing only
over the low-frequency dynamic modes. Accordingly, the
width of the Gaussian in Eq. (39) depends only on these
low-frequency dynamic modes and is defined as Dlf =
2

∑lf
λ (gλ

M )2ω2
λ(2Nλ + 1). By introducing the reduced thermal

reorganization energy �th(T ) = Dlf (T )h̄2

2kBT , the final hopping
rate, which is used for the TCH approach, reads

νMN =
√

πε2
MN e−Seff

h̄
√

�th(T )kBT

∞∑
k=0

(Seff )k

k!

× exp

[
−(

�Eqs
MN − �red − kh̄ωeff

)2

4�th(T )kBT

]
. (40)

The low-frequency dynamic modes contribute to the
reduced reorganization energy [45] �red = 2

∑lf
λ h̄ωλ(gλ

M )2

and to the temperature-dependent thermal broadening
�th(T ) = ∑lf

λ (h̄ωλ)2(gλ
M )2(2Nλ + 1)/(kBT ). The high-

frequency modes contribute to an effective high-frequency
mode of energy h̄ωeff = ∑hf

λ h̄ωλ(gλ
M )2/

∑hf
λ (gλ

M )2 and
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FIG. 2. Schematic comparison of the impact of the intramolec-
ular modes on the energetics of the molecular sites in the TCH
approach (a) and LJH/MH approach (b) using the color scale for
the different modes from Fig. 1.

effective coupling Seff = 2
∑hf

λ (gλ
M )2. Standard LJH

theory can be obtained from Eq. (40) by applying the

high-temperature limit to �th(T )
T →∞−−−→ �red. This limit

however does not need to be assumed and we use the
expression �th(T ). We therefore term Eq. (40) modified
Levich-Jortner hopping (mLJH) rate.

The impact of the three frequency regimes on the hopping
rate is illustrated in Fig. 2 for three sites. In TCH (left), the
quasistatic modes generate static disorder in the electronic
energies (green levels). On each side, the low-frequency dy-
namic modes generate an energetic broadening (orange) and
the periodic high-frequency dynamic modes create phonon
replica (red level sequence). Standard Marcus and Levich-
Jortner theory (Fig. 2 right) only consider the presence of
a single or two intramolecular dynamic frequency regimes,
respectively.

III. REALIZATION OF TIME CONSISTENCY
AND PHYSICAL INTERPRETATION

The TCH approach is based on the distinction between
the quasistatic modes, which in general impede transport and
dynamic modes, which in general enhance transport in the
presence of static disorder. The mode separation depends on
the timescale of charge transport, which in the case of hopping
is the residence time τhop = 1/νMN of the charge carrier. In
turn, the residence time depends on the mode separation due
to the different impact of the quasistatic and dynamic modes
on the hopping rate νMN in Eq. (40). The resulting depen-
dencies, which can be also observed in a similar fashion in
other contexts [49,50], are visualized in Fig. 3(a). A consistent
solution is obtained via a self-consistent or, more specifically,
time-consistent algorithm. To this end, we define the dynamic
modes as the modes that can pass through at least half of
their vibration period τ dyn during the residence time τhop,
allowing them to explore their full conformation space during
that time. Consequently, their frequency νdyn = 1/τ dyn should
be larger than half the hopping rate (2ν

dyn
λ � 2ν

dyn
min > νMN ).

All modes that are slower (2ν
qs
λ � 2ν

qs
max � νMN ) are treated

quasistatically. This leads to the time-consistency (TC) condi-
tion between hopping rate and mode frequencies:

2νqs
max � νTCH < 2ν

dyn
min. (41)

The TCH rates νTCH are calculated individually for each hop-
ping event. To realize Eq. (41), the hopping rate is calculated
iteratively for each event as exemplary shown in Fig. 3(b).

FIG. 3. Time-consistent hopping. (a) Schematic representation of the mutual dependencies: the hopping rate νMN depends on the particular
separation of modes through the quantities (�E qs, σ qs, �th, �red). The separation of the modes in turn depends on the hopping rate. (b) Example
of the iterative determination of the transport parameters for a single hopping event. Displayed are the preliminary transport parameters at each
iteration step. Top panel: Dynamic reorganization energy (orange) and static disorder strength (green). Lower panel: Hopping rate (black) and
current trial rate (blue). The last iteration determines νTCH. Lines are guide to the eye. (c) As a consequence of the time-consistent treatment,
the CT is mainly driven by a set of strongly coupled driving modes and the CT takes place on the timescale of these modes.
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The figure shows the iterative change of the transport pa-
rameters, hopping rates νMN , and trial rate 2ν

qs
max of the

fastest quasistatic mode in a given iteration step, evolving
towards convergence. As a starting point, all modes are treated
dynamically, for which the dynamic reorganization energy
� is maximal and the static disorder strength σ qs is zero
(top panel) as commonly used in standard Levich-Jortner
approaches. The resulting hopping rate is usually too large
(bottom panel) and still violates Eq. (41), which implies that
a number of modes should be treated quasistatically instead.
In the progress of the algorithm, the number of quasistatic
modes is gradually increased up to the time-consistency point
fulfilling Eq. (41) [violet dashed line in the bottom panel of
Fig. 3(b)]. Note that because the hopping rate (and thus the
mode separation) depends on the random configurations ξ of
the slowest modes, it may be that vibrations are quasistatic in
one hopping event and dynamic in another.

The physical picture emerging from the time-consistency
considerations is illustrated in Fig. 3(c) and is explained as fol-
lows. The hopping rate νTCH that fulfills the time-consistency
condition Eq. (41) is eventually pinned at νTCH = 2νdrive. One
finds that νdrive is the frequency of one of the strongly coupled
driving modes of the system.

On its way towards the consistency point, there can be two
inconsistency situations. In the case that these driving modes
are part of the dynamic modes, one obtains too fast hopping
rates (νMN > 2νdrive) that are inconsistent with Eq. (41). In
the opposite case that these driving modes belong to the set of
quasistatic modes, one obtains too slow hopping rates (νMN <

2νdrive) that are again inconsistent. The hopping event thus has
to be driven by the emerging dynamics of the driving modes
as illustrated in Fig. 3(c). For short times [left in Fig. 3(c)],
the driving modes are frozen in a random quasistatic configu-
ration. The resulting energetic disorder impedes transport and
localizes the charge carrier on a single molecule. For longer
times, the dynamics of the driving modes set in and enables
the transfer of the charge (middle). For a short time interval
directly after the transfer, the driving modes are again frozen
and localize the charge carrier (right). Consequently, the CT
takes place concertedly with the driving modes, it is driven by
their motion. This finding also corroborates models such as
the adiabatic limit of transition state theory [41,42].

IV. SELECTION AND CLASSIFICATION OF SYSTEMS

To study the characteristics of the derived TCH approach
and compare it to other hopping theories, we choose 10
different molecular crystals with varying characteristics (see
Fig. 4). They are selected to represent two prototypical
regimes of transport in molecular crystals: hopping (localized)
transport and bandlike (delocalized) transport. We consider
five low-mobility materials (μexp � 1 cm2 V−1 s−1) that are
classified in the localized hopping-transport regime (LOC,
shown in green) at room temperature, which are NTMTI, TTF,
DT-TTF, PMSB, and naphthalene. Five additional materials
are classified into the delocalized transport regime (DEL,
shown in violet) and are characterized by a high experimen-
tal charge carrier mobility (μexp ≈ 10 cm2 V−1 s−1), namely
rubrene, pentacene, picene, DNTT, and DNBDT-C10. The
rationale to include this second class of materials as a control

FIG. 4. Materials used to study the TCH and other nonadiabatic
hopping approaches. The materials are classified into the hopping
(localized) transport regime (LOC, green) and bandlike (delocalized)
transport regime (DEL, violet).

set is that hopping approaches relying on narrow electronic
bands should fail to reproduce the experimental mobility (if
consistently employed) and predict lower mobilities due to the
absence of coherent contributions.

The classification of the materials in one of the two trans-
port regimes is performed based on the averaged degree
of localization of the charge carrier on a single molec-
ular site θLOC, which we estimate in a two-state model
using ab initio material parameters. We therefore reduce the
Holstein-Hamiltonian Eq. (2) to a purely electronic two-state
Hamiltonian

Htwo-state =
(

0 ε̃12

ε̃21 (ε2 − ε1)

)
. (42)

In the spirit of the TCH approach, the molecular vibrations
enter in Eq. (42) in a separated fashion. The slow quasistatic
modes generate disorder in the electronic on-site energies
(ε2 − ε1) following a Gaussian distribution according to
Eq. (20). The fast dynamic modes generate a narrowing of the
bare transfer integrals ε12 to ε̃12 according to Eq. (24). The re-
sulting eigenstates of the two-state Hamiltonian Eq. (42) allow
us to draw conclusions on the degree of charge localization
θLOC on a single molecular site caused by the interplay of the
transfer integral and vibrational disorder. More details about
the estimation and a comparison to a common estimation from
transition-state theory [30] can be found in Appendix A.

The ab initio parameters entering the transport simula-
tions and the estimation of the localization regime, such as
the transfer integrals εMN and mode-resolved electron-phonon
coupling gλ

M , are calculated based on density functional theory
(DFT). We used the B3LYP hybrid functional [61,62] in com-
bination with the 6-311G** basis set [63,64] implemented in
the Gaussian software package [65]. More details about the
utilized methods, including the required computational costs,
are summarized in Appendix C. The resulting ab initio param-
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TABLE I. Studied molecules and relevant transport parameters as well as the estimators θLOC and θHOP and the final classification θ into
the localized (LOC) and delocalized (DEL) transport regime. The references in the first column refer to the studied crystal structures. �tot is
the total reorganization energy used in Marcus theory. �red is the reorganization energy excluding the high-energy modes that acts as an energy
barrier in the TCH and mLJH approach. �th(T ) is the temperature-dependent reduced reorganization energy used in the thermal broadening
in the TCH and mLJH approach. σenv is the disorder parameter containing environmental disorder effects [66]. The values marked with * are
estimated from comparison to known crystal structures.

Material �tot (meV) �red (meV) �300 K
th (meV) εMN (meV) σenv (meV) [66] θLOC θHOP θ μexp (cm2/V s)

TTF-β [67] 288 146 161 50 108 0.88 0.35 LOC 0.23 [68]
NTMTI [69] 226 120 107 31 71 0.88 0.27 LOC 0.37 [69]
PMSB [70] 408 248 282 44 90* 0.85 0.22 LOC 0.17 [71]
DT-TTF [72] 233 119 150 55 53 0.74 0.47 LOC 1.4 [73]
Naphthalene [74] 189 5 7 42 90 0.68 0.44 LOC 1.0 [75]
DNBDT-C10 [76] 89 30 39 49 75* 0.61 1.10 DEL 12.1 [76]
Picene [77] 190 43 48 79 82 0.58 0.83 DEL 9.0 [78]
DNTT [79] 134 40 35 98 75 0.46 1.46 DEL 8.3 [80]
Pentacene [81] 95 2 2 77 68 0.42 1.62 DEL 2.3 [82]
Rubrene [83] 160 48 51 104 53 0.41 1.30 DEL 15.4 [84]

eters and the experimental mobilities of the studied molecules
are collected in Table I.

V. CHARGE-CARRIER MOBILITIES FROM TCH
AND OTHER HOPPING APPROACHES

In order to realize variable configurations ξ of the qua-
sistatic disorder, the hole mobilities of the studied crystals
are simulated with a kinetic Monte Carlo scheme using the
derived TCH rates and including environmental disorder ef-
fects [66]. More details about the simulations are presented
in Appendix C. The resulting mobilities in the high-mobility
directions are presented in Fig. 5(a) and are compared with
experimental mobilities. To characterize the deviation be-
tween the mobilities of the two sets (in terms of their
ratio μi

calc/μ
i
exp), we compute the geometric average �hop =

exp[ 1
n

∑n
i ln(μi

calc/μ
i
exp)] over the n = 5 hopping materials,

which would be one if both sets coincide. In Fig. 5(a) the
TCH and the experimental mobilities correlate closely for the
materials in the hopping regime (green dots) with �hop = 1.4.
For the control set of bandlike transport materials [violet dots
in Fig. 5(a)], the TCH mobilities are about a factor of 10 be-
low the experimental values. This quantifies that the hopping
contributions are small for these systems as expected and indi-
cates the dominance of coherent transport in the experiment,
which is not captured by hopping approaches.

We use the TCH approach as a reference to study fur-
ther hopping theories without time consistency such as the
mLJH [Eq. (40)] and MH theory (with and without environ-
mental disorder). The mobilities obtained with these models
are visualized in Figs. 5(b)–5(d). To analyze the results, we
further calculate the ratio between these hopping rates ν and
the TCH rate νTCH for a multitude of hopping events in the
main transport direction. The distributions of these ratios in-
dicate the deviations from time consistency and are shown
in Figs. 5(e)–5(h) for materials in the hopping regime (top
panel) and bandlike regime (bottom panel). The average ratio
ν/νTCH = exp[ 1

n

∑n
i ln(ν i/ν i

TCH)] is indicated in green (hop-
ping) and violet (bandlike).

The mobilities calculated with the mLJH approach
[Fig. 5(b)] are larger than the experimental values and TCH
mobilities (�hop = 1.9), which is traced back to the increased
hopping rates shown in Fig. 5(f). The reason for this overesti-
mation is found to be the missing time consistency, by which
all modes are treated dynamically and enhance transport in
the presence of environmental disorder. The only exception
is pentacene, for which there are no strongly coupling low-
frequency vibrations that could enhance the transport and
thus their absence drastically reduces the mobility [inset in
Fig. 5(b)]. Besides, the mLJH rates for the control set of
bandlike materials are substantially increased compared to
TCH as shown in Fig. 5(f). However, the resulting recovery
of the experimental trend (except for pentacene) should be
taken with caution, since it is an artifact of inconsistently
treating also the slow intramolecular vibrations completely
dynamically.

We next consider MH rates including static environmental
disorder. The MH approach makes further approximations
to the above mLJH theory by removing the distinction be-
tween low-frequency and high-frequency dynamic modes
(i.e., �red → �tot and Seff → 0) and further assumes the high-
temperature limit [�th(T ) → �tot]. As a consequence, all
intramolecular modes now contribute to the activation barrier
imposed by �tot [see Figs. 7(e) and 7(f) in Appendix B for
a visualization of the resulting change in the spectra]. This
overestimation of the energy barrier leads, in average, to a
decrease of the hopping rate compared to mLJH. The resulting
MH mobilities [Fig. 5(c)] show, on average over all hopping
materials, an underestimation of the mobility compared to
experimental values (�hop = 0.6).

A different result for the average mobility is obtained
with simulations using the MH approach without environ-
mental disorder [Fig. 5(d)]. We find that, in the absence of
environmental disorder, the mobilities of MH become sur-
prisingly similar to the experimental mobilities for both the
hopping materials (�hop = 1.4) and bandlike materials. This
coincidence, however, should be taken with great caution,
since incoherent hopping approaches should underestimate
the experimental mobility of bandlike materials. Figure 5(h)
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FIG. 5. (a)–(d) Comparison of different simulated hopping mobilities: (a) TCH approach with separation of dynamic and quasistatic
modes; (b) mLJH approach (without TC); and (c) MH approach (without TC). The simulations in (a)–(c) include environmental contributions.
(d) MH approach (without TC) and neglecting environmental contributions. Material classes are indicated as colored points: hopping (green)
and bandlike (violet). The gray shaded lines in (a)–(d) indicate relative deviations between simulated and experimental mobilities. (e)–(h)
Distribution of the ratios between hopping rate of the considered model and the TCH rate for hopping materials (top panel) and bandlike
materials (bottom panel). The average ratios are indicated in green and violet, while the ideal ratio of one is highlighted in blue. The violet
dashed in line in (f) represents the averaged ratio without pentacene.

indicates the resulting deviation from TC by up to a factor of
10, while the distribution appears more symmetric. This anal-
ysis shows that the match of MH mobilities with experimental
ones likely originates from the inconsistent (dynamical and
classical) treatment of the molecular vibrations in the presence
of elevated hopping rates and the absence of environmental
disorder.

VI. CONCLUSION

We studied a time-consistent hopping approach derived
from linear-response theory, which includes both slow modes
treated in the quasistatic limit and fast, dynamic modes. The
time-consistent separation between both sets by the hopping
time revealed that the hopping process is mediated by strongly
coupling driving modes in accordance with other models.
The resulting calculated mobilities are consistent with experi-
mental mobilities for materials in the hopping regime. They
also consistently underestimate the mobilities of a control
set of bandlike materials due to missing coherent transport
contributions. We further showed that other popular hop-
ping approaches yield mobilities comparable to experimental
values for all materials due to an inconsistent dynamical
treatment of the intramolecular vibrations in the presence of
elevated hopping rates. In these approaches, the frequent vio-
lation of time consistency is partly balanced by a cancellation
of those TC errors, while the TCH approach yields consistent
results for all materials under investigation. An interesting

perspective for future work is the extension of the present
model to nonlocal electron-phonon coupling, which requires a
further generalization of the analytical derivation and the cal-
culation of more material parameters. Although the approach
was benchmarked on crystalline systems, it can equally be
used to study charge transfer and transport in the large class
of disordered systems and blends by including the energetics
of the morphologies under study. This should pave the way
to a physically more consistent description of charge carrier
transport.
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APPENDIX A: ESTIMATION OF THE DEGREE
OF LOCALIZATION

To check for the presence of localized charge carriers and
classify the studied materials into the localized and delocal-
ized transport regime, we estimate the degree of localization
of the charge on a single molecule in a simple two-state model
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FIG. 6. Degree of localization of the charge carrier. (a) Degree
of localization and the coefficients |c1/2|2 calculated in the two-state
model for TTF-β (left) and rubrene (right). (b) Degree of localization
θLOC at room temperature versus θHOP for all 10 materials studied in
this work. Materials are classified into the regime of localized trans-
port (LOC, green) and delocalized transport (DEL, violet) according
to θLOC

in electronic site representation. There, a site corresponds to a
particular molecular orbital of molecule 1 or 2. We therefore
reduce the Holstein-Hamiltonian Eq. (2) to a purely electronic
two-state Hamiltonian

Htwo-state =
(

0 ε̃12

ε̃21 (ε2 − ε1)

)
. (A1)

In the spirit of the TCH approach, the molecular vibra-
tions enter in Eq. (A1) in a separated fashion. The slow
quasistatic modes generate disorder in the electronic on-site
energies (ε2 − ε1) following a Gaussian distribution accord-
ing to Eq. (20). The fast dynamic modes generate a narrowing
of the bare transfer integrals ε12 to ε̃12 according to Eq. (24). In
this two-state model, we chose twice the bare transfer integral
2ε12 in the hopping direction as the separating energy scale
and obtain h̄ωqs � ε12 < h̄ωdyn in analogy to Eq. (41).

The resulting eigenstates c = (c1, c2) and d = (d1, d2) of
the two-state Hamiltonian Eq. (A1) are used for an estimation
of the degree of localization θLOC caused by the vibrational
disorder. In the case of vanishing electronic coupling, ε̃12 =
ε̃21 = 0, the states are completely localized on one or the other
site |c1|2 = |d2|2 = 1.0 and |c2|2 = |d1|2 = 0. In the other
extreme case of vanishing disorder in the on-site energies
(ε2 − ε1) = 0, the states are completely delocalized over both
sites: |c1|2 = |c2|2 = |d1|2 = |d2|2 = 0.5. In the intermediate

cases, the degree of localization depends on the ratio between
(ε2 − ε1) and ε̃12.

We estimate the degree of localization θ
ξ

LOC for a specific
configuration ξ as

θ
ξ

LOC = 2max(|c1|2, |c2|2) − 1, (A2)

which is a number between 0 (complete delocalization) and 1
(complete localization). Since it is dependent on the instanta-
neous configuration ξ of the quasistatic modes, an ensemble
average will be performed over N = 10 000 different config-
urations to measure the averaged degree of localization:

θLOC = 1

N

N∑
ξ

θ
ξ

LOC. (A3)

The closer θLOC is to one, the higher is the localization of the
charge carrier on a single site and the better is the description
of the charge transfer via a hopping approach. This concept
is visualized in Fig. 6(a) for the studied material with largest
localization (TTF-β, θLOC = 0.88) and smallest degree of lo-
calization between two sites (rubrene, θLOC = 0.41). There the
coefficients |c1/2|2 used to determine θLOC are presented in a
color scale. For TTF-β site 1 contributes with |c1|2 = 0.94
to the new eigenstate c and thus the charge carrier can be
assumed to be localized to a high degree on a single site due
to the vibrational disorder and band narrowing. Thus, charge
transfer will most likely take place due to dynamic changes
in the disorder landscape as modeled in the TCH approach.
In the case of rubrene, the sites contribute with |c1|2 = 0.7
and |c2|2 = 0.3 to the new state c. As a consequence, the
charge carrier is already delocalized over the two sites due to
larger transfer integrals and smaller vibrational disorder and a
hopping approach based on localized charge carriers is inap-
propriate to model the charge transport. Since the estimation
is based on ab initio parameters, it can also be used to check
the degree of localization and expected transport mechanism
for new materials that are experimentally not realized yet.

In Fig. 6(b) the estimators θLOC are visualized for all 10
materials studied in this work on the x axis (the numerical
data is collected in Table I). For comparison, the commonly
used estimator obtained in transition state theory [30]

θHOP = 2εMN

�tot
<< 1 (A4)

is presented on the y axis. It depends on the transfer integral
in transport direction εMN and the total reorganization energy
�tot and should be smaller than one for hopping approaches
to be valid. Both estimators favor the same set of materials
for localized hopping transport. However, in contrast to θHOP,
θLOC allows for the inclusion of environmental disorder and is
temperature dependent, since it includes the thermal activation
Nλ of the quasistatic modes. We thus use the more elaborate
estimator θLOC for the classification into the localized and
delocalized transport regimes. Although, realistically, there
is a smooth transition between both regimes, we use a hard
cut-off value for the separation, which we define as θLOC = 2

3 .
This particular value ensures that, at room temperature, naph-
thalene (θLOC = 0.68) is included in the localized transport
regime. Theoretical evidence suggests that, at room temper-
ature, transport in naphthalene is predominantly driven by
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FIG. 7. Collection of the rate and vibrational spectrum for NTMTI and rubrene. Left: Comparison of the exact spectrum Eq. (B1) in black
and approximated spectrum Eq. (B2) for Esep = 700 cm−1 in red for (a) NTMTI and (b) rubrene. The dashed lines show the approximated
spectra for Esep = 500 cm−1 (green) and Esep = 1000 cm−1 (blue). Center: Vibrational mode spectrum for (c) NTMTI and (d) rubrene. The
red, green, and blue bars mark the different separation energies used to compute the spectra in (a) and (b). Right: Comparison of the Marcus
spectrum Eq. (B3) in black and the approximated mLJ spectrum Eq. (B2) in red for (e) NTMTI and (f) rubrene. While in Marcus theory
all modes contribute to the energy barrier imposed by the reorganization energy �tot, in the mLJ approach only the low-frequency dynamic
vibrations contribute to the reduced reorganization energy �red, yielding an increased hopping rate around E ≈ 0 (violet dashed line).

incoherent transport contributions [33]. At lower tempera-
tures, the degree of localization of naphthalene falls below the
threshold value, e.g., θLOC(100 K) = 0.54 and θLOC(20 K) =
0.38. This reflects the transition to delocalized transport in
naphthalene below room temperature similar to experimental
and theoretical evidence [33,75].

APPENDIX B: SEPARATION OF LOW-FREQUENCY
AND HIGH-FREQUENCY DYNAMIC MODES

The separation of the dynamic modes into low-frequency
and high-frequency regimes is performed by means of an em-
pirical separation energy which is found to Esep = 700 cm−1

as explained below. The low-frequency and high-frequency
dynamic modes are defined via the existence or nonexistence
of periodicity during the hopping process, as will be explained
in the following. In Fig 7 the exact spectrum

F (ζ ) =
∫ ∞

−∞
dteitζ/h̄eφdyn(t ),

φdyn(t ) = −2
dyn∑
λ

(gλ
M )2(2Nλ + 1)

+ 2
dyn∑
λ

(gλ
M )2(Nλ + 1)e−iωλt

+ 2
dyn∑
λ

(gλ
M )2Nλeiωλt ,

(B1)

which is derived from the Holstein-Hamiltonian above, is pre-
sented for NTMTI [Fig. 7(a)] and rubrene [Fig. 7(b)] in black.

The exact spectrum shows a phonon progression that is gener-
ated by periodic modes (high-frequency modes), whereas the
broadening and shift of the particular peaks is generated by
nonperiodic modes (low-frequency modes). This behavior can
be qualitatively reproduced by the simpler modified Levich-
Jortner spectrum also derived in the main text:

F (ζ ) =
√

π h̄√
�th(T )kBT

e−Seff

∞∑
k=0

1

k!
(Seff )

k

× exp

[−(ζ − �red − kh̄ωeff )
2

4�th(T )kBT

]
. (B2)

Here the high-frequency modes contribute to the phonon pro-
gression via an effective mode of energy h̄ωeff and effective
coupling strength Seff. The low-frequency modes contribute to
the broadening by �th(T )kBT and to the energy barrier by
�red. The intramolecular modes can now be classified into
either of these two classes for a given separation energy Esep.

The approximated spectrum Eq. (B2) is plotted in Fig. 7(a)
for NTMTI and 7(b) for rubrene for different separation ener-
gies: Esep = 700 cm−1 (solid red), Esep = 500 cm−1 (dashed
green), and Esep = 1000 cm−1 (dashed blue) and shows clear
similarities to the exact spectrum. The best agreement be-
tween the exact spectrum and approximated spectrum is found
for Esep = 700 cm−1, which is therefore used for all materials
investigated in this work. More insight into the insensitivity
to the value of Esep can be gained from the center panels
in Fig. 7, which show the vibrational spectra of NTMTI in
Fig. 7(c) and rubrene in Fig. 7(d). The partial relaxation
energy �λ

part = (gλ
M )2h̄ωλ of each particular mode λ is plot-

ted against the vibrational mode energy. In the spectra, two
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regimes of strongly coupling modes can be identified: modes
below 500 cm−1 (e.g., bending modes) and modes above
1000 cm−1 (e.g., stretching modes). The chosen separation
energy of Esep = 700 cm−1 (red bar) lies in between these two
regimes and has no coupling modes in its immediate vicinity,
making it suitable for the separation between low-frequency
and high-frequency modes. This particular spectral shape with
well separated groups of high- and low-frequency modes is
typical for the organic molecules studied in this work due to
structural similarities (i.e., they are all based on conjugated
carbon-rich backbones). We therefore take Esep = 700 cm−1

for all studied molecules.
The mLJH approach discussed in the main text is based on

Eq. (B2) by treating also the quasistatic intramolecular vibra-
tions dynamically. A further approximation to the vibrational
spectrum is performed in Marcus theory, where all intramolec-
ular vibrations are treated as low-frequency (nonperiodic)
modes and the high-temperature limit T → ∞ is applied. As
a result, all vibrations contribute to the reorganization energy,
i.e., h̄ωeff → 0 and �th(T ) → �red → �tot, which yields the
spectrum

F (ζ ) =
√

π h̄√
�totkBT

exp

[−(ζ − �tot )2

4�totkBT

]
. (B3)

In Figs. 7(e) and 7(f) the Marcus spectrum Eq. (B3) is shown
in black and is compared to the mLJ spectrum Eq. (B2) in
red for NTMTI and rubrene. Since in Marcus theory all vi-
brations contribute to the energy barrier �tot, the weight of
the spectrum is shifted to higher energies compared to the
mLJ spectrum. This results in a decreased hopping rate around
E ≈ 0 (violet dashed line) for Marcus theory and the lower
mobilities obtained compared to the mLJH approach in the
main text.

APPENDIX C: COMPUTATIONAL METHODS

Molecular and crystal structures: The initial crystal struc-
tures were extracted from experimental x-ray diffraction
measurements (see Table I). To specify the positions of the
unresolved hydrogen atoms, a relaxation of just the hydrogen
atoms was performed for every structure in small molecular
clusters using DFT (Gaussian09 [85], B3LYP exchange-
correlation functional [61,62], 6-311G** basis set [63,64]).
Single monomers and dimers were extracted from the crys-
tal structure to calculate the mode-resolved electron-phonon
couplings, reorganization energies and transfer integrals.

Electron-phonon coupling and reorganization energies: A
normal mode analysis was performed for every studied
molecule in its relaxed gas phase geometry using Gaussian16
[65] (B3LYP/6-311G**). The electron-phonon coupling con-
stants gλ

M of each normal mode λ is calculated using the
frozen-phonon approach [86]:

gλ
M = ∂εM

∂Xλ

1√
2ω3

λh̄
, (C1)

where εM is the ionization potential of the isolated monomer.
With this level of precision, the computational demand for
the calculation of the electron-phonon coupling is about 800
CPUh. In gas phase, the molecules TTF and DT-TTF show

very large coupling constants for the low-frequency bend-
ing modes (and consequently large reorganization energies),
which are not present in that extent in a crystalline envi-
ronment. We therefore scale down these coupling constants
such that the high-temperature limit of �tot

th (T ) (including all
modes) from gas phase coincides with the total reorganization
energy �

4-point
tot calculated with the well-established 4-point

method [38] in the crystal environment. There the reorgani-
zation energy is calculated as

�
4-point
tot = [E+(q0) − E+(q+)] + [E0(q+) − E0(q0)]. (C2)

E0(q0) is the energy of the neutral molecule in its ground
state and E0(q+) is the energy of the neutral molecule in
the minimum geometry of the charged state, the differ-
ence of both defines the relaxation energy of the neutral
monomer. The energy difference between E+(q+) and E+(q0)
defines the relaxation energy of the charged monomer, re-
spectively. The crystal environment is modeled by including
all nearest-neighbor molecules of the center molecule that
relaxes. The atomic positions of the surrounding molecules
were fixed during the relaxation runs and the charging states
were ensured by using charge constraints. These calculations
were performed using the NWchem [87] package and the
B3LYP hybrid functional, together with the 6-311G** basis
set.

Transfer integrals: The transfer integrals εMN were cal-
culated for dimer systems according to the fragment orbital
method [88]. They are obtained as the matrix element of a
reference Hamiltonian F̂ with respect to the frontier orbitals
φM of the monomers:

εMN = 〈φM |F̂ |φN 〉. (C3)

Since the monomer orbitals of different molecules are in
general not orthogonal, in contrast to the desirable definition
of the transfer integral with orthogonal states, the reference
Hamiltonian F̂ is obtained by a Löwdin orthogonalization
[89] of an original Hamiltonian F :

F̂ = S−1/2FS−1/2. (C4)

The original Hamiltonian of the dimer (which is the Fock ma-
trix F ), the overlap matrix S, and the monomer orbitals were
obtained by DFT calculations with the Gaussian16 package
and the B3LYP level of theory combined with the 6-311G**
basis set. With this configuration, the calculation of a single
transfer integral requires, on average, 0.5 CPUh.

Environmental disorder: Additional environmental disor-
der contributions, such as intermolecular modes and polar-
ization corrections from the surrounding molecules that can
affect the charge-transfer process, were included into the
calculations. In the common approach, the environmental
contributions are treated as thermal disorder modeled by a
Gaussian distribution of standard deviation σenv, the disorder
parameter [38,90]. This static disorder parameter can be con-
verted to the dynamic temperature-dependent reorganization
energy from the main text via σ 2

env = 2�thkBT . The calcula-
tions of σenv have been performed by Yavuz et al. [66] for
a large amount of molecules and we take these parameters
if available (see Table I). Depending on the size of the hop-
ping rate, the environmental modes can now either contribute
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dynamically in form of the additional reorganization energy

�thT = σ 2
env

2kBT with a typical mode energy of h̄ωenv = 5 meV
[16], or statically by means of the disorder parameter σenv.
During our calculations we found that the environmental
modes are so slow that the usual static treatment is valid for
nearly all of the studied materials.

Charge transport simulations: Kinetic Monte Carlo sim-
ulations were performed to simulate the charge transport in
finite 3D bulk systems. The TCH rates, mLJH rates, and MH
rates were used as introduced in the main text. The hopping
sites were chosen as the center-of-mass positions of single
molecules in the experimental crystal structure. The simula-
tions were performed with 100 000 time steps and averaged
over 20 000 trajectories. This ensures that the TCH rates
are averaged over multiple configurations ξ of the quasistatic
modes to fulfill Eq. (14) in the main text. The computational

demand for a single KMC run with 100 000 steps for an
average molecule of approximately 40 atoms and 14 nearest
neighbors is about 4 s on a single CPU and scales linearly
with the number of seeds/disorder configurations used in the
average. The anisotropic mobilities were obtained by using
the Einstein-relation

μα = e0

kBT

〈
x2
α

〉
2t

. (C5)

The square-displacement x2
α and time t were obtained as the

final position and elapsed time of each trajectory. The spatially
resolved mobility is obtained by projecting the sheaf of results
of all 3D trajectories onto the respective spatial directions.
The final mobilities shown in the main text is the maximum
obtained mobility, being closest to the maximum intrinsic
mobility.
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