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Dephasing-induced growth of discrete time-crystalline order in spin networks
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A discrete time crystal (DTC) is a quantum phase of matter related to the symmetries of a periodically driven
system. It can appear when the initial state breaks these symmetries, and hence the observation of DTCs is
intimately related to the symmetry of the initial state. In this paper, we investigate a nontrivial situation in which
two interacting regions are simultaneously prepared in two initial states that preserve and break this symmetry.
Specifically, we discuss the behavior of such a system under the influence of an environment by extending
Floquet theory to the Liouvillian dynamics. Our analysis shows that the entire system evolves toward a DTC
phase and is stabilized by the effect of dephasing. Our results provide a new understanding of quantum phases
emerging from the competition between the coherent and incoherent dynamics in dissipative nonequilibrium
quantum systems.
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I. INTRODUCTION

Understanding phases of matter and realizing transi-
tions between them have been a central theme in quantum
many-body physics [1–3]. Quantum phases of matter are a
macroscopic property, which reflects the underlying micro-
scopic structure of the system [4]. In closed quantum systems,
for example, this microscopic structure is described in terms
of the Hamiltonian, whose properties and symmetries deter-
mine the quantum phases that the system could exhibit [2].
As the phases of matter are intimately related to symmetries
of the system, they can be quite rich, ranging from ferromag-
netism to superconductivity [4].

A discrete time crystal (DTC) is a quantum phase of
matter related to the symmetries of a periodically driven sys-
tem; it appears when the discrete time-translational symmetry
(DTTS) of the Hamiltonian is broken [5–30]. In nonequi-
librium systems, the symmetry breaking can be caused by
parameter changes in the Hamiltonian or by preparing par-
ticular initial states that break the symmetries of the system
[5,6,31]. As quantum phases and the system symmetries are
closely related, it is known that when a system is coupled
to an external environment, some of its symmetries can be
broken and the phases of matter associated with them do not
survive. One example of this is a Mott insulator at unit filling
coupled to a zero-temperature bath [32]. In this situation, the
coupling to the bath breaks the conservation of particles and
the Mott insulator phase is destroyed. When a system is cou-
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pled to a Markovian environment, quantum phases of matter
can be well defined in terms of symmetries of the Liouvillian
[33,34].

Similarly, the stability of the DTC under coupling to an
external environment has been investigated [19,22,35–37]. It
is reported that DTCs can survive a relatively long time in
these realistic settings, and recently, a DTC phase in a dissipa-
tive atom-cavity system has been theoretically predicted [38]
and has been experimentally realized using a Bose Einstein
condensate within a cavity [39]. The concept of DTCs has
been extended to open systems by applying the Floquet theory
to the Liouvillian dynamics, and even with the presence noise,
a subharmonic response in the thermodynamic limit can be
observed [22,36,37].

In this paper, we explore the competition between the local
symmetries of the initial state and the global symmetries of the
Liouvillian operator, and we investigate the dynamics of the
system before it reaches the steady state. Global symmetries
of the Liouvillian allow us to define conserved quantities,
which in turn determine properties of the steady state [33].
However, not all the symmetries of the closed system are
available when we couple the system to an environment [34].
If we prepare an initial state breaking a symmetry of the
Hamiltonian, as well as the symmetry of the Liouvillian, the
quantum phase could survive at the steady state under certain
circumstances [40]. Here we explore a situation where two
different phases of matter with different symmetries are ini-
tially prepared in well-defined regions of space. One region
of the system is in a state that locally breaks a symmetry of
the Liouvillian, while the other region preserves it. In this
situation, it is not clear what happens to these phases dur-
ing the time evolution before the system reaches its steady
state.
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To investigate this more closely, we independently pre-
pare an initial state to give a DTC phase or a non-DTC
phase for each well-defined region of space, as shown in
Fig. 1(a) with the DTC region (blue) and non-DTC re-
gion (green). These two phases are accommodated in a spin
network shown in Fig. 1(b). Then, we evaluate the transfor-
mation of these quantum phases in time through a dissipative

process. In the next section, we start with defining our
system.

II. MODEL

We consider a periodically driven N-site spin network gov-
erned by the Hamiltonian,

Ĥ (t ) =
{

Ĥ1 = h̄g(1 − ε)
∑

l σ x
l , 0 � t < T1,

Ĥ2 = h̄
∑

lm Jxy
lm

(
σ x

l σ x
m + σ

y
l σ

y
m
) + h̄

∑
l W z

l σ z
l , T1 � t < T,

(1)

where T = T1 + T2 is the period and σμ (μ ∈ x, y, z) are the
Pauli operators acting on the lth site. Further we set T1 = T2 =
T/2 with 2gT1 = π . Next, ε is a rotational error parameter,
which indicates the deviation of the Hamiltonian from the
perfect DTC case. Wl denotes the on-site energy at the lth site
and is given by a uniform random distribution W z

l ∈ [0,W ]
with disorder strength W . Unless explicitly stated, ε and W
are set to zero in this paper. This N-site spin system can
be considered as a network, the sites being its nodes and
the coupling Jxy

lm between the sites l and m being the edges
of the network. Crucially, in the absence of error (ε = 0),
the evolution operator Û (t ) associated with Eq. (1) preserves
the total number of excitations N̂ = ∑

l (σ
z
l + 1)/2 at even

periods, that is, [Û (2nT ), N̂] = 0. The consequence of this
symmetry is that the dynamics will preserve the number of
excitations of the initial state at stroboscopic times. The phys-
ical origin of this stroboscopic conserved quantity is clearer if
we examine the effective Hamiltonian Ĥ eff

2T after two periods
of the drive in the absence of disorder W T/2π = 0 and for
ε = 0. The effective Hamiltonian is defined in terms of the
unitary operator after two periods Û (2T ) = exp (−2iĤ eff

2T T ),
giving

Ĥ eff
2T,W =0 = h̄

2

∑
lm

Jxy
lm

(
σ x

l σ x
m + σ

y
l σ y

m

)
. (2)

Here the factor 1/2 in the second term comes from a factor
T2/T . Here, the above Hamiltonian is invariant under the
global U (1) symmetry, which leads to the preservation of the
total number of excitations. In particular, this Hamiltonian has
a Z2-Ising symmetry (the invariant under the transformation
σ

y
l �→ −σ

y
l and σ z

l �→ −σ z
l ), and thus the order parameter

of the DTC is the local magnetization 〈σ z
l (nT )〉 at periodic

times (t = nT ) [6]. When the initial state breaks the Z2-Ising
symmetry, the magnetization oscillates with a 2T -periodicity,
while preserving the total number of excitations [41].

A. Lindblad equation

In this paper, we assume that our spin network is weakly
coupled to a Markovian environment [42]. In many of solid-
state quantum systems, dephasing is the dominant dissipative
factor and we consider the Hamiltonian (1) with dephasing.
The dynamics of the system is given by the Lindblad equation
[43–46]

∂

∂t
ρ̂(t ) = L̂t [ρ̂(t )], (3)

where ρ̂ is the density matrix of the spin network and L̂t the
Liouvillian operator. The action of L̂t on the reduced density
matrix of the system ρ̂(t ) is given by

L̂t [ρ̂(t )] = − i

h̄
[Ĥ (t ), ρ̂(t )] + γ

∑
l

[
σ z

l ρ̂(t )σ z
l − ρ̂(t )

]
,

(4)

where γ is the dephasing rate. As the Hamiltonian is periodic
in time Ĥ (t ) = Ĥ (t + T ), the Liouvillian operator exhibits
the same periodicity such that L̂t = L̂t+T [45,47]. In our
model, we assume that during the spin rotation given by
Ĥ1, the dephasing effect can be neglected [6,22], because
in many experiments the pulse can be applied in short time
which is much smaller than the timescale of the dephasing
[28,29,39,48–50].

FIG. 1. (a) Schematic illustration showing the concept of the
transformation of two quantum phases in time. The left panel shows
the initial state with two distinctive quantum phases in a spin net-
work. In the region A (blue), the initial state breaks the discrete
time translational symmetry, and the initial state in the region B
(green) does not break the symmetry. (b) Diagram of our system
for a spin network of N = 6 sites. Here, the red lines represent the
the long-range interaction Jxy

lm between sites, and the dashed line
means diagonal disorder Wl at the site. The geometrical arrangement
of spins is one-dimensional, but they have long-range interactions
determining the connectivity of the spin network. We label spins to
form the region A with the sites l = 0, 1, 2, the region B with the
sites l = 3, 4, 5.

054304-2



DEPHASING-INDUCED GROWTH OF DISCRETE … PHYSICAL REVIEW B 104, 054304 (2021)

The Liouvillian in Eq. (3) is the generator of a completely
positive map that preserves the trace of the density matrix,
and it is also a map between the vector space of the linear
operators. To analyze the properties of this map, we apply the
superoperator formalism [46,51]. The density matrix ρ̂ is then
written as a vector |ρ̂〉〉 = ρlm|l〉 ⊗ |m〉 in an extended Hilbert
space H ⊗H , where |l〉 and |m〉 are the basis states of the
Hilbert space H and ρlm = 〈l|ρ̂|m〉. In this extended Hilbert
space, the inner product of two operators Â and B̂ is defined
as 〈〈Â|B̂〉〉 = Tr(Â†B̂).

Now, the Lindblad equation (3) can be written as a linear
system of coupled ordinary differential equations [46]

∂

∂t
|ρ̂(t )〉〉 = ˆ̂Lt |ρ̂(t )〉〉. (5)

In this formalism, the Liouvillian superoperator ˆ̂Lt is given by

ˆ̂Lt = − i

h̄
(Ĥ ⊗ IN − IN ⊗ Ĥ ) + γ

∑
l

(
σ z

l ⊗ σ z
l − IN ⊗ IN

)
,

(6)
with IN being the 2N × 2N -dimensional identity operator.

B. Floquet theory

As a DTC is a phase of matter that can be defined in period-
ically driven systems, the Floquet theory is a convenient and
versatile tool to represent and analyze its dynamics. Floquet
theory is related to the study of linear systems of coupled
differential equations with time-periodic coefficients and it
can be naturally used to investigate the dynamics governed
by Eq. (5) because ˆ̂Lt = ˆ̂Lt+T . The evolution at stroboscopic

times tn = nT is given by |ρ̂(nT )〉〉 = ˆ̂�n
T |ρ̂(0)〉〉 with the

dynamical map ˆ̂�T [45,47],

ˆ̂�T = T̂← e
∫ T

0
ˆ̂Lτ dτ = e

ˆ̂Leff
T T , (7)

where T̂← is the time-ordering operator (right to left). The
dynamics at stroboscopic times tn = nT are governed by

the effective Liouvillian superoperator ˆ̂Leff
T = ln ˆ̂�T /T . In the

absence of error (ε = 0), the dynamical map preserves some
symmetries of the closed system. For example, it preserves the
total number of excitations every two periods in such a way

that [ ˆ̂�2n
T ,

ˆ̂N] = 0, where ˆ̂N is the superoperator associated
with N̂ . This symmetry allows us to decompose even powers
of the dynamical map in blocks with a different number of
excitations. The choice of the initial state determines the total
number of excitations of the system and how many symmetry
multiplets are relevant for the dynamics. This in turn deter-
mines the properties of the steady state. It is instructive to
investigate the origin of the aforementioned conserved quan-
tity. With this aim, let us consider the system in the absence
of disorder and error. In this case, we can explicitly ob-

tain the effective Liouvillian operator associated with ˆ̂�2
T , as

follows:

ˆ̂Leff
2T = − i

h̄

(
Ĥ eff

2T ⊗ IN − IN ⊗ Ĥ eff
2T

)
+ γ

2

∑
l

(σ z
l ⊗ σ z

l − IN ⊗ IN ). (8)

Here the factor 1/2 in the second term comes from a factor
T2/T . Due to the nature of the dephasing and the conserva-
tion rules of the effective Hamiltonian Ĥ eff

2T , it is clear that
the dissipative process also preserves the total number of
excitations N̂ .

III. RESULTS

We use the model defined in the previous section to nu-
merically analyze dynamics of the phases initially prepared
in two domains of the system and to investigate its dynam-
ics. First, we fix the spin network properties by setting the
coupling strength. We set each coupling strength between
two spins as Jxy

lm = J0/|l − m|α where the indexes l and m
denotes the sites. J0 and α denote the strength and range of
the spin-spin interaction, respectively. In the limiting cases
α = 0 and α = ∞, the connectivity of the network is all-to-all
and the nearest neighbor only, respectively. In this paper, we
choose α = 1.51, which is an experimentally used value in
trapped ions [29], and for such scenario the spin system holds
long-range interactions across the entire network.

At the initial time, we specify two regions in the network
as shown in Fig. 1. As we have six spins in the system
(N = 6), we can assign three spins to each region as shown in
Fig. 1(b). The two regions are referred to as regions A (sites
0–2) and region B (sites 3–5), and we assume these regions
can be prepared in different initial states independently. If
both regions A and B are initially prepared in the same state,
the total system would globally exhibit a quantum phase.
For example, if the initial state globally breaks the discrete
time-translational symmetry, the total system would be in the
DTC phase. Contrary to this, we prepare the region A in the
DTC phase that breaks the discrete translational symmetry in
time, while region B is prepared in another phase of matter.

A. DTC growth and effect of the dephasing

We prepare the initial state |111〉 for region A to break the
DTTS, where |1〉l is the eigenstate of the σ z

l at the lth site.
Next, a natural choice of the initial state for the region B is
a state preserving the DTTS. In this way, the system clearly
exhibit two different phases in well-defined regions of the
network. The aforementioned state for the region B is chosen
to be |+ + +〉; hence the total initial state would be |ψ (0)〉 =
|111〉A ⊗ |+ + +〉B, where |+〉l = (|0〉l + |1〉l )/

√
2. As the

dynamics preserves the total number of excitations, the evo-
lution of this initial state is restricted to subspaces with 3,4,5,
and 6 excitations. To investigate the dynamics of the DTC,
we calculate the local magnetizations 〈σ z

l (nT )〉 at the stro-
boscopic times t = nT for different dephasing rates γ T =
0, 0.012, 0.02.

In Fig. 2(a), we show the stroboscopic dynamics of
the local magnetization 〈σ z

l (nT )〉. The spin-spin interaction
strength Jxy

lm in the second Hamiltonian Eq. (1) allows the
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FIG. 2. Stroboscopic dynamics of the local magnetization 〈σ z
l (nT )〉 and the negativity NB(nT ) for DTC growth in the different dephasing

rates γ T = 0, 0.012, 0.02 are shown in (a) and (b), respectively. Here, we have chosen J0T/2π = 0.2 with α = 1.5 and W T/2π = 0.0. We
have used a state |ψ (0)〉 = |111〉A ⊗ | + ++〉B as our initial state.

population transfer between regions A and B. As a conse-
quence, in a short timescale, the 2T -periodic magnetization or
the DTC region initially located within the region A spreads to
the region B. This can be seen for all the dephasing rates. We
refer to this spread of the DTC phase as DTC growth and the
initial state for the region A as the DTC seed. In the absence
of the dephasing, the state remains pure at all times, and at the
boundary of the spin network the population transfer reflects
and causes interference. In this situation, the magnetization
dynamics does not reach a steady state, and we can observe
the oscillation as shown in the left panel of Fig. 2(a). On the
contrary, when the dephasing is present, the state gradually
loses the purity over time. Thus, there is an interplay between
the dissipation process and the coherent dynamics so as to
suppress interference. As a result, the system is stabilized to
the 2T-periodic dynamics spread over the entire system after
a certain time. Looking at the magnetization at each site, the
DTC gradually grows over the entire network, starting from
the DTC seed. Generally, as the dephasing rate increases, the
state loses its purity at a faster rate and reaches the steady
state at shorter timescales. Thus, the number of periods (n)
needed for the dynamics to stabilize decreases with the de-
phasing rate, as we can see by comparing the two left panels
in Fig. 2(a).

Next, to understand the time evolution of the phase growth
from the quantum state perspective, we calculate the negativ-
ity [52] NB = (||ρ̂�B ||1 − 1)/2 for each dephasing rate: γ T =
0, 0.012, 0.02. Here ρ̂�B is the partially transposed density
matrix ρ̂ with respect to subspace B with ||X̂ ||1 = Tr

√
X̂ †X̂

being the trace norm. Now, the negativity can be used as a
measure of entanglement between the two regions A and B
of the total system. The negativity for each dephasing rate is
numerically calculated, and the results are shown in Fig. 2(b).
Initially, the negativity grows over time for all cases. The en-
tanglement between two regions increases via the interaction
across the two regions. When γ T = 0, the negativity saturates
after a certain period with slight fluctuations, though the mag-

netization dynamics would not be stabilized. On the contrary,
if γ T �= 0, the negativity peaks at a certain time and then
begins to decrease to converge to zero due to the dephasing ef-
fect. Even when the system exhibits a DTC, the quantum state
behind it does not necessarily follow the same subharmonic
response. As we observe in all cases, the population trans-
fer, which is a coherent dynamics, generates entanglement
between the two regions. In this model, this process is used to
grow the DTC; however the generated entanglement can be an
obstacle for the entire system to retrieve a robust subharmonic
response. The system with dephasing suppresses the quantum
interference, and hence the entanglement decreases to zero in
time, which contributes to stabilize the subharmonic response
for the entire system.

In the above analysis, we have seen that the quantum
transfer of excitations between the regions is essential for the
quantum phase to be spread to the entire network as well as
to be stabilized by the dephasing. It is however not clear how
these two competing factors contribute to generate a stable
DTC. As the spread of the DTC seems to be related to the
initial preparation of the system which we initially choose in
the pure state |ψ (0)〉 = |111〉A ⊗ | + ++〉B, what would hap-
pen is that region B starts with a mixed state. In that case the
DTC region might not grow. To investigate this, we consider
the case where region B starts from the initially fully mixed
state ρB(0) = IMB/MB at the initial time, where MB = 23 is the
Hilbert space size of region B.

In Fig. 3, we show the results of the dynamics of the local
magnetization and the negativity for the new initial state with
two different dephasing rates γ T = 0 and 0.02. As shown
in Fig. 3(a), despite the initial state in region B being the
completely mixed state, we see that the DTC area grows over
time in the first few periods. The entanglement between the
two regions A and B increases in Fig. 3(b). In the presence
of dephasing, the DTC region spreads over the entire site and
becomes stable, similar to the results in Fig. 2. Additionally, to
investigate the dependence of the initial state on DTC growth,
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FIG. 3. In (a) and (b), we show the results of the local magnetiza-
tion 〈σ z

l (nT )〉 and the negativity NB(nT ) at periodic times t = nT for
a new initial state |φ〉 = |111〉 ⊗ ρ̂B, where ρ̂B = IMB/MB, with the
region B’s Hilbert space size MB = 23, is a completely mixed state in
region B. Here, we have chosen two dephasing rates γ T = 0, 0.02,
and have set up J0T/2π = 0.2 with α = 1.5 and W T/2π = 0.0.

we calculated the dynamics for different sizes of the DTC
seed at the initial time, e.g., |ψ (0)〉 = |1〉 ⊗ | + + + ++〉. It
showed that the growth occurs in the magnetization dynamics
as long as the seed exists in the initial state.

Although the numerical results shown in both Figs. 2 and
3 are limited to the small system size, the essence of these
dynamics could be more general to a system with a larger N .
As the system size increases, the growth of the DTC may
take a longer time with the finite speed of the population
transfer. If the system becomes large enough, the timescale
of the population transfer takes longer than the timescale for
relaxation, and the state may lose its coherence before the
population transfer reaches to the entire system. However,
Fig. 3 shows that the coherence of the state for the region
where the DTC growth takes place is not important for the
DTC growth, and hence it is suggested that the effect of the
finite propagation speed is not a crucial factor.

These results indicate that as long as we prepare a DTC
seed in the initial state, the DTC region can grow via the
interaction. Further, the dephasing in the dynamics plays an
essential role in the DTC growth. We previously assumed
that the rotational error is zero (ε = 0), but we confirm that
even with nonzero ε, the numerical trend does not change; the
dynamics shows DTC growth.

B. The Liouvillian gap and DTC growth timescale

As we have seen in the previous section, the DTC growth is
induced by the interactions and the dephasing, and hence both
the nature of the steady state as well as the spectral properties
of the Liouvillian operator ˆ̂Leff

T are intimately related to the
DTC growth. To understand the DTC growth in more detail,
we investigate the structure of the Liouvillian operator. Since
the effective Liouvillian operator ˆ̂Leff

T is time independent,
using its eigenstates, the density matrix at stroboscopic times

t = nT can be written as

|ρ̂(nT )〉〉 = ( ˆ̂�T )n|ρ̂(0)〉〉 =
∑

l

e�l nT cl (0)
∣∣�R

l

〉〉
. (9)

Here, cl (0) = 〈〈�L
l |ρ̂(0)〉〉, and |�L/R

l 〉〉 are left/right eigen-

vectors of the effective Liouvillian operator ˆ̂Leff
T with the

eigenvalue �l [40]. Here, we introduce an order among
the eigenvalues as Re(�0) > Re(�1) > · · · > Re(�22N ). The
steady state |ρ̂〉〉0 = |ρ̂〉〉ss satisfies

ˆ̂Leff
T |ρ̂〉〉ss = 0, (10)

with the eigenvalue �0 = 0. Thus, the relaxation timescale
τ ∼ 1/� (unit of T ) can be estimated by calculating the
Liouvillian gap [53]

� = −Re(�1), (11)

which is the negative real part of the second largest eigenvalue
�1 of the Liouvillian operator. Now, let us consider the DTC
growth timescale (τDTC) of our model. The timescale of the
DTC growth τDTC should tell us the time for the DTC interfer-
ence to be settled and stabilized; hence there are two steps
in time crystal growth: the propagation of the DTC region
and the DTC stabilization. The timescale of the first step can
be determined by the propagation speed, which is related to
the hopping strength as similar to the excitation transfer. The
timescale of stabilization is related to the dissipation time of
the system. The stabilization takes longer than the dynamical
hopping rates. Thus, we can estimate the time for the DTC
growth from the stabilization timescale; i.e., the Liouvillian
gap is an appropriate measure to estimate τDTC.

Given the 2T-periodicity of the DTC, we use the effective
Liouvillian operator ˆ̂L2T

eff . In general, this operator is given by

ˆ̂Leff
2T = 1

2T
ln

(
T e

∫ 2T
0

ˆ̂Lτ dτ
) = 1

2T
ln

( ˆ̂�2
T

)
, (12)

where we use the periodicity of the Liouvillian operator ˆ̂Lt =
ˆ̂Lt+T to perform the integration. When ε = 0, Eq. (12) and
Eq. (8) give the same dynamical map. Then, the Liouvillian
gap of the DTC growth is the second large eigenvalue of the
Liouvillian operator ˆ̂Leff

2T .
Now, let us look at the eigenvalues of the effective Liouvil-

lian operator for the rightmost case in Fig. 3 as an example.
We show the numerical results in Fig. 4. Because our system
preserves the total magnetization at even periods tn = 2nT ,
we find multiple steady states [54]. Since these steady states
are not necessarily a thermal state, the DTC phase could exist
when the system reaches the steady state. From this figure,
we see that the Liouvillian gap is � = 0.02 (unit of 1/T ),
and the corresponding relaxation time is τ/T ∼ 1/�T = 50.
While we can estimate the DTC growth timescale to be around
the τCG/T = 40 ∼ 60 period from Figs. 3(a) and 3(b), the
estimated timescale obtained by analyzing the Liouvillian gap
explains the time that the the DTC growth process takes.

C. DTC growth vs diagonal disorder

We have previously seen that the DTC growth timescale
in the absence of the diagonal disorder is well estimated by
the Liouvillian gap. In the above case, the Liouvillian gap is
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FIG. 4. 2T-effective Liouvillian operator ˆ̂L2T
eff structure for the

spin network with N = 6: Red dots are complex eigenvalues � of
ˆ̂L2T

eff . The system’s parameters are the same as the rightmost case in
Fig. 2. Because of the conservation of the total magnetization, there
are multiple steady states.

equal to the dephasing rate γ , similarly to the case of a non-
interacting spin chain under the dephasing effect [55]. When
there is strong diagonal disorder, the crystal growth might be
suppressed due to Floquet Anderson localization (FAL) [56].
Here we investigate the timescale of the DTC growth in the
presence of diagonal disorder by using Liouvillian gap. In
Fig. 5(a), we plot the average value of the Liouvillian gap
over 200 disorder realizations for each value of the disorder
strength. In this figure, the blue lines represents the minimum
and maximum values.

FIG. 5. Liouvillian gap � of the spin chain with N = 6 under
the disorder. (a) Liouvillian gap for the several disorder strengths
W T2 = 0 to the maximum value π . The red dots and dashed line are
average value of the Liouvillian gap with 200 disorder realizations.
The blue band is the width between maximum and minimum values
of the Liouvillian gap. (b) Liouvillian structure of one disorder real-
ization around the steady states for different strengths of the disorder
W/J0 = 10, 25, and 30. In both (a) and (b), we set γ T = 0.02, and
J0T/2π = 0.2 with α = 1.51.

In the derivation of the Lindblad master equation (4), one
assumes that the system is weakly coupled to a Markovian
environment. In this derivation, we implicitly work in a regime
where the dephasing rate is smaller than the characteristic
energy scales of the system [43–46]. In our model, we work
in a regime such that the Hamiltonian (1) satisfies the afore-
mentioned condition. However, in the presence of the strong
disorder, the coupling effectively becomes smaller, and then
the condition might be broken at stroboscopic times t = 2nT
(see the Appendix). Thus, there is a critical disorder strength
W c

z . For disorder strengths such that Wz > W c
z the effective

coupling strength becomes smaller than the dephasing rate γ .
Before and after the critical point, the Liouvillian spectrum
and the Liouvillian gap undergo a drastic change [55]. The
numerical results in Fig. 5(a) show that the DTC growth
timescale is not affected by the disorder up to a certain
strength W/J0 ∼ 15. Only in the strong-disorder region, the
effective coupling of the effective Hamiltonian Ĥ eff

2T,W �=0 be-
comes smaller than the dephasing rate, and the Liouvillian gap
may also take a smaller value. When this happens, the DTC
growth takes a longer time.

Finally, let us take a closer look at the transition of the
Liouvillian gap around the critical point. We investigate the
structure of the eigenvalues of the Liouvillian operator for
the several disorder strengths. We shows the results of the
Liouvillian operator around the steady states for the different
disorder strengths W/J0 = 10, 25, and 30 in Fig. 5(b). We
see that the structure around the gap does not change up to
W/J0 ∼ 15. However, when the disorder is stronger than this,
the structure of the Liouvillian operator is gradually broken,
and the gap gets smaller. Since the dynamics tend to preserve
the local magnetization in such a case, as a result, the growth
of DTCs becomes slower.

IV. CONCLUSION

In this paper, we have explored how a crystalline struc-
ture along the temporal axis grows on spin networks under
the effect of dephasing. We illustrated the DTC growth for
two different initial states: the pure state and the fully mixed
state. By comparing the results from these two initial states,
we showed that the purity of the initial state is not crucial;
however a DTC seed is necessary for the DTC growth, and the
dephasing is crucial for the system to form the DTC phase.
We also analyzed the structure of the 2T -effective Liouvil-
lian operator and showed that the Liouvillian gap provides
an indication of the DTC growth timescale. When diagonal
disorder is present, the Liouvillian gap shows a critical point
where its structure changes. Below this critical point, the gap
is constant, despite the presence of the Anderson localization
effect. With the recent rapid progress in quantum control
technology, our DTC growth experiment could be realized
in several real quantum devices, including superconducting
qubits and trapped ions.
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APPENDIX: EFFECTIVE COUPLING
WITH STRONG DISORDER

Here, we investigate how the coupling strength in the ef-
fective Hamiltonian changes in the presence of the disorder.
To simplify the discussion, we consider a small system with
two sites (N = 2), as our example. In this model, the diagonal
disorder effect is equal to the on-site energy gap between two
sites. Thus, we consider the time-dependent Hamiltonian, as
follows:

H (s)(t ) =
{

h̄g
(
σ x

1 + σ x
2

)
, 0 � t < T1,

h̄J0
(
σ x

1 σ x
2 + σ

y
1 σ

y
2

) + h̄W σ z
2 , T1 � t < T,

(A1)

where 2gT1 = π . Because the total magnetization is preserved
in our 2T-effective Hamiltonian, we only consider the differ-
ence of the on-site energy between two sites (W z

1 ,W z
2 ). Thus,

the energy gap W (=W z
2 − W z

1 ) characterizes the effect of the
diagonal disorder.

To obtain the 2T -effective Hamiltonian, we begin with
the square of the Floquet operator. Using the spin rotation
properties, it can be written as

F̂ 2 = e−i{J0(σ x
0 σ x

1 +σ
y
0 σ

y
1 )+W σ z

2 }T2 e−i{J0(σ x
0 σ x

1 +σ
y
0 σ

y
1 )−W σ z

2 }T2 . (A2)

As we discussed in the main text, the 2T -effective Hamilto-
nian preserves the total number of the excitations. Thus, to
investigate the effect of the disorder on the effective couplings
at stroboscopic times tn = 2nT , we consider a subspace for
the one excitation. In this subspace, our system is a two-level
system, when we consider a the basis set

|10〉 =
(

1
0

)
, |01〉 =

(
0
1

)
, (A3)

for the new subspace. In this basis, the 2T -effective Hamilto-
nian reads

Ĥ eff
2T =

(
ε0 K
K∗ ε1

)
, (A4)

where ε0/1 are real, and K is a complex effective coupling,
respectively. The effective hopping strength is characterized
by the absolute value of the off-diagonal term |K|.

Now, within the one-excitation subspace, Eq. (A2) can be
written as

F̂ 2 = e−i(2J0σ
x+W σ z )T2 e−i(2J0σ

x−W σ z )T2 , (A5)

where σμ (μ ∈ x, y, z) are the Pauli matrices for the two level
system. First, in the absence of the disorder, the effective
Hamiltonian is simply,

Ĥ eff
2T = h̄J0σ

x. (A6)

Here, the hopping strength is |K| = J0. Next, when the disor-
der strength is small (W T < 1), the effective Hamiltonian is
approximately,

Ĥ eff
2T ≈ h̄J0

(
1 − W 2T 2

6

)
σ x + J0W T

2
σ y, (A7)

where we use the Baker-Campbell-Hausdorff formula at the
lowest order, a method widely used to obtain the effec-
tive Hamiltonian [23,25,57]. Here, the strength is |K| ∼
J0

√
1 − W 2/12 < J0, and its value is getting smaller than in

the absence of the disorder. Finally, let us consider the case in
which the disorder strength is sufficiently large W T � 1. In
this case, we exactly derive the Hamiltonian, as follows,

Ĥ eff
2T = −ch̄[

√
(2J0)2 + W 2σ x − W sin(a)σ y]

2T
√

(2J0)2 cos2(a) + W 2
, (A8)

where we use the group composition law of SU(2). Here the
two parameters a and c are given by

a = −T2

√
(2J0)2 + W 2,

cos(c) = 1 − 2(2J0)2

(2J0)2 + W 2
sin2(a), (A9)

respectively. Then, for the large gap, the effective Hamiltonian
is approximately given by

Ĥ eff
2T ≈ 2h̄J0

W T

(
sin(2W T2)

2
σ x − sin (W T2)2σ y

)
. (A10)

The corresponding coupling strength is |K| ∼
2J0| sin(W T2)|/W T � J0. Thus, as W increases, the
effective coupling strength decreases, and it gets smaller
than the dephasing range at a certain critical strength Wc.
Form Eq. (A10), the critical point is roughly estimated as

FIG. 6. Effective coupling |K| and Liouvillian gap � for a N = 2
coupled spins under the effect of disorder. (a) The effective coupling
|K| for the several values of disorder strength from WzT2/2π = 0
to π . (b) Liouvillian gap for the several values of disorder strength
from WzT2/2π = 0 to π . In both (a) and (b), we set γ T = 0.02 and
J0T/2π = 0.2.
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Wc ∼ π/T2[1 − γ /(2J0 + γ )]. Thus, for the N = 2 case, the
critical point is in the strong-disorder regime.

Now, to see more details, we also numerically find the
effective coupling |K| for several gaps and show the result
in Fig. 6(a). As the gap increases, the effective coupling |K|
decreases, and it crosses the value γ around Wc/J0 ∼ 29, and
the agreement between numerical and theoretical results is
good. Here, we note that the critical point is bigger than that
in the main text (Wc/J0 ∼ 15). We want to point out that the
model studied in the main text has more sites, long-range

interactions, and higher excitation sectors that can make the
critical point shift.

Finally, let us look a Liouvillian gap of the above model.
Here, we consider the energy gap from W T2/2π = 0 to
π . In Fig. 6(b), we show the Liouvillian gap. We see
that when the strength is smaller than the critical point of
Fig. 6(a), the Liouvillian gap � is constant. Contrarily, after
the critical point, it becomes smaller due to the competition
between dephasing and the effective coupling at stroboscopic
times.
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