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We consider random singlet phases of spin- 1
2 , random, antiferromagnetic spin chains, in which the universal

leading-order divergence ln 2
3 ln � of the average entanglement entropy of a block of � spins, as well as the

closely related leading term 2
3 l−2 in the distribution of singlet lengths are well known by the strong-disorder

renormalization group (SDRG) method. Here, we address the question of how large the subleading terms of the
above quantities are. By an analytical calculation performed along a special SDRG trajectory of the random XX
chain, we identify a series of integer powers of 1/l in the singlet-length distribution with the subleading term
4
3 l−3. Our numerical SDRG analysis shows that, for the XX fixed point, the subleading term is generally O(l−3)
with a nonuniversal coefficient and also reveals terms with half-integer powers: l−7/2 and l−5/2 for the XX and
XXX fixed points, respectively. We also present how the singlet lengths originating in the SDRG approach can
be interpreted and calculated in the XX chain from the one-particle states of the equivalent free-fermion model.
These results imply that the subleading term next to the logarithmic one in the entanglement entropy is O(�−1)
for the XX fixed point and O(�−1/2) for the XXX fixed point with nonuniversal coefficients. For the XX model,
where a comparison with exact diagonalization is possible, the order of the subleading term is confirmed but we
find that the SDRG fails to provide the correct nonuniversal coefficient.
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I. INTRODUCTION

The entanglement properties of critical quantum many-
body systems have attracted much interest recently [1–8].
A frequently used measure of quantum entanglement is the
so-called entanglement entropy [9]. Considering a system in
a pure state |�〉 and a subsystem A, the entanglement entropy
of A is defined as the von Neumann entropy of the reduced
density matrix ρA:

SA = −TrAρA ln ρA. (1)

Here, ρA is obtained as a partial trace over the degrees of
freedom of the environment A: ρA = TrA|�〉〈�|.

In one-dimensional infinite translationally invariant critical
systems, conformal field theory predicts a logarithmic asymp-
totic dependence of the entanglement entropy on the size � of
the subsystem as

S� = c

3
ln � + const, (2)

where c is the central charge of the conformal algebra [5–7].
Besides homogeneous systems, entanglement entropy

[10–13] and other entanglement measures [14–17] have also
been thoroughly studied in the ground state of random spin
chains. In random antiferromagnetic spin chains, the strong-
disorder renormalization group (SDRG) method is a powerful
and insightful method to calculate low-energy properties
[18–20]. According to the iterative scheme of the SDRG pro-
cedure, which is approximative but becomes asymptotically
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exact at large scales, spins connected by strong couplings pair
up to singlets, producing the so-called random singlet state
at zero temperature. This state, which is an approximation of
the true (much more complicated) ground state, is a product
state of independent spin singlets, and, due to its simplicity, it
is analytically tractable. Applying this method in critical anti-
ferromagnetic XXZ chains having a random singlet ground
state, the average number of singlet bonds forming over a
given point was calculated by Refael and Moore in the scaling
limit as a function of the renormalization energy scale [10].
Using this, the average entanglement entropy of a block of
� contiguous spins was obtained to increase in leading order
logarithmically as

S� = ceff

3
ln � + const, (3)

with the so-called effective central charge ceff = ln 2. The
validity of this approach was confirmed by a numerically
exact diagonalization of the XX chain, which can be mapped
to free fermions [11]. The average entanglement entropy in
the random-singlet approximation is closely related to the dis-
tribution of singlet bond lengths ps(l ) � a2l−2, the prefactor
a2 (times ln 2) appearing in front of the logarithm in Eq. (3)
[12,21].

Besides the leading l dependence, however, one might also
be interested in the next-to-leading term in the finite-size
scaling of the mean entanglement entropy. Information on
the form of the correction term can be useful, in general, for
numerical analyses in models in which the leading depen-
dence is logarithmic but the effective central charge is a priori
unknown. Such systems are, among others, the fermionic or
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spin chains with long-range interactions [22], aperiodic or
quasiperiodic modulations [17,21], defects [23,24], or junc-
tions [25]. In order to estimate the effective central charge
in such cases, an extrapolation of the data obtained in finite
systems must be performed, which necessitates an assumption
about the form of corrections. To this end, we address the
question of what forms the subleading term in the scaling of
entanglement entropy as well as the singlet-length distribution
have in the well-studied cases of random antiferromagnetic
spin chains possessing a random singlet ground state. We
mention that this question in homogeneous spin chains has
been thoroughly studied [26–28]. The SDRG calculations
providing the leading logarithmic dependence on the block
size rely on fixed-point solutions in the scaling limit in which
the terms carrying information on the initial distribution of
randomness are omitted. To obtain the corrections, however,
this approach is insufficient. Nevertheless, it can be achieved,
at least within the SDRG approach, by considering a special
solution of power-law form of the SDRG flow equation, which
is valid from the beginning and changes through a single pa-
rameter along the SDRG trajectory [12,29]. Besides analytical
and numerical SDRG calculations, we shall also present how
the singlet lengths defined within the SDRG approach can
be interpreted and numerically calculated in the XX chain by
exact diagonalization of the equivalent free-fermion model.

We emphasize that, although the main focus of this paper
is on the entanglement entropy in the ground state of anti-
ferromagnetic spin chains, the results obtained here are more
generic in several respects. As it will be discussed in detail in
Sec. V, they have implications also on correlation functions,
are expected to be valid also for excited states, and for other
models like the random transverse-field Ising chain, as well.

The paper is organized as follows. The model and its
SDRG scheme is described in Sec. II. The special case of the
XX chain is analyzed by the SDRG method in Sec. III. Here,
earlier results necessary for our calculations are recapitulated,
then an analytical calculation of the leading correction to
the singlet-length distribution is presented, and from this, the
correction to the entanglement entropy is inferred. In Sec. IV,
numerical results obtained by the SDRG method and by exact
diagonalization for the XX chain are presented. Results are
discussed in Sec. V.

II. THE MODEL

In this paper, we consider random, antiferromagnetic spin-
1
2 XXZ chains having the Hamiltonian

H =
∑

n

Jn
(
Sx

nSx
n+1 + Sy

nSy
n+1 + �Sz

nSz
n+1

)
, (4)

where Sx,y,z
n are spin operators at site n, the Jn are positive,

independent, identically distributed, random couplings, and
the anisotropy parameter � is restricted to 0 � � � 1. This
model is known to have a random singlet ground state, and
the SDRG scheme is summarized as follows [18,19]. The
pair of spins connected by the largest coupling � = maxn{Jn}
is picked, projected to a singlet state 1√

2
(|↑↓〉 − |↓↑〉) and

removed from the chain, while an effective bond between
spins neighboring to the decimated pair is created. Labeling
the four spins involved in this procedure by 1,2,3, and 4,

the coupling and anisotropy parameter of the newly formed
bond (between spins 1 and 4) are calculated by second-order
perturbation theory to be:

J̃ = J1J3

(1 + �2)�
, �̃ = 1 + �2

2
�1�3. (5)

The length of the new bond will simply be

l̃ = l1 + l2 + l3. (6)

We assume that the bonds are initially of unit length, ln = 1,
leading to that the renormalized bond lengths are all odd
integers. During the SDRG procedure, the couplings become
correlated with the bond lengths but the parameters of differ-
ent bonds remain uncorrelated.

III. SDRG ANALYSIS OF THE XX CHAIN

A. Preliminaries

First, we will consider the special case of the XX model,
� = 0, for which analytical results of the SDRG approach
exist. The following master equation can be formulated for the
joint probability distribution P�(J, l ) of couplings and bond
lengths at energy scale �:

∂P�(J, l )

∂�
= −

∫
dJ1dJ3

∑
l1,l2,l3

P�(J1, l1)P�(�, l2)P�(J3, l3)

× δl,l1+l2+l3δ

(
J − J1J3

�

)
. (7)

Using the generating function P̂�(J, λ) = ∑
l e−λlP�(J, l ),

which was formally written as a Laplace transform with re-
spect to a continuous variable l in Refs. [12,29], the master
equation assumes a simpler form:

∂P̂�(J, λ)

∂�
= −P̂�(�, λ)

×
∫

dJ1dJ3P̂�(J1, λ)P̂�(J3, λ)δ

(
J − J1J3

�

)
. (8)

We consider the special solution of this equation found in
the closely related SDRG scheme of the transverse-field Ising
chain [29] and adapted to the XX chain as [12]

P̂�(J, λ) = α�(λ)

�

(
�

J

)1−β�(λ)

, (9)

where

α�(λ) =
√

θ2
0 − c2

cosh(c
) + θ0
c sinh(c
)

. (10)

Here, 
 is a logarithmic energy scale, 
 = ln(�0/�), where
�0 is the initial value of �; the function c = c(λ) is indepen-
dent of � and has the form

c(λ) = θ0

√
1 − e−2λ, (11)

whereas the function β�(λ), the concrete form of which is
not needed in the sequel, is given by c2 = β2

� − α2
�. The spe-

cial solution in Eq. (9) corresponds to a power-law marginal
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distribution of couplings

P̂�(J, λ = 0) = P�(J ) = θ (�)

�

(
�

J

)1−θ (�)

, (12)

with θ (�) = (θ−1
0 + 
)−1, θ0 denoting the exponent of the

initial distribution of couplings at 
 = 0. The special solution
tends to the fixed-point solution found by Fisher in the limit
� → 0, which is attractive for any sufficiently regular initial
distribution of couplings [19]. Along this special trajectory,
the fraction of active (not yet decimated) spins varies with the
energy scale as

n
 = 1

(1 + θ0
)2
. (13)

B. Distribution of singlet lengths

First, we consider the distribution ps(l ) of singlet bond
lengths. This can be calculated by collecting the newly formed
singlet lengths along the trajectory all the way to the fixed
point at � = 0 as [12]

ps(l ) = 2
∫ �0

0
n
P�(�, l )d�. (14)

In principle, the distribution of singlet lengths could be
obtained by reconstructing P�(�, l ) from the generating func-
tion P̂�(�, λ) = α�(λ)/�, and performing the integration in
Eq. (14). Essentially this was followed in Ref. [12], by taking
the scaling limit λ → 0, 
 → ∞ so that λ1/2
 ∼ c
 = O(1),
which amounts to neglecting the term cosh(c
) in the denom-
inator in Eq. (10). Inverse Laplace transforming α�(λ) in this
scaling limit leads ultimately to ps(l ) = 2

3 l−2[1 + O(1/
√

l )].
The leading term obtained in this way agrees with the one that
can be inferred from the leading block-size dependence of the
mean entanglement entropy in Eq. (3) calculated in Ref. [10].
But, the usage of this scaling limit is not expected to correctly
account for the subleading terms, which are affected by the
full RG trajectory, not only by the close vicinity of the fixed
point. We can see that the denominator in Eq. (10) in the limit
c → 0 (λ → 0) tends to 1 + θ0
, but, in the scaling limit, only
θ0
 remains. Our numerical results obtained by the SDRG
method (see later) indicate, however, that the correction is
weaker, being in the order of 1/l , so the correction O(1/

√
l )

must be an artifact of the simplification in the scaling limit.
To improve this way of calculation so to obtain the correct
subleading term seems to be hard, therefore we followed a
different route.

For the generating function p̂s(λ) = ∑
l e−λl ps(l ), we ob-

tain from Eqs. (14) and (9) the form:

p̂s(λ) = 2
∫ ∞

0
n
α�(λ)d
, (15)

which is written as an integral over 
. Guided by the numer-
ical SDRG results, we assume the following expansion of the
singlet-length distribution for l � 1:

p0
s (l ) �

∞∑
n=2

an

ln
(16)

for odd l , and p0
s (l ) = 0 for even l , where a2, a3, . . . are con-

stants and, from previous results, we know only a2 = 2/3. The

generating function of such a fat-tailed distribution like p0
s (l )

is nonanalytic at λ = 0, containing a contribution proportional
to ln λ. To see this, we calculate the derivative of the gener-
ating function of the first term of the series, d

dλ

∑
l e−λl a2

l2 =
−∑

l e−λl a2
l , where the summation goes over odd integers

only. This series sums up to a2
2 ln 1−e−λ

1+e−λ = a2
2 ln λ

2 + O(λ2).
Similarly, we can see that the n − 1st derivative of the gener-
ating function of the nth term of p0

s (l ) gives (−1)n an
2 ln λ

2 +
O(λ2). Then, by integration, we obtain that the generating
function p̂0

s (λ) = ∑
l e−λl p0

s (l ) must contain a singular part,
which is proportional to ln λ for λ → 0:

[
p̂0

s (λ)
]

singular =
∞∑

n=2

(−1)n an

2

λn−1

(n − 1)!
ln λ. (17)

Now, we try to identify such singular terms in the gener-
ating function represented as an integral in Eq. (15). First,
let us inspect the integrand in Eq. (15). The factor n
 is
proportional to 
−2 for large 
, while the second factor
is α�(λ) ∼ ce−c
 for 
 � c−1. Since we are looking for a
contribution of the integral proportional to ln c in the limit
c → 0, we can cut off the integration at 
 = c−1 rather
than performing it to infinity; the dropped part of the inte-
gral is O(c2) and nonsingular, therefore uninteresting from
our point of view. Denoting the denominator of α�(λ) in
Eq. (10) by R(c0, 
0) ≡ cosh(c0
0) + c−1

0 sinh(c0
0), where
c0 ≡ c/θ0 and 
0 ≡ θ0
 we can recast α�(λ) as

α�(λ) =
θ0

√
1 − c2

0

1 + 
0

1

1 + [(1 + 
0)−1R − 1]
. (18)

Then we apply the series expansion of cosh(x) and sinh(x)
functions around x = 0 to obtain T ≡ (1 + 
0)−1R − 1 =

1
1+
0

∑∞
n=2

bn(c0
0 )n

n! , where bn is 1 for n even and c−1
0 for n odd.

Since 0 < T < 1 in the domain 0 � 
0 � c−1
0 for any c0 > 0,

we can expand the second factor in Eq. (18) in a geometric
series

1

1 + T
=

∞∑
n=0

(−1)n(1 + 
0)−n
∞∑

k1,k2,...,kn=2

csn−on
0 


sn
0

k1!k2! . . . kn!
,

(19)

where sn = ∑n
i=1 ki and on is the number odd indices ki. Using

this expansion and Eq. (13), the integrand can be written as
a series with both negative and positive powers of 
0 + 1.
Clearly, integrating from 0 to 1/c0 a contribution proportional
to ln c0 will arise from the terms proportional to (1 + 
0)−1.
Collecting these terms, we obtain ultimately for the singular
part:

[ p̂s(λ)]singular =−2
√

1 − c2
0

∞∑
n=1

(−1)n

×
∞∑

k1,k2,...,kn=2

(−1)sn

(
sn

n + 2

)
csn−on

0

k1!k2! . . . kn!
ln c0.

(20)

We can see that the expression in front of ln c0 contains only
even powers of c0, and using that c2

0 = 1 − e−2λ it is therefore
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analytic in λ, in accordance with the assumption in Eq. (16)
leading to Eq. (17). Evaluating Eq. (20) for the first few orders
of c0, we obtain

[ p̂s(λ)]singular =
[

1

3
c2

0 + O
(
c8

0

)]
ln c0. (21)

Substituting c2
0 = −∑∞

n=1
(−2λ)n

n! [obtained from Eq. (11)]
into Eq. (21) and comparing it with Eq. (17), we obtain for
the first three expansion coefficients:

a2 = 2

3
, a3 = 4

3
, a4 = 8

3
. (22)

The coefficient a2 = 2/3 of the leading term agrees with pre-
vious results of Refs. [10,12].

C. Entanglement entropy

Next, we consider the scaling of the entanglement entropy
within the SDRG approach. First, we count the singlets cross-
ing a wall, which divides the chain into two semi-infinite parts.
The mean number of such singlets created down to energy
scale � is denoted by N (�). This quantity was calculated
in two different ways in the scaling limit in Refs. [10,12].
From N (�), the leading block-size dependence of the mean
entanglement entropy can be inferred by using the relation-
ship between the mean bond length l = 1/n
 and 
 given
in Eq. (13). Here, we use the exact starting point for the
calculation of N (�) formulated in Ref. [12] in terms of the
distribution P�(�, l ) of singlet lengths created at scale �:

N (�) =
∫ �0

�

d�n


∑
l

P�(�, l )l. (23)

In Ref. [12], this formula was evaluated using the explicit form
of the distribution P�(�, l ) obtained in the scaling limit. This
yields N (�) = 1

3 [ln(1 + 
0) − 1 + (1 + 
0)−1], and through
the substitution � = 1/n
 = (1 + 
0)2 leads to the form in
Eq. (3) with an additional O(�−1/2) correction term [12]. Now,
we evaluate Eq. (23) exactly along the special trajectory, us-
ing that the expected value of singlet lengths at scale � can
directly be calculated from the generating function through:

∑
l

P�(�, l )l = −dP̂�(�, λ)

dλ

∣∣∣∣
λ=0

= − 1

�

dα�(λ)

dλ

∣∣∣∣
λ=0

= − 2

�

dα�

dc2
0

∣∣∣∣
c2

0=0

. (24)

Then, from Eq. (10) we obtain

∑
l

P�(�, l )l = θ0

�

2

3

[
1

2
(1 + 
0) + 1

(1 + 
0)2

]
. (25)

Substituting this expression into Eq. (23) and evaluating the
integral we find that

N (�) = 1

3
ln(1 + 
0) + 2

9

[
1 − 1

(1 + 
0)3

]
. (26)

Thus, the subleading term decreases as ∼
−3 for large 
,
and the substitution � = 1/n
 = (1 + 
0)2 then results in a
correction of O(�−3/2). Nevertheless this transformation of

 dependence to � dependence, which certainly provides the

correct leading-order behavior, has to be taken cautiously if
one is interested in the subleading term, as we can see later.

The previous approach counts the number of crossing
singlets during the SDRG procedure as a function of the
renormalization scale 
. Alternatively, one can write the mean
entanglement entropy S� of a block of � contiguous sites
(embedded in an infinite chain) in a straightforward way in
terms of the distribution of singlet lengths ps(l ) in the random
singlet phase as

S�

ln 2
=

∑
l<�

ps(l )l + �
∑
l��

ps(l ). (27)

Here, the expression on the right-hand side is the mean num-
ber of singlets with exactly one constituent spin within the
block, and we have used that each such singlet gives an inde-
pendent contribution of ln 2 to the entanglement entropy.

Let us consider the first sum in Eq. (27). The leading term
of the distribution a2

l2 provides the leading logarithmic diver-
gence of the entanglement entropy with an O(�−1) correction:
a2
2 ln � + a2

2 (γ + ln 2) + O(�−1), where γ denotes the Euler-
Mascheroni constant. The subleading term of ps(l ) brings
another correction term of the same order: a3

π2

8 − a3
2

1
�

+
O(�−2). The second sum in Eq. (27) gives a contribution
a2
2 + O(�−1), where the correction is composed of both the

contributions of the first and second term of the expansion
of ps(l ). We thus conclude that the subleading term in the
size-dependence of the entanglement entropy is O(�−1):

S�

ln 2
= 1

3
ln � + const + O(�−1), (28)

where the correction is determined by the first two terms of the
expansion of singlet-length distribution given in Eq. (16). Ac-
cording to the analytical results obtained for the coefficients
in Eq. (22), the coefficient of the O(�−1) correction term is
independent of the parameter θ0 of the special solution.

IV. NUMERICAL RESULTS

A. Distribution of singlet lengths

In order to check the results obtained in the previous
section, we calculated the distribution of singlet lengths by
numerically implementing the SDRG method. We consid-
ered uniform distributions of couplings with the support
[J0, J0 + 1]. For the XX model (� = 0), J0 = 0 corresponds to
the initial point of the special trajectory with θ0 = 1, whereas
for J0 > 0, it does not belong to the initial domain of the
special solution. We considered periodic chains with L = 105

sites, and defined the distance between two sites i and j
as l = min{|i − j|, L − |i − j|}. The distribution ps(l ) was
determined from data obtained in 107 independent random
samples. We calculated the correction to the leading term of
the distribution

δ(l ) = ps(l ) − 2

3
l−2 (29)

and plotted it for different values of J0 and � in Figs. 1 and
2. For the special solution of the XX chain (J0 = 0, � = 0),
the correction is δ(l ) = 4

3 l−3 + O(l−4) according to the an-
alytical results. As can be seen in Fig. 2, the form of the
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10-8

10-6

10-4

10-2

 1

 1  10  100  1000

|�
(l)

|

l

4/3l-3
XX J0=0

XX J0=0.5
XXZ �=0.5, J0=0

XXX J0=0

FIG. 1. The magnitude of the correction δ(l ) = ps(l ) − 2
3 l−2 of

the singlet-length distribution obtained by the numerical SDRG
method for different variants of the random XXZ chain. The solid
line is the analytically obtained prediction for the subleading term
valid for the case J0 = 0 and � = 0.

subleading term 4
3 l−3 is consistent with the numerical data,

δ(l )l3 tending indeed toward 4/3. Nevertheless the approach
is much slower than that obtained from the analytical calcula-
tions δ(l )l3 = 4

3 + O(l−1), and even the sign of the correction
of δ(l )l3 is opposite (negative). This shows that a correction
of the form other than that assumed in Eq. (16) must also
be present, which mask the term O(l−4). In Fig. 3, we find
that the correction next to the subleading term is proportional
to l−7/2.

For the distribution with J0 = 0.5 in the XX case and
for the XXZ model with � = 0.5 and J0 = 0, the numerical
results still show a subleading term of O(l−3) but the coeffi-
cient of this term differs from 4/3 and is nonuniversal. This
is expected to be the case generally for � < 1, where the
renormalization flow is attracted by the XX fixed point [19].

-0.5

 0

 0.5

 1

 1.5

 1  10  100

�(
l)l

3

l

XX J0=0
XX J0=0.5

XXZ �=0.5, J0=0

FIG. 2. The scaled correction of the singlet-length distribution
δ(l )l3, which is expected to tend to the prefactor a3 of the subleading
term. The horizontal line indicates the analytically obtained limiting
value 4/3 valid for the XX model with J0 = 0.

10-10

10-8

10-6

10-4

10-2

 1

 1  10  100

|p
s(

l)-
2/

3l
-2

-4
/3

l-3
|

l

l-7/2

XX J0=0

FIG. 3. The correction of the singlet-length distribution beyond
the subleading term for the XX model with J0 = 0. The data are
obtained by the numerical SDRG method. The solid line corresponds
to an algebraic decrease proportional to l−7/2.

For the isotropic case � = 1, for which the flow tends to
the Heisenberg fixed point [19], the numerical results show
a different form of the subleading term. As can be seen in
Fig. 4, the corrections are stronger than those found at the XX
fixed point, being roughly proportional to l−5/2. Plotting the
rescaled correction δ(l )l5/2 against l−1/2 (see the inset of the
figure), the asymptotically linear behavior indicates a further
correction term of order l−3.

For the XX model, which can be mapped to free fermions
by the Jordan-Wigner transformation, we can confront the
SDRG results with those obtained by exact diagonalization.
To do so, the singlet lengths, which are natural in the SDRG
approach, have to be interpreted in the original model. For
this, we use the free-fermion representation of the XX chain,

Hf = 1

2

∑
n

Jn(c†
ncn+1 + c†

n+1cn), (30)

10-8

10-6

10-4

 10  100  1000

|�
(l)

|

l

l-5/2

XXX J0=0
XXX J0=0.5

-0.8

 0

 0  0.6

�(
l)l

5/
2

l-1/2

FIG. 4. Correction of the singlet-length distribution in random
XXX chains, obtained by the numerical SDRG method. The inset
shows the rescaled correction δ(l )l5/2 plotted against l−1/2.
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where cn and c†
n are fermion annihilating and creating op-

erators, respectively, at site n. We assume that the number
of sites is even, so that the lattice is bipartite, and, due to
this, the fermion system has a sublattice symmetry. As a
consequence, the one-particle energies appear in pairs ±εk ,
and the ground state is at half filling. In this fermion system,
the SDRG approximation means that the one-particle states
are perfectly localized on two sites, i and j, which belong to
different sublattices. For negative energies, the kth eigenstate
is thus of the form

ψSDRG
k (n) = 1√

2
(δin − δ jn). (31)

Clearly, the spin singlets of the XX chain correspond to the
one-particle states of the fermion system. The true eigenstates
ψk (n) are, although not perfectly, but still localized around the
two sites picked by the SDRG. As a consequence of the bipar-
tite structure, one can show at low energies |εk| 
 1 that, if the
wave function is O(1) on one of the sublattices in some region,
then ψk (n) in the same region but on the other sublattice
must be small. Thus the one-particle states are concentrated in
two spatially separated regions hosted essentially on different
sublattices around the two SDRG sites. As centers of these
two regions for a given one-particle state ψk , we considered
the sites ik and jk with the maximal magnitude of the wave
function on the odd and the even sublattice, respectively:

|ψk (ik )| = max
n

{|ψk (2n + 1)|}
|ψk ( jk )| = max

n
{|ψk (2n)|}. (32)

By diagonalizing the Hamiltonian of the fermion model nu-
merically up to a lattice size L = 2048, we calculated the
distance lk = min{|ik − jk|, L − |ik − jk|} for each eigenstate,
and repeating this calculation for 107 random realizations of
the disorder with J0 = 0, we measured the distribution p f (l ).
As can be seen in Fig. 5, the correction δ(l ) = p f (l ) − 2

3 l−2

of the distribution tends to zero proportionally to l−3. The
scaled correction δ(l )l3 has, however, strong corrections at
the sizes available numerically, and it is thus not possible to
extract the coefficient a3 reliably. Assuming a correction of
order l−7/2 next to the subleading term as was found by the
SDRG method, the data allow for an asymptotic value of the
coefficient a3 = 4/3, see the extrapolation in Fig. 5(b). Nev-
ertheless, the sign of the correction term O(l−7/2) is different
from that found by the SDRG method, which indicates the
presence of further corrections, which are not captured by the
SDRG approximation.

B. Entanglement entropy

From the distribution of singlet lengths obtained nu-
merically by the SDRG method we calculated the average
entanglement entropy S� of subsystems of size � through
Eq. (27). In order to eliminate the constant term in the asymp-
totic dependence of S� on �, see Eq. (28), we considered the
discrete derivative with respect to ln �, a quantity, which is
practical for a numerical determination of ceff :

ceff (�) = 3
S�+s − S�

ln(� + s) − ln �
. (33)
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FIG. 5. (a) Correction to the distribution of distances between
odd and even sublattice maxima of the one-particle states in the free-
fermion model equivalent to the XX chain. The data were obtained
by an exact diagonalization of the free-fermion Hamiltonian for
different system sizes L. The straight line represents the subleading
term obtained by the SDRG approach. (b) The scaled correction,
δ(l )l3, plotted against O(l−1/2). The straight line having an intercept
4/3 is a guide to the eye.

For s = 1, this quantity shows an oscillatory behavior due
to that the singlet lengths are odd, therefore we used s = 2
in Eq. (33). From Eq. (28), we find then an O(�−1) leading
correction to the effective central charge:

ceff (�) = ln 2 + O(�−1) (� < 1), (34)

which is expected to be valid for the XXZ chain with � <

1. Numerical results shown in Fig. 6(a) are compatible with
this, and the coefficient of the correction term is found to be
nonuniversal. Moreover, the linear asymptotic dependence of
[ceff (�) − ln 2)]� on �−1/2 indicates that the next correction
term is O(�−3/2). For the XXX chain (� = 1), the form of the
correction is different from this. Using the numerically found
subleading term of the distribution of singlet lengths, δ(�) �
b�−5/2, we obtain through Eq. (27), that the leading correction
to the effective central charge is in the order of �−1/2:

ceff (�) � ln 2 + b ln 2�−1/2 (� = 1). (35)

The numerical results shown in Fig. 6(b) are in accor-
dance with this form, although the convergence of [ceff (�) −
ln 2]�1/2 to b ln 2 is slow due to the next correction term of
order �−1.

We also calculated the entanglement entropy of the XX
model by mapping it to free fermions and performing ex-
act numerical diagonalization. The entanglement entropy can
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FIG. 6. The scaled correction to the effective central charge, cal-
culated numerically by the SDRG method for variants of random the
XXZ chain (a) and the XXX chain (b).

then be calculated from the eigenvalues of the correlation
matrix Ci j = 〈c†

i c j〉 restricted to the subsystem [6,30]. We
calculated the entanglement entropy of blocks with an even
number of sites and averaged over 107 random samples as
well as for different positions of the block in the system.
The size-dependent effective charges defined in Eq. (33) are
plotted in Fig. 7. The data are compatible with Eq. (34),
but the coefficient of the O(�−1) correction term is found
to be significantly greater than that calculated by the SDRG
method. This shows again the presence of further corrections
related to the imperfect localization of states in the original
model, which the SDRG approximation can not account for.

V. DISCUSSION

In this paper, we studied the entanglement entropy of
blocks of spins and the closely related distribution of singlet
lengths in the random singlet phase of antiferromagnetic XXZ
chains. The leading-order size dependence of these quantities
is well known by the strong-disorder renormalization group
approximation. We addressed here a less studied question of
how large the subleading terms are. Using a special trajectory
of the SDRG flow valid for the XX chain, we found by an ana-
lytical calculation that the singlet-length distribution contains
a series of integer powers of 1/l , the leading term of which
agrees with the well-known result 2

3 l−2, see Refs. [10,12]. Our
numerical SDRG results confirm the form of the subleading
term, 4

3 l−3, and also reveal a term of order l−7/2, which is
not identified by our analytical method, and which masks the

0.70
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c e
ff(
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1/l
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FIG. 7. The effective central charge defined in Eq. (33) and cal-
culated by exact numerical diagonalization of the free-fermion model
equivalent to the XX chain, as a function of the inverse subsystem
size, for different system sizes L. The distribution of couplings was
uniform with J0 = 0. As a comparison, the data obtained by the
SDRG method, as well as ceff (L/2) calculated from the half-chain
entropies [by setting � = L/2 and s = L/2 in Eq. (33)] are also
shown. The straight lines have slopes 0.62, 1.47, and 2.24.

subsequent integer-power term. For general distributions of
couplings not initiating the special trajectory and for the XXZ
chain with an anisotropy parameter 0 < � < 1, we found by
the numerical SDRG method that the subleading term is still
proportional to l−3 but the coefficient is nonuniversal. For
the XX chain, we interpreted the concept of singlet lengths
originating in the SDRG approach as the distance between
maxima of the one-particle wave functions on the even and
odd sublattices in the equivalent free-fermion model. We cal-
culated the distribution of these distances by exact numerical
diagonalization and found that the form of the subleading term
is compatible with the SDRG prediction. Nevertheless, for a
clearer conclusion on this issue, larger systems should be nu-
merically investigated. For the isotropic XXX chain (� = 1),
we found by the numerical SDRG method the correction to be
stronger than for models attracted by the XX fixed point: the
subleading term is proportional to l−5/2 rather than to l−3.

Based on the numerical results, we conjecture that be-
sides the analytically found integer powers of 1/l (starting
with l−2), the singlet-length distribution also comprises half-
integer powers of 1/l , starting with l−7/2 for the XX fixed
point and l−5/2 for the XXX fixed point. Moreover, the coef-
ficients apart from that of the leading term are nonuniversal.

The subleading term of the singlet-length distribution ap-
pears also in the size dependence of the average entanglement
entropy and, for the XX fixed point, gives (together with other
corrections of the same order) a subleading term of O(�−1)
with a nonuniversal coefficient next to the leading logarithmic
divergence. This was confirmed by numerical SDRG results
as well as by exact diagonalization for the XX chain. The true
coefficient of the subleading term is found to be greater com-
pared to that obtained by the SDRG approach. For the XXX
chain, the subleading term of the singlet-length distribution,
which was found numerically to be of O(�−5/2) dominates
the other correction terms and leads to a subleading term of
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O(�−1/2) next to the logarithmic divergence in the entangle-
ment entropy.

The leading term of the entanglement entropy scaling and
the closely related singlet-length distribution are known to
be universal and correctly captured by the SDRG approach.
We have found in this paper that, as opposed to this, the
subleading term of these quantities is nonuniversal: although
the exponent is universal for the XX fixed point, the coef-
ficients depend on the form of coupling distribution and on
the anisotropy parameter. Moreover, for the XXX fixed point
even the exponent differs from that of the XX fixed point. We
have also found that the SDRG approach, although properly
gives the order of the subleading term of the entanglement
entropy, fails to provide the correct coefficients. This failure
must be related to the assumption on perfect localization of
eigenstates, which is at the core of the SDRG approach.

Other quantities not studied in this paper but which are
closely related to the distribution of singlet lengths are
the spin-spin correlation functions Cα (l ) = 〈Sα

0 Sα
l 〉 for α =

x, y, z. In the SDRG approach, their average value is directly
proportional to the singlet-length distribution ps(l ). In a recent
exact diagonalization study of the correlation functions of the
random XX chain, weak nonuniversal corrections have been
seen in the transversal (α = z) correlation function [31]. It
is an interesting question whether the corrections next to the
leading term of the correlation function are compatible with
the SDRG predictions of this paper.

Besides the ground state, which we considered through-
out this paper, the entanglement entropy of the random XX

chain has also been studied in excited states sampled from a
canonical ensemble in Ref. [32] by an extension of the SDRG
method [33]. Here, a leading logarithmic divergence of the en-
tanglement entropy was found with a prefactor undetermined
owing to degeneracies of the excited states [32]. Within the
SDRG approach, the excited states have the same product
state structure as the ground state has, with the difference that
some of the spin pairs are in a triplet rather than a singlet
state. Thus, the distribution of the length of spin pairs is the
same, and, as a consequence, the �-dependent terms of the
ground-state entanglement entropy, including the corrections
found in this paper, are modified in excited states by the same
global (undetermined) factor.

It is worth mentioning that, as a consequence of the exact
relationship between the entanglement entropy in the random
XX chain and in the random transverse-field Ising chain [34],
the subleading term near the logarithmic one at the critical
point of the latter model must be O(�−1), as well. It would
be desirable to give a quantitative description of the stronger
corrections observed at the XXX fixed point within the SDRG
approach and to confirm these results with numerical methods
beyond the SDRG approach, which are left for future research.
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