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Honeycomb and kagome lattices exhibit extraordinary electronic properties. It is a natural consequence of
additional discrete degree of freedom associated with a valley or the occurrence of electronic flat bands. The
combination of both types of lattices, observed in CoSn-like compounds, leads not only to the topological
electronic behavior, but also to the emergence of chiral phonon modes. We study CoSn-like compounds and
show that chiral phonons are realized here. Previous theoretical studies demonstrated that the chiral phonons can
be found in ideal two-dimensional honeycomb or kagome lattices. Recent experimental results support such a
prediction as the chiral phonons were observed in the transition metal dichalcogenide WSe2. It turns out that
in the case of CoSn-like systems with the P6/mmm symmetry, the kagome lattice formed by d-block element
is decorated by the additional p-block atom. As a result one finds a two-dimensional triangular lattice of atoms
with nonequal masses and the absence of chiral phonons in the kagome plane. Contrary to this, the interlayer
honeycomb lattice of p-block atoms is preserved and allows for the realization of chiral phonons. In this paper
we discuss the properties of such chiral phonons in seven CoSn-like compounds and demonstrate that they do
not depend on the atomic mass ratio or the presence of intrinsic magnetic order. The chiral phonons of d-block
atoms can be restored by removing the inversion symmetry. The latter is possible in the crystal structure of CoGe
and RhPb with the reduced symmetry (P6̄2m) and in distorted-kagome-like lattice.

DOI: 10.1103/PhysRevB.104.054305

I. INTRODUCTION

Graphene—an exact, two-dimensional (2D) honeycomb
lattice, exhibits a range of extraordinary electronic properties
[1–6]. The existence of two degenerate and inequivalent val-
leys at the corners of the Brillouin zone (BZ) constitutes an
additional discrete degree of freedom. This leads to a proposal
of the valleytronics [7], which contrary to the spintronics
concept [8], manipulates a valley index instead of carrier
spin. Recently, the potential application in valleytronics for
several three-dimensional (3D) systems (e.g., for transition
metal dichalcogenides) has been suggested [9–11].

Due to the broken inversion symmetry of crystal structure,
electrons in both valleys experience an effective magnetic
field with equal magnitudes but opposite signs [12]. Such
behavior, associated with effective angular momenta at the
point with opposite valley indices, opens a way for optical
pumping of valley-polarized carriers by circularly polarized
light [13–17]. Additionally, new phenomena like valley Hall
effect can be realized [18–21], which is analog to the spin
Hall effect [22]. The mentioned transport properties exhibit a
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topological nature, which is evidenced by the presence of the
finite Berry curvature in the system [23–25].

Interestingly, electronic systems are not unique in con-
taining such topological properties, as this is possible also
for various types of bosonic systems [26,27]. The topologi-
cal bosons are not an ordinary extension of the topological
fermions due to significant difference between both systems
(e.g., different types of statistics and interactions). However,
from a theoretical point of view, both of them can be described
by the Bloch wave function in periodic lattices [28]. The topo-
logical concepts widely used in electronic systems, such as
Berry phase, Berry curvature, or Chern number, are applicable
to bosonic systems as well.

As an example, a topologically nontrivial phase was ob-
served in photonic systems [29–31]. Recently, many other
topological features were reported in these types of systems,
e.g., Weyl points [32–36], topological edge modes [30,36–
38], or a topological acoustic wave in metamaterial systems
[35,39–42]. Stemming from that, topological properties can
be also expected in the case of phononic systems [43,44]. The
topological properties of phonons can be a consequence of
acoustic—and optical—mode inversion in phonon dispersion
relations [45], which is an exact analog of the band inversion
in the electronic structure. Consequently, also Dirac and/or
Weyl points [46–59], as well as nodal lines [58–60], can occur.
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FIG. 1. (a) Side and (b) top view of the CoSn-like crystal struc-
ture with P6/mmm symmetry. The Co atoms (blue balls) form the
kagome lattice, while the Sn atoms occupy two nonequivalent posi-
tions: Sn(1) located in the plane of the kagome lattice (gray balls),
and Sn(2) located between two kagome-lattice planes and forming a
honeycomb sublattice (crossed balls).

One of the possible examples where phonons exhibit topo-
logical properties are chiral modes [61], associated with
circular motion of atoms during mode propagation. These
types of vibrations are characterized by the opposite chirality
and can emerge in the system due to the quantized Berry
phase and pseudoangular momenta [62–64]. In analogy to the
electronic structure of graphene, in the phonon spectrum of
the hexagonal lattice the opposite Berry phase in the K and
K ′ points are observed [46,64–66]. The existence of chiral
phonons allows for the realization of the elastic analog of the
valley Hall effect [67]. Chiral phonons have been reported also
in the kagome lattice [68], in the bilayer triangular [69], or
bilayer hexagonal [70] lattices. Such type of phonons was also
recently observed in the transition metal dichalcogenide WSe2

[71] and predicted to exist in a MoS2/WS2 heterostructure
[72]. In addition, recent studies show the possibility of ex-
perimental realization of the chiral phonons in more complex
systems like BiB3O6 [73]. Recent studies considered various
mechanisms that allow for phonons to gain angular momen-
tum, e.g., laser pumping [74], magnetic field [75], temperature
gradients [76], and electric fields [77,78]. Thereby, the chiral
phonons can exhibit magnetic moments [75,79–81], which
can play a role in the manipulation of phonons through ex-
ternal magnetic field.

Motivation. Several groups of 3D crystals can combine into
two different types of 2D topological lattices. One such ex-
ample is the structure of CoSn-like compounds [cf. Fig. 1(a)],
formed by d-block element (like Fe, Co, Ni, Rh, or Pt) and
p-block element (like Ge, In, Sn, Tl, or Pb). These compounds
crystallize within the P6/mmm symmetry—the d-block ele-
ments form a kagome sublattice, while the p-block elements
have two nonequivalent positions: one position in the plane of
the kagome lattice, and the second intercalated between two
kagome-lattice planes [marked in Fig. 1 as Sn(1) and Sn(2),
respectively]. Atoms in an Sn(2)-type position form the hon-
eycomb sublattice [atoms marked by cross in Fig. 1(b)]. This
complex structure arises due to the existence of the kagome
lattice and allows for a realization of topological nearly flat
band in electronic band structure [82,83].

In our study we investigate the following compounds:
CoSn, CoGe, FeSn, FeGe, NiIn, RhPb, and PtTl. These ma-
terials permit a systematic study of the impact of various
parameters, e.g., atomic mass ratio or magnetic order on the

chiral phonons in real 3D systems. Note that the application
of an external uniaxial pressure on the system can mimic the
effective magnetic field or the spin-orbit couplinglike effects
acting on phonons. Furthermore, we found that two of the
investigated compounds (i.e., CoGe and RhPb) cannot exist in
the P6/mmm structure. Instead they exhibit P6̄2m symmetry,
which was not reported previously in literature. Our results
suggests a possible emergence of chiral phonon also in these
structures. Summarizing, we systematically study and discuss
the origin of the chiral phonons in a large class of real 3D
systems.

The paper is organized as follows. Details of the ab initio
calculations are presented in Sec II. Next, in Sec. III we
discuss the numerical results. Possible experimental conse-
quences of the realization of chiral phonons are discussed in
Sec. IV. Finally, a summary is included in Sec. V.

II. THEORETICAL BACKGROUND

A. Numerical calculation details

The first-principles density functional theory (DFT) cal-
culations are performed using the projector augmented-wave
(PAW) potentials [84] implemented in the Vienna ab initio
simulation package (VASP) code [85–87]. The calculations
are made within generalized gradient approximation (GGA)
in the Perdew, Burke, and Ernzerhof (PBE) parametrization
[88]. The energy cutoff for the plane-wave expansion was
set to 350 eV. The calculations carried out without and with
spin polarization in a system with different spin configurations
allow us to determine the magnetic ground state. Optimiza-
tions of the structural parameters (lattice constants and atomic
positions) for nonmagnetic and ferromagnetic (FM) order are
performed in the primitive unit cell using 10 × 10 × 6 k-point
grid in the Monkhorst-Pack scheme [89]. For the antifer-
romagnetic (AFM) structure the doubled unit cell and the
reduced k-point grid (10 × 10 × 3) was used. As a conver-
gence condition of the optimization loop, we take the energy
difference of 10−5 and 10−7 eV for ionic and electronic de-
grees of freedom.

The interatomic force constants (IFC) are calculated with
ALAMODE software [90], using the 2 × 2 × 2 supercell with
48 atoms. Calculations are performed for the thermal distri-
bution of multidisplacement of atoms at T = 50 K, generated
within HECSS procedure [91]. The energy and the Hellmann-
Feynman forces acting on all atoms are calculated with VASP

for 100 different configurations of atomic displacements in
the supercell. In dynamical properties calculations we include
first- and second-order phonon contributions, which corre-
spond to harmonic and cubic IFC, respectively.

B. Dynamical matrix and polarization vector

The lattice dynamics of the system can be studied using the
dynamical matrix:

D j j′
αβ

(q) ≡ 1√
mjmj′

∑

n

�αβ ( j0, j′n) exp (iq · R j′n), (1)

where q is the phonon wave vector and mj denotes the mass
of jth atom. Here �αβ ( j0, j′n) is the IFC tensor (α and β

denotes the direction index, i.e., x, y, and z) between jth and
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j′th atoms located in the initial (0) and nth primitive unit cell.
The phonon spectrum for a given wave vector q is specified
by the eigenproblem of the dynamical matrix (1), i.e.,

ω2
εqeεqα j =

∑

j′β

D j j′
αβ

(q)eεqβ j′ . (2)

Here the ε branch describes the phonon with ωεq frequency
and polarization vector eεqα j . Each α j component of the po-
larization vector denotes displacement of the jth atom in the
αth direction.

C. Circular phonon polarization

In practice, the polarization vector eεqα j is related to the
oscillation of each atom caused by the propagation of an ε

phonon with a wave vector q. Oscillations of each jth atom
are described by three components of eεqα j , which refer to
oscillations in each of α ∈ {x, y, z} directions. The circular
polarization occurs when the two orthogonal oscillators are
of equal magnitude and are out of phase by exactly ±π/2. To
study this behavior we performed theoretical analysis of the
polarization vectors, analogically to the previous study [64].

First, we employ Jones vectors 1√
2
(1 ± i)T (denoting

circular polarization in the xy plane), where upper
and lower sign correspond to left-handed polarization
(LHP) and right-handed polarization (RHP), respectively.
From the theoretical point of view, Jones vectors
act on every jth atom, and can be used to intro-
duce a new basis defined as: |R1〉 ≡ 1√

2
(1 i 0 · · · 0)T,

|L1〉 ≡ 1√
2
(1 − i 0 · · · 0)T, |Z1〉 ≡ (0 0 1 · · · 0)T; . . .;

|Rj〉 ≡ 1√
2
(0 · · · 1 i 0 · · · 0)T, |Lj〉 ≡ 1√

2
(0 · · · 1 − i 0 · · · 0)T,

|Zj〉 ≡ (0 · · · 0 0 1 · · · 0)T; . . .; i.e., two in-plane components
of circular oscillation are replaced by the Jones vectors
coefficients, while the third component is unchanged. In this
basis, each polarization vector e ≡ eεqα j , can be represented
as

e =
∑

j

(
αR

j |Rj〉 + αL
j |Lj〉 + αZ

j |Zj〉
)
, (3)

where αV
j = 〈Vj |e〉, for V ∈ {R, L, Z} and j ∈ {1, 2, . . . , N}

(N is a total number of atoms in a primitive unit cell).
Additionally we can define the phonon circular polarization
operator Ŝz

ph along the z direction as

Ŝz
ph ≡

∑

j

Ŝz
j =

∑

j

(|Rj〉〈Rj | − |Lj〉〈Lj |), (4)

where Ŝz
i is the phonon circular polarization operator at site i.

From this, the phonon circular polarization sz
j of the jth atom

can be expressed as

sz
j = h̄e†Ŝz

je = h̄
(∣∣αR

j

∣∣2 − ∣∣αL
j

∣∣2)
. (5)

It corresponds to the phonon angular momentum along the z
direction [62,92]. However, in the general case, we can dis-
cuss the angular momenta along some arbitrary direction. For
sz

j > 0 (sz
j < 0) the phonon mode has RHP (LHP), while for

sz
j = 0 the phonon mode is linearly polarized. Finally, the total

phonon circular polarization sz
ph = ∑

j sz
j denotes polarization

of a whole system.

TABLE I. Comparison of the experimental and theoretical lattice
constants for crystals in P6/mmm symmetry. The results are obtained
in the presence of spin-orbit coupling. � denotes the mass ratio of
components, i.e., the relation of the mass of d-block element with
respect to the mass of p-block element.

Theory Expt. [82]

� (–) a (Å) c (Å) a (Å) c (Å)

P6/mmm (SG: 191)
CoSn 0.50 5.289 4.224 5.2693 4.2431
CoGea 0.81 4.987 3.876 – –
FeSnb 0.47 5.285 4.456 5.2765 4.4443
FeGec 0.77 4.963 4.063 4.9852 4.0482
NiIn 0.51 5.280 4.377 5.2296 4.3390
RhPba 0.49 5.740 4.487 5.6660 4.4127
PtTl 0.96 5.702 4.797 5.6017 4.6276

P6̄2m (SG: 189)
CoGe 0.81 5.009 3.857 – –
RhPb 0.49 5.770 4.464 – –

aUnstable in P6/mmm structure, cf. discussion in Sec. III.
bAFM order.
cFM order.

III. RESULTS AND DISCUSSION

A. Crystal structure

The CoSn-like compounds typically crystallize in the
hexagonal structure with P6/mmm symmetry (space group:
191). The d-block element is placed at 3 f (1/2, 0, 0) Wyckoff
position, while the p-block atoms occupy two nonequivalent
1a (0, 0, 0) and 2d (1/3, 2/3, 1/2) Wyckoff positions.

Lattice parameters of the optimized ground-state structures
are summarized in Table I. As shown, they remain in close
agreement with the available experimental data. Two of the
seven studied compounds have been previously reported to be
magnetically ordered. The magnetic moments on Fe atoms are
aligned ferromagnetically in FeGe [93,94], while in FeSn the
AFM order is observed [95]. In AFM structure the spins are
arranged ferromagnetically in each FeSn layer and antiferro-
magnetically ordered in neighboring layers.

For all compounds with the P6/mmm symmetry,
the phonon dispersion relations are calculated and
presented in Fig. 2. The irreducible representations
at the 	 point are: A2u + E1u for acoustic modes, and
2A2u + B1g + B1u + B2u + E2u + E2g + 3E1u for optic modes.
The phonon dispersions are discussed in details in Sec. III B,
but here we would like to point out that two crystals, CoGe and
RhPb, are not stable in the P6/mmm structure because their
phonon spectra exhibit imaginary frequencies. From analysis
of the soft mode with the lowest frequency (at the 	 point),
we found a stable structure for these two compounds, i.e.,
the P6̄2m hexagonal symmetry (space group 189), for details
see Sec. III C. For both materials, the lattice constants of a
new structure remain almost unchanged (Table I), however,
the d-block element is slightly shifted from the original
high-symmetry site (0.5, 0, 0) in the P6/mmm structure to
new 3 f positions of a P6̄2m space group, (0.4665, 0, 0) or
(0.4669, 0, 0) for Co or Rh, respectively.
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FIG. 2. (a)–(g) The phonon dispersions for the studied compounds (as labeled), along the high symmetry points of the first Brillouin zone,
presented in (h), of the P6/mmm structure. The color and width of line correspond to the phonon angular momentum of the p-block element in
sublattice A of the honeycomb net (cf. Fig. 3). Atoms in sublattice B are described by the phonon angular momentum with the opposite value.
Red labels denotes the compounds unstable in the P6/mmm structure.
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FIG. 3. The phonons angular momentum in two nonequivalent
sites of the honeycomb net for the P6/mmm structure. The p-block
elements located on sites A and B of the honeycomb net have the
opposite phonon angular momenta.

B. Chiral phonons in P6/mmm symmetry

The phonon dispersion relations of the studied compounds
are presented in Fig. 2. Each compound exhibits phonon flat
bands, which can be connected with the collective atomic
vibrations in the kagome-sublattice plane [96]. However, the
analysis of the phonon angular momentum (phonon disper-
sion curves distinguished by colors and width of lines in
Fig. 2, shows that these bands are mostly associated with
chiral phonons involving the p-block elements within the hon-
eycomb sublattice (see movies k_mode∗ in the Supplemental
Material (SM) [97]. Two atoms composing this sublattice,
exhibit an opposite phonon angular momentum, which is
schematically presented in Fig. 3. For example, when the atom
located at the A site has sz

A = ±h̄, the atom at the B site has
sz

B = ∓h̄.
Interestingly, chiral modes preserve the time reversal sym-

metry (sz
j, k) → (−sz

j,−k), i.e., for K and K ′ points of the
reciprocal space, since the components of polarization vectors
for each atom correspond to opposite phonon angular mo-
menta as it is depicted on the left panel for K and right panel
for K ′ of Fig. 3. Along the path from K to K ′ point, the phonon
angular momentum changes its value continuously and equals
to zero at point M (i.e., precisely halfway between K and K ′).
Similarly, the phonon angular momentum also vanishes at the
	 point.

As we can see in Fig. 2, the phonon branches with strong
phonon angular momentum (marked by thick lines), are lo-
cated mostly in the mid-frequency range and emerge from the
double-degenerated E1u modes at the 	 point. Moving away
from the 	 point these modes become nondegenerate and lead
to the creation of circularlike rotation of p-block elements
in the honeycomb lattice (this also happens at the 	 point,
however, in this case circular polarization results from the
composition of two double-degenerate E1u or E2g modes.

In the high-frequency range of the spectrum, a small but
nonzero phonon angular momentum is also observed. These
modes correspond to oscillations in the kagome layer, which
also indirectly affect the honeycomb sublattice. Some exam-
ples of atom trajectories generated by the selected modes
are shown in Fig. 4. When the phonon angular momentum
is relatively large (approximately equal to a nominal value
±h̄), the p-block atoms realize a full circular movement with
a small contribution from atoms in the kagome layer [e.g.,
Fig. 4(a)]. On the other hand, a small value of the angular mo-

FIG. 4. Examples of trajectories (solid lines) of the CoSn atoms
(for P6/mmm symmetry), generated by selected modes at the K
point (as labeled). The dashed yellow rhombus represents the unit
cell, while equilibrium position of atoms are marked by dots in (a).
The black arrows indicate the Sn atoms belonging to the honeycomb
lattice and show its chiral vibrations. Red and blue circles correspond
to the chiral modes with left-handed and right-handed polarization,
respectively.

mentum (much smaller than the nominal value), corresponds
to a small circular [e.g., Fig. 4(b)] or ellipticlike oscillations,
and also affects d-block atoms (realizing linear oscillation).
Movies visualizing the presented trajectories are included in
the SM [97].

The chiral phonons are not observed in the kagome layer
of the d-block atoms. In fact, this layer is composed of
the kagome sublattice and one p-block atom forming to-
gether a two-dimensional triangular lattice of atoms with
nonequal masses. Nevertheless, the p-block atoms within the
honeycomb net can form a circular movement with rela-
tively “small” nonzero phonon angular momentum, even if
the modes propagate within the kagome layer. These fea-
tures are clearly visible in the case of high-frequency modes

054305-5



ANDRZEJ PTOK et al. PHYSICAL REVIEW B 104, 054305 (2021)

propagating with wave vectors H or H ′ (see Fig. 2). In such a
case, the observed modes involve mostly vibration of d-block
atoms with a small contribution of p-block atoms vibration.

Phonon dispersion relations exhibit also nodal lines (de-
generate along the K-H and K ′-H ′ paths), permitted by the C3v

symmetry element of the discussed space group [98]. Some of
these nodal lines are composed of degenerate branches with
strong phonon angular momentum (characteristic blue or red
X-cut of two branches at K or K ′ point). This suggests the
possibility for the realization of a phonon ballistic transport in
certain situations.

The chiral modes appear in each studied system, but their
frequencies depend strongly on the atomic composition of the
compound. To describe the interplay between the modes with
nonzero chirality and other vibrations, the phonon density
of states (DOS) and the atom-projected partial DOS spectra,
shown in Fig. 5, should be discussed together with the phonon
dispersion relations (Fig. 2). The contributions of the vibra-
tions of p-block and d-block atoms to the total DOS are mainly
related to the mass ratio between atoms (cf. Table I).

In the case of systems with a large mass difference, these
partial DOSs are well separated, as it is seen for CoSn, FeSn,
NiIn, and RhPb, where the phonon modes of p-block (d-block)
atoms are located at the lower (higher) frequencies. In the
case of nearly equal masses (e.g., PtTl), phonons cover the
same frequency regions. The chiral modes contribute to the
partial DOS of the p-block atoms in the honeycomb sub-
lattice (marked in blue). These modes can be derived from
local minima and maxima of phonon dispersion relations at
the high symmetry points (mostly at K , K ′, and M or re-
lated H , H ′, and L; see Fig. 2), and are connected to the
chiral modes propagating along the c direction. In the low
frequency range, comprising the lowest chiral mode branch,
small peaks in DOS corresponding to the chiral modes are
observed. However, they are not dominating components of
DOS. The main contribution of chiral modes is observed in
the mid-frequency range, where several peaks related to the
Van Hove singularities are located. In this part, the vibrations
of atoms in a honeycomb sublattice dominate, however they
are often mixed with the vibrations of other atoms. The flat
bands (between K-K ′ or H-H ′ points) are also reflected in the
DOS in the form of clearly visible peaks. A good example
is the low-energy flat band corresponding to the vibrations of
p-block atoms in the kagome plane. For instance, the distinct
peak about 1.75 THz in Fig. 5(e).

Unlike the ab plane, the phonon branches preserve chirality
along the c direction (which corresponds to the unchanged
color of the line between K and H points in Fig. 2). Each
wave vector along this path corresponds to the propagation of
a chiral mode along the c direction—due to the conservation
of angular momentum rule [99], the mode should be “topo-
logically” protected. If the sample thickness will be smaller
than the phonon scattering length but larger than the electron
scattering length, the chirality information should not be lost
during the propagation [100]. In this sense, the chiral modes
represent a key step toward utilizing chiral phonons in quan-
tum devices [43].

Now we shortly discuss the origin of the chiral phonons
in a general case, and in the context of their microscopic

FIG. 5. The total and partial phonon density of states (PDOS) for
the studied compounds (as labeled) of the P6/mmm structure. The
filled gray area corresponds to the total DOS, while red, green, and
blue lines denote the partial DOS for d-block element (kagome sub-
lattice), p-block element in kagome plane [position Sn(1) in Fig. 1],
and p-block elements in the honeycomb sublattice [position Sn(2) in
Fig. 1], respectively.
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FIG. 6. Phonon dispersions of CoGe and RhPb in the stable P6̄2m structure. Panels from top to bottom represent the phonon angular
momentum of the p-block element in the A sublattice of the honeycomb net (cf. Fig. 3), and the d-block atoms in position I and III [see inset
in (e) presenting the position of the d-block atoms in distorted-kagome lattice]. At bottom panels, the widths of lines are magnified 10 times.
Meaning of colors and width of lines is the same as in Fig. 2.

sources [101]. Let us start from the discussion of a general
case. The lattice dynamics of a system depends on the IFC
matrix (including first- and high-order phonon contributions).
In the case of a system with the inversion symmetry, the
first-order IFC are highly symmetric. Similarly, when the
inversion symmetry is broken, then this breaking will affect
the first-order IFC matrix. In this situation, some components
of IFC are nonequal under mirror symmetry due to different
neighborhoods of certain lattice sites. As a result, the phonon
modes will have angular momentum at a nonsymmetric point
in the Brillouin zone (e.g., such a situation was observed in
dichalcogenides [71,72]). Moreover, the higher-order IFC can
play a role in the realization of chiral phonons, especially in
system with the broken time reversal (e.g., iron, cobalt, or
nickel [102]).

In the case of CoSn-like compounds, the atoms are located
at the high symmetry points, which implies inversion sym-

metry. In fact, the source of the chiral phonons is “coded” in
the first-order IFC preserved by a threefold axis (along the z
direction) of the honeycomb sublattice, while the total phonon
angular momentum of the system is equal to zero [101]. Note
that in magnetic compounds like FeSn and FeGe, the time
reversal symmetry can be broken by the magnetic moment of
iron. However, the chiral modes are not realized in the layer
with d elements, due to the triangular lattice.

C. CoGe and RhPb in P6̄2m symmetry

Our analysis of the systems with the P6/mmm symmetry
revealed the soft modes in the phonon dispersion relations
of CoGe and RhPb [cf. Figs. 2(b) and 2(g), respectively].
Thus, both structures are unstable and can be transformed
to a distorted structure due to the condensation of the soft
phonon mode. It means that using the displacement pattern
attributed to the polarization vectors of this mode, the stable
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FIG. 7. Examples of trajectories (solid lines) of the CoGe atoms
(for P6̄2m symmetry), generated by chosen modes at the K/3 point
(as labeled). The dashed yellow rhombus represents the unit cell,
while positions of atoms are the same as in Fig. 4. Here the gray
dashed circles in (a) correspond to positions of sites in the ideal
kagome lattice. The meaning of the colored lines is the same as in
Fig. 4.

lower-symmetry configurations can be found. For CoGe and
RhPb, the lowest frequency soft modes at the 	 point with
B1u symmetry consist of specific displacements of d elements
only.

In practice, the triangles constructing the kagome net in
P6/mmm crystals rotate approximately by 6◦ in opposite
directions (see movie gamma_mode4 in the SM [97]). This
soft-mode-induced modification stabilizes both systems in the
P6̄2m symmetry. In fact, in the case of RhPb, the lattice con-
stants for the P6/mmm and P6̄2m symmetries are comparable
(cf. Table I), and in both cases they reproduce relatively well
the experimental values [82].

Independently of the positions of d elements in the P6̄2m
structure, the honeycomb net of p element remains unchanged
and still exhibits the chiral phonons (top panels in Fig. 6).
The main properties of the chiral phonon branches are similar
to those observed in systems with the P6/mmm symmetry
[cf. Figs. 2(b) and 2(g)]. However, as a consequence of the
kagome lattice distortion [see the inset in Fig. 6(e)], the in-
version symmetry of the system is lost. As we discussed in
Sec. III B, in such a case the chiral phonons can be expected
also in this kagomelike sublattice. Indeed, the analysis of
the phonon angular momentum for d-element atoms clearly
reveals the existence of the chiral modes also in the distorted-
kagome lattice. Interestingly, the chiral modes in this layer are
realized only by d-element atoms, while one p-element atom
shows the ordinary linear movement.

In addition, the d-element atoms move and form an el-
lipsoidal pattern (see Fig. 7) giving the phonon angular
momentum smaller than the nominal. What is also interesting,
the atoms at sites I and II have an antisymmetric position with
respect to the p-element atom in the corner of the unit cell
[rhombus in the inset of Fig. 6(e)]. As a consequence, similar
to the honeycomb sublattice, the atoms in these positions
have opposite phonon angular momenta. Also, the atom at
position III exhibits in some branches the nonzero angular
momentum (bottom panels in Fig. 6). Nevertheless, the total
angular momentum of the distorted kagome lattice is equal to
zero.

FIG. 8. Phonon dispersions of CoSn under uniaxial strain along
the ŷ and x̂ direction, presented in (a) and (c), or (b) and (d), respec-
tively. The meaning of colors and width of lines are the same as in
Fig. 2.

D. Influence of uniaxial stress

We also examined the effect of the uniaxial stress applied
along x̂ and ŷ directions (Fig. 8). Independently of the stress
direction, the system symmetry changes from P6/mmm to
Cmmm [mostly due to the modification of the angle between
lattice vectors a and b—cf. Figs. 8(c) and 8(d)]. The first
observed consequence is the modification of the degeneracy
at the 	 point. Second, the crossing of the phonon branches is
shifted from the BZ surface or a high symmetry point to the
interior of the BZ. What is more, the initially flat bands change
their curvature. Notably, the main features associated with the
chiral phonons survive unchanged [cf. Figs. 2(a) and 8].

Effects induced by the uniaxial stress are similar to those
resulting from the magnetic field and spin-orbit coupling mod-
ifying the electronic band structure. In the former case, points
which were initially degenerate at the 	 point become decou-
pled. A similar effect was observed in the case of acoustic
waves [103]. Lifting of the degeneracy leads to the emergence
of the chiral phonons at k points close to the 	 point and
can be useful for potential experimental detection, e.g., by
circularly polarized Raman scattering [104] (cf. Sec. IV). In
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addition, the mixing of the branches around K and K ′ is
observed, which should correspond to the changes induced
by the finite spin-orbit coupling, in analogy to the electronic
systems.

IV. PROPOSED EXPERIMENTAL DETECTION

As we mentioned above, the chiral phonons in the case of
P6/mmm crystals are realized mostly within the honeycomb
sublattice and are composed of p-element atoms in 2d Wyck-
off position. For these positions, we can find two infrared
(IR) active modes A2u and E1u as well as one Raman active
mode E2g. Consequently, chiral modes could be measured in a
relatively simple way by IR or Raman spectroscopy. The real-
ization of chiral phonons at k points in the close neighborhood
of the 	 point under uniaxial pressure allows for performing
the mentioned experiments. The circularly polarized Raman
scattering of the real system can give some information about
the chiral phonon frequencies at the 	 point.

The interaction with electromagnetic waves provides
additional opportunities in experimental studies: A phonon
with nonzero angular momentum can be created by emission
or absorption of a photon with a given circular polarization
[64,100]. During this process, the intervalley electron
scattering at valley centers involving a valley center phonon
is expected [71]. However, to improve the description of these
processes, a study of the valley structure in electronic bands
is needed, which is beyond the scope of this paper. We remark
that in this type of studies, the circularly polarized Raman
spectroscopy can be employed—this allows for the helically
resolved spectroscopy and to study modes with different
types of chirality. Indeed, these types of measurements have
been successfully used for observation of the chiral phonon
modes in a monolayer of the transition metal dichalcogenide
WSe2 [105].

Recent theoretical analyses suggest the phononic-to-
electronic conversion of angular momentum [106,107]. For
example, the phonon angular momentum of the surface acous-
tic wave can control the magnetization of a FM layer, as
shown in the case of Ni film in the Ni/LiNbO3 hybrid device
[108]. Similarly, the external magnetic field can lead to the de-
coupling of the frequencies of the initially degenerate modes
[109]. Moreover, more recent studies suggest the existence of
this behavior in magnetic systems concerning chiral phonons
[110]. In such a way, the modification of the phonon spectra at
the 	 point under external magnetic field should be observed.
Equivalently, the uniaxial pressure can be applied resulting in
a similar effect (as discussed in Sec. III D).

The appearance of a nonzero phonon angular momentum
in the honeycomb sublattice of CoSn-like compounds, can be
interesting also from the experimental point of view. Similarly
to the electronic systems [111], in a properly prepared sample

(in slab form), phononic angular momentum Hall effect could
be realized [112] (in analogy to the integer quantum Hall
effect). Congenial effect was predicted for the photonic chiral
edge state propagating along a surface [113]. Excitation of
the edge mode with well-defined chirality can be induced by
photons with the same circular polarization [114]. This effect
could be measured as the occurrence of such edge modes
should lead to the modification of the transport properties of
such systems [12].

V. SUMMARY

Our study confirms that the ideal honeycomb [64] and
kagome [68] lattices allow for the realization of chiral
phonons (with nonzero angular momentum). Typically, the
chiral phonons are observed in two-dimensional materials
[61] and might serve as an interesting extension of the
quantum devices based on phonons [43]. In this paper we
discussed the realization of chiral phonons in the CoSn-like
compounds—layered systems build by decorated kagome and
honeycomb lattices. We demonstrated that the realization of
an ideal honeycomb lattice by the p-block elements allows for
the emergence of chiral phonons within this sublattice. In our
study of CoSn-like compounds, based on the first-principles
method, we showed that the properties of the chiral phonons
do not depend on the mass ratio of constituent elements or on
their intrinsic magnetic order.

Typically, CoSn-like compounds crystallize in the
P6/mmm structure. However, in two of the discussed com-
pounds, i.e., in CoGe and RhPb, soft modes were revealed. We
found that these soft modes lead to the stable P6̄2m structure.
In this case, the absence of the inversion symmetry allows
for the realization of the chiral modes also by the d-block
atoms within the distorted-kagome sublattice. We remark
that the symmetry of the system can be also changed by a
uniaxial strain. The strain effect can mimic the magnetic field
or spin-orbit coupling acting on phonons. Regardless of the
modification of the symmetry, the main character of the chiral
phonons remains unchanged. Additionally, we proposed
an experimental method for the confirmation of the chiral
phonons described here and found in CoSn-like compounds.
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