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Pancharatnam-Berry (PB) metasurfaces have been considered as innovative optical devices for efficient
manipulation of both the phase and the polarization of the electromagnetic field. Here, we present the simul-
taneous generation of circularly, elliptically, and linearly polarized states by the simplest PB metasurface with
one-dimensional phase gradient unit cells. Furthermore, we propose that the reconstruction of a multidimensional
nonlinear polarization response of a nanomaterial can be achieved in a single heterodyne measurement by active
manipulation of the polarization states of incident light. Using multidimensional spectroscopy, we demonstrate
the possibility to track both stationary and transient delocalized charge distributions via detecting plasmonic
populations and coherences.
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I. INTRODUCTION

The polarization control of fundamental waves is essen-
tial for analyzing different contributions to the nonlinear
response. For instance, measurements of molecular orienta-
tion and chirality [1,2], the distinguishing of the dipoles and
higher multipoles of nanoparticles [3,4], and the polarization-
resolved imaging of multiple scattering [5] are all based
on the polarization control of the nonlinear response. Cur-
rently, Pancharatnam-Berry (PB) metasurfaces, composed of
anisotropic meta-atoms with periodic rotating orientations in
a two-dimensional plane, allow a simultaneous multichannel
generation of different polarization states by designing the
local orientation of the meta-atoms [6–14]. More importantly,
various nonlinear signals, such as second-harmonic [15–17],
third-harmonic [18–20], and four-wave-mixing [21,22] sig-
nals in metasurfaces, exhibit enhancement of nonlinear
response, wave-front control, vortex beam generation, holog-
raphy, and encryption.

The constructive and destructive interferences between
different susceptibility components control the polarization
conversion efficiency of each channel of a PB meta-
surface [23–26]. This feature provides the possibility of
designing PB metasurfaces capable of overcoming the con-
straints of conventionally multiple polarization-dependent
measurements for identifying individual contributions to the
nonlinear response [27–29]. However, several main chal-
lenges hinder the applicability of the PB metasurface. Firstly,
to exhibit multiple polarization responses in a single setup,
sufficient transmission channels corresponding to different
linear combinations of the same set of susceptibility com-
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ponents are required. The multichannel polarization control
of the PB metasurface strongly depends on the geometric
phase (PB phase) induced by the rotation of identical bire-
fringent meta-atoms. Therefore the existing linear response
techniques require complex metasurface unit cell geometry
or near-field couplings among adjacent meta-atoms to exhibit
multiple-channel transmission [30–32]. Secondly, while the
PB metasurface has been used to manipulate the nonlinear
response, such as monolayers of transition metal dichalco-
genides [33,34], the full material-specific polarization control
and the corresponding microscopic information that contains
electronic and plasmonic properties, such as plasmonic coher-
ences and the electronic structure of the metasurfaces, have
not been investigated.

In this paper, we show a general approach for recon-
struction of the far-field polarization-dependent third-order
nonlinear response using a PB metasurface. We develop an an-
alytical formalism that provides qualitative understanding of
the physical mechanisms of PB-phase-based control of polar-
ization and the wave front with incoming waves with arbitrary
polarization. We first show that a PB metasurface composed
of simple one-dimensional (1D) unit cells of nanoantennas
simultaneously provides five different polarization conver-
sion and transmission channels in a single measurement for
a single linearly polarized (LP) incident beam. Our theory
provides a concise and intuitive analytical description that
reveals all components of the polarization-dependent third-
order susceptibility tensor elements for each scattering order.
Secondly, by carefully choosing the polarization configura-
tions of the incident light beams, the signal composition of
each scattering channel can be measured independently from
the other scattering channels and used to distinguish the dif-
ferent contributions to the total third-order nonlinear response.
As an example, we calculate the four-wave-mixing response
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FIG. 1. (a) Sketch of the generation of the third-order nonlinear
response giving rise to five beams for a single four-wave-mixing
process in a nonlinear PB metasurface. The arrowed circles repre-
sent the direction of the circular polarization state of each beam.
(b) Schematic of the metasurface. The length and width of the an-
tenna are lx and ly, respectively. The distance between two antennas
along the x and y axes is a1 and a2, respectively. Every nanopillar
along the x axis is rotated by π

5 relative to its neighbor. For the
third-order nonlinear process, the unit cell of the periodic structure
is depicted by the red dashed box and includes M = 5 nanopillars.
(c) Six-level system with ωx = 460 THz, ωy = 500 THz, ω f = 1075
THz, ωx′ = 989 THz, ωy′ = 1125 THz, μy = 0.6μx , decay γ = 10
THz.

as a function of three incoming frequencies and one sig-
nal frequency. Utilizing the instruments of multidimensional
spectroscopy [35], we extract the susceptibility components
as a function of one incoming and one detected frequency,
which reveals both stationary as well as transient delocalized
charge density via plasmonic population (occupation) and
coherence [36] components.

II. MESOSCOPIC MODEL FOR A NONLINEAR
PB METASURFACE

As shown in Fig. 1, three plane waves shines on the PB
metasurface made of a structure of 1D superlattice corre-
sponding to the lattice primitive translation �m,n = mMa1 +
na2 and the reciprocal lattice Gmn = 2πm

Ma1
ex + 2πn

a2
ey, with vec-

tors a1 = a1ex, a2 = a2ey.
The classical formulation of the wave scattering problem

is based on the set of Maxwell equations without external
currents and charges (cgs units) [37,38]

∇ · D = 0, (1)

∇ × E = −1

c

∂B
∂t

, (2)

∇ · B = 0, (3)

∇ × H = 1

c

∂D
∂t

. (4)

We consider nonmagnetic media, so that the magnetic and
diamagnetic fields are equal, B = H . All of the material infor-
mation is thus contained in the polarizaton P via the relation
of D = E + 4πP. Therefore the system of Maxwell equations
reduces to

�E − ∂2

c2∂t2
E = −4π∇(∇ · P) + 4π

∂2

c2∂t2
P. (5)

We adopted the following mesoscopic approximation:
the field propagating in the substrate medium with
refractive index nr,t is scattered by a thin periodic
superlattice. We take the metasurface part as the source
of the wave propagating in the medium and derive
the effective model. When the metasurface is placed
at the interface between two substrates with refractive
index nr,t = √

1 + 4πχr,t , the corresponding z-dependent
polarization term reads P(z, ρ, t ) = H(|z| � lz/2)P(3)(E ) +
[H(z <

−lz
2 )χr + H(z >

lz
2 )χt ]E(z, ρ, t ). Here and

below, the Heaviside function is H(condition) =
{1, when condition is true; 0, when condition is false}. In the
zeroth approximation, the third-order nonlinear polarization
is caused by the incident fields only, so that the corre-
sponding nonlinear polarization is P(3)

γ (E ) = ∑
αβμ Xγαβμ

(ρ)E (1)
α E (2)

β E (3)
μ ei(ksz+κs·ρ−ωst )eγ , where ks, κs and ωs

are the wave vector and frequency of the nonlinear
signal and E (i)

α is the αth Cartesian component of the
ith incident wave E (i)(r, t ) = E (i)eikiz+ικi·ρ−iωit . Without
considering the rotation of each nanopillar, the susceptibility
function Xγαβμ(ρ) can be represented as a sum of the
susceptibilities of the individual primitives shifted in the
xy plane Xγαβμ(ρ) = χ

(3)
γαβμ

∑
mn

∑N
j=−N �(ρ − �m+ j,n),

with location of nanopillars �m+ j,n = �m,n + ja1, third-order

susceptibility χ
(3)
γαβμ, and N = (M − 1)/2. The indicator

function �(ρ) describes the geometric shape of the
rectangular nanopillar �(ρ) = H(|x| � lx/2)H(|y| � ly/2).
In order to discuss the third-order nonlinear process,
each metallic or dielectric nanopillar of the metasurface
is phenomenologically modeled as a six-level system in
Fig. 1(c) originating from the three-level structure for each
polarization coupled together [39–41]. The corresponding
nonlinear susceptibility tensors for different nonlinear
processes can be seen in Appendix B.

In the limit of ultrathin metasurface, we neglect the Ez

and Pz components. The propagation of the electric field then
satisfies

�E || −
n2

r,t

c2
Ë || = 4πH

(
|z| � lz

2

)[
−∇(∇ · P(3)

|| ) + 1

c2
P̈

(3)
||

]
.

(6)

Fourier analysis is a powerful tool to derive an ana-
lytic description of the nonlinear metasurface system [26,42],
while several theoretical works based on the Green’s func-
tion method study second- and third-harmonic generation
in the PB metasurface system [23,43,44]. In the (κ, ω) do-
main, the third-order nonlinear polarization is expressed in
terms of the field P(3)

γ (z, κ, ω′) = ∑
αβμ

∫
d2κ′X̃γαβμ(κ − κ′)

Eαβμ(z, κ′, ω′)/(2π )2, with periodic susceptibility function

X̃γαβμ(κ) = ∑N
j=−N

∑
m,n

χγαβμ(2π )2

Ma1a2/�̃ j (κ)
δ(κ−Gmn)e−i jκ·a1 , where
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�̃ j (κ) is the Fourier transform of geometric shape factor
�(ρ). Thus the polarization vector can be expanded as a sum
over Q—the first Brillouin zone (κ′ � G11)

P(3)
γ (z, ρ, t )

= N0

∑
mn,αβμ

∫
Q

d2κ′dω′ fmn jEαβμ(z, κ′, ω′)ei(ψmn j−ω′t ).

(7)

Here, Eαβμ(z, κ′, ω′) = E (1)
α E (2)

β E (3)
μ eikszδ(κs − κ′)δ(ωs − ω′),

and ψmn j = Gmn · (ρ − ja1) + κ′ · ρ describes the propaga-

tion phase, while fmn j = �̃ j (Gmn )
2π2Ma1a2

is the form factor for the jth
nanopillar in the mn-th lattice primitive cell with the Fourier
transform for the rectangular geometric shape factor �̃ j (Gmn).
N0 = χγαβμ

4π
is a normalization factor. The translational sym-

metry of the metasurface dictates the form of the solution
given by

E(z, ρ, t )

=
∑
m,n

∫
Q

d2κ′dω′dkẼmn(k, κ′, ω′)ei[kz+(κ′+Gmn )·ρ−ω′t].

(8)

Let us focus on the ei(Gmn+κ′ )·ρ components. Since
all the Gmn + κ spatial components of Ẽ , P̃ have the
same subscripts m and n, these will be henceforth
omitted. The corresponding thin polarization component
H(|z| � lz/2)P(3)(E ) becomes

∑
αβμ

lz
4π

fmnEαβμ(z, κ′, ω′),
where fmn = ∑N

j=−N χγαβμ fmn je−i jGmn·a1/2π . Dynamics
equation (6) in the k, ω space is

C̃′Ẽx = 4π

(
K2

x − ω2

c2

)
P̃x + 4πKxKyP̃y,

C̃′Ẽy = 4π

(
K2

y − ω2

c2

)
P̃y + 4πKyKxP̃x. (9)

Here, wave vectors are Kx = Gmn,x + κ ′
x, Ky = Gmn,y + κ ′

y,

K2
|| = K2

x + K2
y , and C̃′ = −k2

z + ω′2n2
r,t

c2 − K2
|| . We then derive

the transmitted waves given by

Eγ =
∑

αβμ,mn

F

[(
K2

γ − ω2

c2

)
χγαβμ + KxKyχγαβμ

]
EαEβEμ|�.

(10)
Here, � = {κ′ → κs; ω′ → ωs}, coordinate subscripts are
{γ = x, y, γ ′ = y, x}, and the phase term is

F =
N∑

j=−N

Fz
ilz fmn j

C′ e−i jGmn·a1+iκ′ ·ρ−iω′t ,

while the propagation phase term along the z direction is

Fz = e
i

√
ω′2n2

t
c2 −K2

|| zH(z > 0) + e
−i

√
ω′2n2

r
c2 −K2

|| zH(z < 0) and C′ =√
ω′2n2

r,t

c2 − K2
|| . This transmitted wave can be formally written

as E = T̂ ( fmn j )
...E (1)E (2)E (3) with the dyadic product sym-

bol
....

The matrix R̂(φ j ) describing rotation by the
constant incremental angle φ j = π j

2N+1 is given

TABLE I. Chiral character of nonlinear metasurface. D.O.,
diffraction order.

Rotation Input Output (D.O.) Phase gradient

Counterclockwise σ+ σ+ (−1) −λ

(2N+1)ax

σ− (−2) −2λ

(2N+1)ax

Counterclockwise σ− σ− (+1) λ

(2N+1)ax

σ+ (+2) 2λ

(2N+1)ax

Clockwise σ+ σ+ (1) λ

(2N+1)ax

σ− (2) 2λ

(2N+1)ax

Clockwise σ− σ− (−1) −λ

(2N+1)ax

σ+ (−2) −2λ

(2N+1)ax

by R̂(φ j ) = (cos(φ j ) − sin(φ j )
sin(φ j ) cos(φ j )

). The transmitted

waves can be thus given by R̂(φ j )E = T̂ [ fmn j (φ0)]
...

[R̂(φ j )E (1)R̂(φ j )E (2)R̂(φ j )E (3)].
Considering all the incident waves having the same polar-

ization state we use the circularly polarized (CP) basis σ± =
(ex ± ιey)/

√
2, and derive the explicit form for the scattering

wave which yields

(
b1E2

+E− + b2E3
+e−2iφ j + b3E+E2

−e2iφ j + b4E3
−e4iφ j

b∗
1E2

−E+ + b∗
3E−E2

+e−2iφ j + b∗
2E3

−e2iφ j + b∗
4E3

+e−4iφ j

)∣∣∣∣
�

,

(11)

where the amplitude of the incident wave in the CP basis is
written as E i = {E+, E−}, the constant incremental rotation
angle of the nanopillar is φ j = π j

2N+1 , � = {κ′ → κs; ω′ →
ωs}, and the susceptibility-dependent coefficients b1,2,3,4 are
listed in Appendix A.

The scattering wave shown in Eq. (11) clearly reveals
the PB-phase-induced manipulation of the wave front and
polarization. Combining PB phase with the constant propa-
gation as � j = −Gmn · ja1 − {0, 2φ j, 4φ j}, the PB phase of
the individual nanopillars distributed uniformly between 0
and 2π leads to the destructive interferences

∑
j e±i� j � 0

as � j �= 0. From this point of view, only scattered waves of
order m = 0,±1,±2 have the possibility to be detected in the
far field. Furthermore, the remaining part of the propagation
phase, (Gmn + κ) · ρ, yields the ordinary and generalized non-
linear Snell’s law corresponding to different phase gradients
as shown in Refs. [12–14,45]. In the meantime, the polariza-
tion of the scattered beams also relies on the polarization of
the incident beams and symmetry of the metasurface structure
as illustrated in Table I, which is consistent with previous
theoretical and experimental works [12–14].

For a normal incident LP wave E i = E{1, 1}/√2, the trans-
mitted wave reveals the transmission of the linearly polarized
wave in the zeroth diffraction order, while the transmitted
waves of order ±2 are in the pure left CP (LCP) and right
CP (RCP) states. On the other hand the transmitted wave
in the ±1 diffraction order consists of a pair of oppositely
handed elliptically polarized (EP) waves which depend on the
magnitude of the wave vector and elements of the susceptibil-
ity tensor implicit in b2, b3 with azimuth angle Arg(b2 )+Arg(b3 )

2
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and ellipticity angle ± 1
2 arcsin |b2|2−|b3|2

|b2|2+|b3|2 , where Arg means
the argument of a complex number. Therefore, by directly
choosing a LP incident light, it becomes possible to have LCP,
left (right) EP, LP, right (left) EP, and RCP light transmitted
from diffraction order of −2 to diffraction order of 2. For
experiment, the polarization state with diffraction order of ±1
can be controlled by changing the material or geometrical size
of the nanopillars.

III. NONLINEAR SPECTRUM RECONSTRUCTION

The four-wave-mixing-based transmission of light assum-
ing the same polarizations of incident beams can give four
different different linear combinations of response function
tensor elements, and it is not sufficient to distinguish each
individual tensor component. The spectroscopic applications
require a higher degree of control of the individual tensor
components.

The heterodyne signal of the medium can be written as
tm,± = Im[E∗

m,±(ωs)Pm,±(ωs, φ j )], where m is the index of
the scattering order, ± denotes the RCP or LCP component,
and E∗

m,±(ωs) is the local oscillator field [35]. Therefore the
spectra are decomposed into

t0,r =
∑
i jk

Im[E∗
i jkAxi jk − iEi jkByi jk],

t1,r =
∑
i jk

Im[Ei jkAxi jk − iE∗
i jkByi jk],

(12)
t1,l = Im[E123(Rxxxx − Ryyyy)],

t2,r = Im[E123(Rxxxx + Ryyyy)],

with the amplitude factors E123 = ∏3
i=1(Eix − iEiy)/

√
2,

Ei jk = E1iE2 jE3k − iE1i′E2 j′E3k′ , where i, j, k = {x, y},
i′, j′, k′ = {y, x}, and the amplitude of the local oscillator
field is set to be unity. The response functions Axi jk , Byi jk ,
Rxxxx, and Ryyyy are shown in Appendix A. In particular, the
response functions of conjugate scattering components can
be obtained by a complex conjugate of amplitude factors E123

and Ei jk . Consequently, one can design a single measurement
that reveals individual tensor components of the nonlinear
response by adjusting the polarization state of each of the
incident waves. In the following, the four-wave-mixing
response is discussed as a theoretical representation of this
experimental scheme.

To that end, we consider phase-matching case I, ωs = ω1 −
ω2 + ω3, in Appendix B. By an exhaustive method, several
different configurations of the polarization state of the inci-
dent waves can be used to realize the reconstruction of all the
nonlinear susceptibility tensor components. As an example,
we choose the polarization configuration of the incident waves
shown on the right-hand side of Fig. 2(a): E1 = {1, 1}/√2
(LP initially along the x axis), E2 = {0,

√
2} (RCP), E3 =

{i, i}/√2 (LP initially along the y axis), where the amplitude
of the wave is set to be unity. By resolving these spectral
functions [Eq. (12)], all the susceptibility components can be

FIG. 2. The nonlinear spectrum vs the signal (new mode) fre-
quency. The resonance frequencies depicted as vertical dashed lines
are ν1 = ωx , ν2 = ωy, ν3 = ωx′ − ωx , ν4 = ω f − ωy, ν5 = ω f − ωx ,
and ν6 = ωy′ − ωy illustrated by the level scheme in Fig. 1(c). The
frequency of the incident wave is ω1 = ω2 = 600 THz. (a) One-
dimensional spectrum of heterodyne signals from six transmission
channels. The figure in the right side of (a) denotes the polarization
configuration of three incident light in the four-wave-mixing process.
(b) and (c) The real and imaginary parts of the nonlinear effective
susceptibility tensor components reconstructed from the spectrum in
(a).

reconstructed as

χ ′
xxxx =

√
2(t0,l + t1,r − t−1,r − t−2,l ),

χ ′
yyyy =

√
2(t0,l − t1,r + t−1,r − t−2,l ),

χ ′
xxyy = (t0,l + t0,r + t−1,l + t1,r + t−1,r + t−2,l )/

√
2,

χ ′′
xyyx = (t0,l − t0,r − t−1,l + t1,r + t−1,r + t−2,l )/

√
2,

χ ′′
yxxy = (t0,l − t0,r + t−1,l − t1,r − t−1,r + t−2,l )/

√
2,

χ ′
yyxx = (t0,l + t0,r − t−1,l − t1,r − t−1,r + t−2,l )/

√
2.

Here, susceptibility elements are written as χγαβμ = χ ′
γαβμ +

iχ ′′
γαβμ. In Fig. 2(a), the dispersion curves of six nonzero

transmitted signals denote different linear combinations of the
tensor elements. The corresponding six resonant peaks around
ν j ( j = 1, . . . , 6) correspond to the six transitions depicted
in the level scheme in Fig. 1(c). After combining these six
signals, the reconstructed 1D spectra of each of the compo-
nents are illustrated in Figs. 2(b) and 2(c). Figure 2(b) shows
resonances at frequencies ν1, ν3, ν4 by depicting the real part
of χxxxx and χxxyy and the imaginary part of χxyyx vs the signal
frequency ωs. Similarly, we observe ν2, ν5, ν6 resonances by
depicting the real part of χyyyy and χyyxx and the imaginary
part of χyxxy in Fig. 2(c). Therefore Fig. 2 provides the matter
information in the form of the six resonances permitted by our
model in Fig. 1(c) along with their lineshapes corresponding
to dephasing timescales due to electron-phonon scattering.
This information obtained by studies of the χ (3) tensor is
certainly superior to the linear response, which is capable of
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FIG. 3. Two-dimensional spectrum of the susceptibility compo-
nents χxxxx (a), χxyyx (b), χxxyy (c), and χyyyy (d) displayed vs the
frequency of the signal field and one of the incoming fields. The
diagonal (ωs = ω1 = ν j) and off-diagonal (ωs = νi, ω1 = ν j , i �= j,
i, j = 1, . . . , 6) cross peaks indicate the stationary and transient os-
cillating charge corresponding to plasmonic occupation (population)
and coherences, respectively, between the resonant transitions indi-
cated in Fig. 1(c). Simulation parameters are as follows: ω2 = 600
THz, ν7 = ω2 + (ωx − ωy ), ν8 = ω2, and ν9 = ω2 + (ωy − ωx ). The
configurations of the polarization state of the incident waves are the
same as those in Fig. 2.

explaining |x〉 − |g〉 and |y〉 − |g〉 lower-energy single pho-
ton resonances only. On the other hand, the same set of
measurements that is responsible for the signal in Fig. 2 is
capable of revealing more complex material information re-
lated to the stationary and transient plasmonic charge density.
To obtain such information, one can display the susceptibil-
ity tensor as a function of signal frequency ωs and one of
the incoming field frequencies, e.g., ω1. The corresponding
reconstructed multidimensional spectra of the six nonlinear
susceptibility tensor components are shown in Fig. 3. The
interpretation of the 2D spectra is similar to that of the pho-
ton echo [35]. The diagonal peaks where ωs = ω1 = ν j ( j =
1, . . . , 9) reveal the stationary charge density corresponding
to localized plasmon mode occupation number. The cross
peaks at ωs = ν j , ω1 = νi, i = 1, . . . , 6, i �= j correspond to
the transient oscillating delocalized plasmonic charge density
emerging due to the coupling of two spatial excitation modes.
For example, in Fig. 3(a), the diagonal peak at {ωs = ω1 = ν1}
represents the transition between the excited state |x〉 and
the ground state |g〉. The cross peaks at {ωs = ν3, ω1 = ν1}
illustrate the coupling between transition 1—excited state |x〉
and ground state |g〉—and transition 2—excited state |x〉 and
doubly excited state |x′〉. One can obtain material information
for different localized and transient plasmonic charge den-
sities by varying other incoming field frequencies, e.g., ω2

and ω3.

IV. CONCLUSIONS

In summary, we investigated a four-wave-mixing signal
generated from a PB metasurface by multichannel polariza-

tion manipulation. A model for a nonlinear PB metasurface
is gives an analytical description of the polarization-sensitive
transmission. We find that the LP incident beams can be con-
verted into different polarizations by five channels in a single
measurement using a PB metasurface with relatively simple
1D unit cells. Unlike second- or third-harmonic emission,
four-wave mixing provides the signal in the same frequency
range as the incident beams. This mechanism provides a
way to realize the multichannel optical information trans-
mission for imaging [11,20,22,46] and information encoding
and quantum cryptography [30,47–50]. Moreover, we showed
that careful selection of the fundamental wave with different
polarizations allows one to obtain phase information in all
components of the third-order nonlinear susceptibility tensor
by polarization selection of the real and imaginary parts.
Furthermore, we demonstrated that this phase-sensitive polar-
ization manipulation provides a deep level of spectroscopic
information of the nanostructure. The 1D spectra allow one to
extract the resonant energy structure and dephasing times. The
2D signals can be used to track stationary and transient charge
density distributions that correspond to localized as well as
delocalized plasmonic modes. These theoretical predictions
establish the metasurface as a high-precision tool for multi-
dimensional spectroscopy characterization of anisotropic and
topological nanomaterials.
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APPENDIX A: TRANSMISSION COEFFICIENTS

In order to show a simple result without effecting the physi-
cal result, we set θ ′ = 0, and the coefficients of the third-order
signal are

b1 = 3F

4

[
a′

1

(
K2

x − ω2

c2

)
+ a′

4KxKy + a′
2

(
K2

y − ω2

c2

)]
,

b2 = F

4

[
a′

3

(
K2

x − ω2

c2

)
+ a′

7KxKy + a′
5

(
K2

y − ω2

c2

)]
,

b3 = 3F

4

[
a′

1
∗
(

K2
x − ω2

c2

)
+ a′

6KxKy − a′∗
2(K2

y − ω2

c2
)

]
,
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b4 = F

4

[
a′

3
∗
(

K2
x − ω2

c2

)
− a′

4
∗KxKy − a′

5
∗
(

K2
y − ω2

c2

)]
,

where

a′
1 = χxxxx + iχxxxy + χxxyy + iχ ′

xyyy,

a′
2 = −iχxxxy + χxxyy − iχxyyy + χyyyy,

a′
3 = χxxxx + 3iχxxxy − 3χxxyy − iχxyyy,

a′
4 = −iχxxxx + 2χxxxy + 2χxyyy + iχyyyy,

a′
5 = −iχxxxy + 3χxxyy + 3iχxyyy − χyyyy,

a′
6 = −iχxxxx − 2iχ ′

xxyy − iχyyyy,

a′
7 = −iχxxxx + 4χxxxy + 6iχxxyy − 4χxyyy − iχyyyy.

The response functions are defined as

Axxxx = (3χxxxx + χxxyy + χxyxy + χxyyx )/(8
√

2),

Axyxy = (3χxyxy + χxxxx − χxxyy − χxyyx )/(8
√

2),

Axyyx = (3χxyyx + χxxxx − χxxyy − χxyxy)/(8
√

2),

Axxyy = (3χxxyy + χxxxx − χxyxy − χxyyx )/(8
√

2),

Byyyy = (3χyyyy + χyxxy + χyxyx + χyyxx )/(8
√

2),

Byxyx = (3χyxyx − χyxxy − χyyxx + χyyyy)/(8
√

2),

Byxxy = (3χyxxy − χyxyx − χyyxx + χyyyy)/(8
√

2),

Byyxx = (3χyyxx − χyxxy − χyxyx + χyyyy)/(8
√

2),

Rxxxx = [(χxxxx − (χxxyy + χxyxy + χxyyx )]/4,

Ryyyy = [(χyyyy − (χyxxy + χyxyx + χyyxx )]/4.

APPENDIX B: THIRD-ORDER NONLINEAR
SUSCEPTIBILITY FOR A SIX-LEVEL SYSTEM

An energy level diagram of the birefringent nanopillars is
shown in Fig. 1(c). The elements of the susceptibility tensor
of four-wave mixing satisfy χxxxy = χxxyx = χxyxx = χxyyy =
χyxxx = χyxyy = χyyxy = χyyyx = 0. The notation is as follows:
�x, �y, �xx, �yy, �xy, �yx, �x,y, �y,x, �x′,x, �y′,x, � f ,x,

�x′,y, �y′,y, and � f ,y are the decay parameters of
|x〉〈g|, |y〉〈g|, |x′〉〈g|, |y′〉〈g|, | f 〉〈g|, |x〉〈y|, |y〉〈x|, |x′〉〈x|,
|y′〉〈x|, | f 〉〈x|, |x′〉〈y|, |y′〉〈y|, and | f 〉〈y|. In the
simulation, we set all the decay parameters to
be 10 THz; ωx = 460 THz, ωy = 500 THz, and
μy = 0.6μx.

For the phase matching ωs = ω1 − ω2 + ω3, which we
refer to as case I, we have the following three different proba-
bilities for the six-level system shown in Fig. 1(c).

Probability 1:

χxxxx = N0μ
4
x

(ωs − ωx + i�x )(ω1 − ω2 + i�gg)(ω1 − ωx + i�x )
,

χxxyy = N0μ
2
xμ

2
y

(ωs − ωx + i�x )(ω1 − ω2 + i�gg)(ω1 − ωy + i�y)
,

χyyyy = N0μ
4
y

(ωs − ωy + i�y)(ω1 − ω2 + i�gg)(ω1 − ωy + i�y)
,

χyyxx = N0μ
2
xμ

2
y

(ωs − ωy + i�y)(ω1 − ω2 + i�gg)(ω1 − ωx + i�x )
.

Probability 2:

χxxxx = −N0μ
4
x

(ωs − ωx′x + i�x′,x )(ω1 − ω2 + i�x,x )(ω1 − ωx + i�x )
,

χyyxx = −N0μ
2
xμ

2
y

(ωs − ω f x + i� f ,x )(ω1 − ω2 + i�x,x )(ω1 − ωx + i�x )
,

χyyyy = −N0μ
4
y

(ωs − ωy′y + i�y′,y)(ω1 − ω2 + i�y,y)(ω1 − ωy + i�y)
,

χxxyy = −N0μ
2
xμ

2
y

(ωs − ω f ′y + i� f ′,y)(ω1 − ω2 + i�y,y)(ω1 − ωy + i�y)
,

χyxxy = −N0μ
2
xμ

2
y

(ωs − ω f ′x + i� f ′,x )(ω1 − ω2 − ωyx + i�y,x )(ω1 − ωy + i�y)
,

χxyyx = −N0μ
2
xμ

2
y

(ωs − ω f y + i� f ,y)(ω1 − ω2 − ωxy + i�x,y)(ω1 − ωx + i�x )
.

Here, ωx′ − ωx = ωx′x, ω f − ωx = ω f x, ω f ′ − ωx = ω f ′x, ωy − ωx = ωyx, ωy′ − ωy = ωy′y, ω f ′ − ωy = ω f ′y, ω f − ωy = ω f y,
and ωx − ωy = ωxy.
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Probability 3:

χxxxx = N0μ
4
x

(ωs − ωx + i�x )(ω1 − ω2 + i�x,x )(ω1 − ωx + i�x )
,

χxyyx = N0μ
2
xμ

2
y

(ωs − ωx + i�x )(ω1 − ω2 − ωxy + i�x,y)(ω1 − ωx + i�x )
,

χyyyy = N0μ
4
y

(ωs − ωy + i�y)(ω1 − ω2 + i�y,y)(ω1 − ωy + i�y)
,

χyxxy = N0μ
2
xμ

2
y

(ωs − ωy + i�y)(ω1 − ω2 + ωxy + i�y,x )(ω1 − ωy + i�y)
.

For the phase matching ωs = −ω1 + ω2 + ω3, which we refer to as case II, we have the following three different probabilities
for the six-level system shown in Fig. 1(c).

Probability 1:

χxxxx = −N0μ
4
x

(ωs − ωx′x + i�x′,x )(ω2 − ω1 + i�x,x )(ωx − ω1 + i�∗
x )

,

χyyxx = −N0μ
2
xμ

2
y

(ωs − ω f x + i� f ,x )(ω2 − ω1 + i�x,x )(ωx − ω1 + i�∗
x )

,

χyyyy = −N0μ
4
y

(ωs − ωy′y + i�y′,y)(ω2 − ω1 + i�y,y)(ωy − ω1 + i�∗
y )

,

χxxyy = −N0μ
2
xμ

2
y

(ωs − ω f ′y + i� f ′,y)(ω2 − ω1 + i�y,y)(ωy − ω1 + i�∗
y )

,

χyxyx = −N0μ
2
xμ

2
y

(ωs − ω f ′x + i� f ′,x )(−ω1 + ω2 − ωyx + i�y,x )(−ω1 + ωx + i�∗
x )

,

χxyxy = −N0μ
2
xμ

2
y

(ωs − ω f y + i� f ,y)(−ω1 + ω2 − ωxy + i�x,y)(−ω1 + ωy + i�∗
y )

.

Probability 2:

χxxxx = N0μ
4
x

(ωs − ωx + i�x )(−ω1 + ω2 + i�gg)(−ω1 + ωx + i�∗
x )

,

χyyxx = N0μ
2
xμ

2
y

(ωs − ωy + i�y)(−ω1 + ω2 + i�gg)(−ω1 + ωx + i�∗
x )

,

χyyyy = N0μ
4
y

(ωs − ωy + i�y)(−ω1 + ω2 + i�gg)(−ω1 + ωy + i�∗
y )

,

χxxyy = N0μ
2
xμ

2
y

(ωs − ωx + i�x )(−ω1 + ω2 + i�gg)(−ω1 + ωy + i�∗
y )

.

Probability 3:

χxxxx = N0μ
4
x

(ωs − ωx + i�x )(−ω1 + ω2 + i�x,x )(−ω1 + ωx + i�∗
x )

,

χyxyx = N0μ
2
xμ

2
y

(ωs − ωy + i�y)(−ω1 + ω2 − ωyx + i�y,x )(−ω1 + ωx + i�∗
x )

,

χyyyy = N0μ
4
y

(ωs − ωy + i�y)(−ω1 + ω2 + i�y,y)(−ω1 + ωy + i�∗
y )

,

χxyxy = N0μ
2
xμ

2
y

(ωs − ωx + i�x )(−ω1 + ω2 − ωxy + i�x,y)(−ω1 + ωy + i�∗
y )

.

For the phase matching ωs = ω1 + ω2 − ω3, which we refer to as case III, we have the following two different probabilities
for the six-level system shown in Fig. 1(c).
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FIG. 4. The nonlinear spectrum vs the signal (new mode) frequency for phase-matching case I. The resonance frequencies shown here are
the same as those in Figs. 2 and 3. (a) One-dimensional spectrum of heterodyne signals from six transmission channels. (b) and (c) The real and
imaginary parts of the nonlinear effective susceptibility tensor components reconstructed from the spectrum in (a). (d) and (e) Two-dimensional
spectrum of the susceptibility components χyxxy and χyyxx displayed vs the frequency of the signal field and one of the incoming fields.
(a)–(c) supplement Fig. 2 in the main text, and (d) and (e) supplement Fig. 3 in the main text.

Probability 1:

χxxxx = N0μ
4
x

(ωs − ωx + i�x )(ω1 + ω2 − ωx′ + i�x′ )(ω1 − ωx + i�x )
,

χyxyx = N0μ
2
xμ

2
y

(ωs − ωy + i�y)(ω1 + ω2 − ω f + i� f )(ω1 − ωx + i�x )
,

FIG. 5. The nonlinear spectrum vs frequency for phase-matching case II. The frequency of incident light is ω1 = ω2 = 600 THz. (a) and
(d) One-dimensional spectrum of six nonvanishing components for two different combinations of the polarization state of incident light.
The polarization state of incident light is shown to the right of each row. (b), (c), (e), and (f) The real and imaginary parts of the nonlinear
susceptibility tensor components reconstructed from the spectra in (a) and (d).
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FIG. 6. Two-dimensional spectrum of components χxxxx (a), χxyyx (b), χxxyy (c), χyyyy (d), χyxxy (e), and χyyxx (f) with ω2 = 600 THz for
phase-matching case II.

χxyyx = N0μ
2
xμ

2
y

(ωs − ωx + i�x )(ω1 + ω2 − ω f + i� f )(ω1 − ωx + i�x )
,

χyyyy = N0μ
4
y

(ωs − ωy + i�y)(ω1 + ω2 − ωy′ + i�y′ )(ω1 − ωy + i�y)
,

χxyxy = N0μ
2
xμ

2
y

(ωs − ωx + i�x )(ω1 + ω2 − ω f ′ + i� f ′ )(ω1 − ωy + i�y)
,

χyxxy = N0μ
2
xμ

2
y

(ωs − ωy + i�y)(ω1 + ω2 − ω f ′ + i� f ′ )(ω1 − ωy + i�y)
.

FIG. 7. The nonlinear spectrum vs frequency for phase-matching case III. The frequency of incident light is ω1 = ω2 = 600 THz. (a) and
(d) One-dimensional spectrum of six nonvanishing components for two different combinations of the polarization state of incident light.
The polarization state of incident light is shown to the right of each row. (b), (c), (e), and (f) The real and imaginary parts of the nonlinear
susceptibility tensor components reconstructed from the spectra in (a) and (d).
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FIG. 8. Two-dimensional spectrum of components χxxxx (a), χxyyx (b), χxxyy (c), χyyyy (d), χyxxy (e), and χyyxx (f) with ω2 = 600 THz for
phase-matching case III.

Probability 2:

χxxxx = −N0μ
4
x

(ωs − ωx′x + i�x′,x )(ω1 + ω2 − ω′
x + i�x′ )(ω1 − ωx + i�x )

,

χyxyx = −N0μ
2
xμ

2
y

(ωs − ω f x + i� f ,x )(ω1 + ω2 − ω f + i� f )(ω1 − ωx + i�x )
,

χyxxy = −N0μ
2
xμ

2
y

(ωs − ω f ′x + i� f ′,x )(ω1 + ω2 − ω′
f + i� f ′ )(ω1 − ωy + i�y)

,

χyyyy = −N0μ
4
y

(ωs − ωy′y + i�y′,y)(ω1 + ω2 − 2ω′
y + i�y′ )(ω1 − ωy + i�y)

,

χxyxy = −N0μ
2
xμ

2
y

(ωs − ω f ′y + i� f ′,y)(ω1 + ω2 − ω f ′ + i� f ′ )(ω1 − ωy + i�y)
,

χxyyx = −N0μ
2
xμ

2
y

(ωs − ω f y + i� f ,y)(ω1 + ω2 − ω f + i� f )(ω1 − ωx + i�x )
.

APPENDIX C: THE FOUR-WAVE-MIXING RESPONSE FOR PHASE-MATCHING CASES I—III

In this Appendix, we show the reconstructed four-wave-mixing response for different phase-matching cases. For phase
matching I, Figs. 4(a)–4(c) show the heterodyne signals and the corresponding reconstructed 1D four-wave-mixing response.
They give the other half of response to supplement Fig. 2 in the main text. Figures 4(d) and 4(e) give two components of response
to supplement Fig. 3 in the main text. The one- and two-dimensional spectrum for the phase-matching II and III are shown in
Figs. 5, 6 and 7, 8, respectively.
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