
PHYSICAL REVIEW B 104, 054208 (2021)

Ring uniformity in amorphous photonic band gap materials

Chih-Ying Yang , Bo-Lin Lai, and Zhi-Hong Xie
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan

Yu-Chueh Hung
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan

and Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan

(Received 28 June 2021; revised 13 August 2021; accepted 16 August 2021; published 24 August 2021;
corrected 27 August 2021)

The existence of photonic band gap (PBG) in amorphous networks has been associated with structural
short-range order and internal similarity. In this study we present amorphous networks that possess low degrees
of orderness and similarity, yet still exhibit decent PBG forming ability. The robustness of PBG is found to be
related to less-deviated ring distributions. We develop regional ring disorder to quantify variations of rings,
revealing the complementary roles of regional ring uniformity and local similarity in PBG formation. The
evolution of PBG with respect to structural deformation is also presented to elucidate the effect of regional
characters on PBG formation. Our study brings new insights towards the understanding of PBG formation in
amorphous structures, paving the way for novel design and manipulation of amorphous PBG materials.
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I. INTRODUCTION

Photonic band gap (PBG) materials, which prohibit prop-
agation of electromagnetic modes within a frequency range,
have gained considerable attention in the past decades. The
generation of PBG is mostly realized by ordered structures,
such as photonic crystals [1,2] or liquid crystals [3]. In re-
cent years, amorphous PBG materials also attracted growing
interests, motivated by the fascinating structural coloration
[4–6] observed in nature. The unusual properties may also find
broad applications in sensors [7], random lasers [8,9], optical
fibers [10–12], resonators [13], and reconfigurable photonic
integrated circuits [14]. There are many existing configura-
tions of amorphous materials that exhibit sizable PBGs, such
as randomly packed spheres [15,16], inverse opals [17–19],
amorphous gyroid [20] and diamond [21–23] networks, etc.
By varying the materials or geometrical parameters, the oper-
ation wavelength range and PBG width can be tuned. To fully
manipulate the optical properties, however, it is of crucial
importance to understand the key structural characters that
govern the formation of PBGs. The resolution is particularly
challenging for three-dimensional (3D) amorphous structures,
given the variety and complexity of topology and spatial
organization.

Research efforts have been devoted to examining the cor-
relation between structural characters and PBG properties
of amorphous materials. To inspect the structural features,
several fundamental characterizations, such as Fourier power
spectra [24,25], structure factor [26,27], radial distribution
function [28], and structural order parameter [29], are carried
out to yield information related to spatial distribution and local
topology. From the analysis of these measures, it is revealed
that the existence of PBG is closely associated with structural
short-range order [30–32]. PBG forming ability is also found

to be closely related to local self-uniformity (LSU) as pro-
posed by Sellers et al. [20]. They showed that amorphous
networks assembled with highly similar local units, mani-
fested by significant LSU, are beneficial to PBG formation.
However, in review of these studies, the amorphous structures
are normally generated by prescribed optimization protocols
[20,33]. With the constraints imposed in the algorithms, the
resulting topology tends to evolve toward a more uniform
spatial distribution. The finite degree of structural deforma-
tion somewhat confines the topological scenarios that can be
explored.

In this study we present representative amorphous net-
works that possess low degrees of short-range order and local
similarity as indicated by the measures, yet still exhibit decent
PBG forming ability. Rod-connected amorphous networks
with trivalent vertices and a refractive index of 3.6 are used
as model systems. We introduce additional structural defor-
mation on annealed amorphous networks and find that the
resulting structure’s PBG is quite robust against distortion of
local units. It indicates that the scope of structural measures
of PBG materials needs to be broadened beyond local com-
parison. In fact, in amorphous solids, medium-range order,
evaluated by ring analysis, has been discussed as a character
[34–37], which extends the structural analysis toward a more
regional aspect. The previous measures of PBG materials have
been primarily related to short-range order, while the con-
tribution of longer-scale structural feature to PBG formation
remains unclear. We explore the effect of ring characteristics
on PBG properties and show that ring uniformity has a great
impact on the formation of PBG in amorphous networks. In
addition, the PBG forming ability is associated with the inter-
play between local similarity and ring uniformity. The PBG
forming ability with respect to different structural characters
will also be discussed.
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II. PBG FOR AMORPHOUS NETWORKS

We start our discussion by presenting two rod-connected
amorphous structures with a similar PBG forming ability.
The dielectric fill fraction of the network is set to be 20%,
which is around the level for such rod-connected networks to
show optimized PBG [20,38]. The first structure is a contin-
uous random network (CRN), where a 216-vertex network is
constructed by the modified Wooten-Winer-Weaire (WWW)
algorithm [20,39,40]. The details of the algorithm are de-
scribed in the Supplemental Material [41]. Figure 1(a) shows
a representative CRN structure. Via the WWW algorithm,
an amorphous trivalent network tends to evolve toward an
ideal gyroid. We examine the geometrical characteristics of
the CRN, presented by edge lengths d , interedge angles θ ,
dihedral angles φ, and skew angles χ , as shown in Figs. 1(b)
and 1(c). The distribution of d exhibits a finite width cen-
tered around d0, where d0 is the edge length of the skeletal
gyroid network. The distributions of θ , φ, and χ are cen-
tered at 120◦, 70.5◦/105.5◦, and 90◦, respectively, resembling
those of an ideal gyroid network. The radial distribution func-
tion (RDF) is calculated to reveal the spatial correlation of
vertices [28]. Figure 1(d) shows the RDF of the CRN struc-
ture, which displays evident peaks, indicating well-distributed
vertices in space possessing short-range order. The Fourier
transform of the network shown in the inset figure displays
concentric spherical shells without discrete Bragg peaks, indi-
cating structural isotropy without long-range order. The band
structure of the CRN is calculated by the finite-difference
time-domain method (FDTD, Lumerical Inc.) as shown in
Fig. 1(e). The simulation settings are described in the Sup-
plemental Material [42]. A complete PBG is observed in the
frequency range of 0.216 to 0.231 (a/λ). The band gap width
�ω/ω0, defined as the ratio of band gap size �ω to middle
frequency ω0, is around 6.8%.

The second structure, denoted as CRN′-RV, is a CRN un-
dergoing relocation of vertex (RV) algorithm, where vertices
of the network are randomly positioned within some finite
relocation distances. The prime of CRN′-RV is meant to show
that CRN′-RV is derived from a CRN of better annealing
conditions with respect to the CRN in Fig. 1(a). Due to better
annealing conditions, the CRN′ before vertex relocation yields
a band gap width of 17.4%. The details of the RV algorithm
are described in the Supplemental Material [43]. CRN′-RV is
shown in Fig. 1(f), displaying a more disordered appearance
than CRN. The same analyses for CRN′-RV structures are pre-
sented in Figs. 1(g) and 1(h). The edge lengths and interedge
angles are distributed around centered values, whereas dihe-
dral angles and skew angles are dispersed. The RDF and the
Fourier transform of the network are shown in Fig. 1(i). The
Fourier pattern exhibits a similar concentric shape, indicating
isotropic structural property. However, the RDF displays an
evenly distributed statistic without featured peaks in the pro-
file. Compared to CRN, we can see that CRN′-RV possesses
a relatively low degree of short-range order as indicated by
the geometrical properties. The band structure of CRN′-RV is
shown in Fig. 1(j). A complete PBG for CRN′-RV is allocated
in the frequency range from 0.218 to 0.231 (a/λ). Despite
distinct geometrical features for CRN and CRN′-RV, both
structures exhibit surprisingly similar PBG properties.

FIG. 1. Amorphous network morphologies of CRN (a) and
CRN′-RV (f) with a similar PBG width. The edge length d , interedge
angle θ , dihedral angle φ, skew angles χ , radial distribution function
(RDF), and band structures for CRN and CRN′-RV are plotted in
(b)–(e) and (g)–(j), respectively. The Fourier transform analyses of
networks are shown as the insets of RDF distributions.

III. LOCAL SIMILARITY AND PBG

Among the present structural analyses for amorphous net-
works, it has been found that similarity of local element is
strongly associated with the formation ability of PBG. One
qualitative evaluation is LSU (�22), calculated by the mean
of similarity measuring function φnl , where φnl describes the
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FIG. 2. Photonic band gap (PBG) width (�ω/ω0) versus local
self-uniformity (LSU) (�22) of CRN (blue squares), CRN′-RV (red
circles), and CRN′′-RV (black triangles).

similarities for all pairs of trees with depth n and locality l (see
definitions in the Supplemental Material [44]). It was found
that amorphous networks with a high level of LSU (�22 >

0.7) is favorable for PBG formation [20]. We carry out the
LSU (�22) analysis for the two structures in Fig. 1 to examine
their local similarity. Our calculation shows that �22 of the
CRN structure is 0.82, whereas �22 of the CRN′-RV structure
is 0.48. It indicates that CRN′-RV possesses a low level of
local similarity and its LSU is also far below the satisfactory
margin for PBG occurrence. From the geometrical features
in Figs. 1(g)–1(i) and LSU analysis, the structural charac-
ters of CRN′-RV exhibit diverse distributions of dihedral and
skew angles, featureless RDF, as well as a low level of local
similarity. Yet, the PBG forming ability is comparable with
the structures displaying more evident features of short-range
order and high local similarity. It implies that PBG formation
in CRN′-RV is attributed to some geometrical characteristics
not revealed by present structural measures.

For a more comprehensive analysis, we construct sets of
amorphous networks undergoing vertex relocation to examine
how LSU and PBG width are correlated. We present the anal-
ysis for CRN structures undergoing vertex relocation derived
from two different initial CRNs, denoted as CRN′-RV and
CRN′′-RV, where CRN′ is better annealed than CRN′′. We
gradually increase the vertex relocation distance and examine
the corresponding �22 and PBG widths. In Fig. 2 the PBG
widths (�ω/ω0) versus LSU are plotted for CRN′-RV and
CRN′′-RV by circles and triangles, respectively. CRNs with
different annealing levels are also plotted by squares for com-
parison. In all the structures, the �22 values are positively
correlated with PBG widths, but the distributions display a
rather different behavior. For CRNs, LSU mostly falls in
the range of 0.8–0.9, implying that only CRNs possessing
significant local similarity exhibit sizable PBG. In addition,
the gap width narrows down rapidly with decreased �22. For
CRN′-RV and CRN′′-RV (referred to as RV series hereafter),
the values of LSU for sizable PBG distribute within a broad

span. As opposed to the steep PBG decline in CRN, PBG of
the RV series decreases in a more progressive manner. For
example, PBG widths of CRN′-RV just decrease by 3% in
spite of an apparent reduction of �22 from 0.84 to 0.65. The
behavior of the RV series distinctly diverges from the intrinsic
CRN structural character. It is attributed to the application
of vertex relocation, which introduces the other degree of
structural deformation. To further examine the effect of vertex
relocation on PBG properties, we also apply the RV algorithm
on an ordered gyroid network, referred to as Gyroid-RV. The
LSU distribution is calculated while increasing the vertex
relocation distance, and the corresponding gap width is plotted
as shown by diamond dots in Fig. S5 in the Supplemental
Material [45]. Before vertex relocation, the gyroid network
has a gap width of 24% and a unity �22. As the range of
vertex location is extended, �22 and PBG width decrease
simultaneously and the trend follows a similar behavior as
the RV series. It suggests that vertex relocation has a similar
impact on PBG properties for both ordered and disordered
structures.

IV. FROM LOCAL TO REGIONAL ANALYSIS

To elucidate the geometrical variations due to different
structure construction algorithms, we look into the geometri-
cal variations resulting from different construction algorithms.
For simplicity, two networks with connected trihedral in
Fig. 3(a) are illustrated to outline the features of structure
construction. We first depict the structure undergoing modi-
fied WWW algorithm for CRN construction as shown in the
upper panel. The evolution of CRN involves the introduction
of Stone-Wale defects and topological relaxation in order to
reduce Keating potential energy of geometrical constraints
[20,40]. Afterwards, edges AF and BC are reconnected to
be AC and BF due to bond transposition and vertices are
relaxed to optimized locations. The algorithm forces CRN to
evolve toward ideal gyroidal topology, giving rise to more
uniform geometrical features. In the lower panel, we depict
the construction of CRN′-RV with an initial structure CRN′.
After applying the RV algorithm, all vertices are randomly
relocated within a finite distance. The connectivity of edges
remains the same, yet the trihedral units experience a dramatic
deformation. The uncorrelated perturbation in turn has a great
impact on the dihedral angles and skew angles, in line with the
broad angle distributions in Fig. 1(h). The dramatic disruption
of local units also leads to the wide distribution of �22, rang-
ing from 0.4 to 1 as shown in Fig. 2. In addition, it is noticed
that PBGs of the RV series are more robust against low �22,
indicating the optical properties are less sensitive with respect
to variations of local units.

To further examine how geometrical features are correlated
with LSU, we illustrate a two-dimensional (2D) network in
Fig. 3(b) to exemplify the procedures. The network can be
decomposed into trees A, B, and C. The center of each tree is
marked in yellow. Vertices with depths 1 and 2 from the center
vertex are marked in green and blue, respectively. In evalu-
ating LSU, trees are maximally aligned through permutation
and rotation to examine the level of similarity. We illustrate
the comparison by depicting the overlap of trees when they
are maximally aligned by root edges. For a scenario where
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FIG. 3. (a) Illustrations of the constructive process of CRN (up-
per panel) and CRN′-RV (lower panel). (b) An illustration shows
the comparison of local units (trees). Comparison of local units is
carried out by rotation and permutation of trees in order to optimize
the alignment. The center of each tree is marked in yellow. Vertices
with depths 1 and 2 from the center vertex are marked in green and
blue, respectively.

the trees are geometrically similar, the comparison results
in a high level of local similarity. However, the comparison
is carried out after permutation and rotation of trees. The
relative organization of the trees in a 3D space is not taken
into consideration in the LSU evaluation. On the other hand,
vertex relocation yields a scenario where network connectivity
of local units is fully preserved and the relative organization
of local units remains unchanged. Without bond transposition,
the spatial regions in the air fraction may be just slightly
disturbed in spite of a pronounced deformation of local units.
It further implies that the robustness of PBG may be associ-
ated with the geometrical character of adjacent spatial regions

FIG. 4. (a) A simplified 2D network is illustrated for ring anal-
ysis. Five SP rings with the ring number denoted can be identified
in the network based on the SP criterion. Ring analysis is carried
out by comparing the chosen ring with its neighboring rings. A ring
of the CRN is depicted to demonstrate the ring length (b) and ring
volume (c). Edges and vertices of the ring are marked in red and
blue, respectively. The ring length is the summation of edge length
from L1 to L11. The ring volume is calculated by convex hull of the
ring, which is enclosed by the green trisurfaces.

inherited from the initial CRNs. Such structural feature is
closely related to multiple connected local units in close prox-
imity. That is, the corresponding structural analysis needs to
be spatially extended toward a more regional extent beyond
local units.

V. RING INHOMOGENEITY AND REGIONAL
RING DISORDER

To evaluate regional contributions, we carry out structural
analysis based on rings of a network. Ring statistics have been
utilized to characterize structural properties in amorphous ma-
terials, where the medium-range order has been discussed in
glass and amorphous solids [34,37]. Since the span of rings
extends spatially beyond local multihedral units, ring analysis
reveals information in a more regional and medium-range
extent [46,47]. In the definition, a ring comprises a closed
loop connected by vertices and edges, and is uniquely defined
based on the shortest-path (SP) criterion [48]. An α ring is
referred to a ring satisfying the SP criterion with a vertex
number α. We propose a general model of ring inhomogeneity
(RI), contributed from the variation of rings by comparing
the geometrical features. RIn is the RI of the nth ring, and
is mathematically expressed as

RIn = 1

Pn

Pn∑

k=1

| χnk − χn |
χn

, (1)

where χn and χnk are the geometrical features of the chosen
nth ring and the neighboring kth ring sharing at least one
edge, respectively. The total number of neighboring rings of
the nth ring is Pn. A 2D network is illustrated in Fig. 4(a) as a
simplified example for ring analysis. This network consists of
multiple rings with vertex numbers of 3, 4, 5, and 7. Assuming
that a ring A-B-C-D-E is chosen for evaluation, there are four
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FIG. 5. Regional ring disorder (RRD) of amorphous networks
versus PBG width. CRN, CRN′-RV, and CRN′′-RV are marked in
blue squares, red circles, and black triangles, respectively.

rings connected to the chosen ring, which are rings A-B-J,
D-E-F-G, B-C-H-I-J, and C-H-K-L-M-G-D. The correspond-
ing geometrical features of chosen and connected rings are
compared to perform evaluation of RI. The level of RI is
associated with the nonuniform characteristics of geometrical
features between the chosen ring and the neighboring rings.
We can see a ring generally comprises connected vertices
across a few trihedral units. As a result, ring-based analysis
reveals spatial information beyond comparison of local trees
as described previously in Fig. 3(b), yielding geometrical
characteristics towards more regional aspect. To quantify the
regional effect contributed from ring variations, we develop
an index as regional ring disorder (RRD) by

RRD =
∑N

n=1(RIn)

N
, (2)

where RIn is the ring inhomogeneity of the nth ring, and N
is the total number of rings of the network. In our analysis
we have conducted comprehensive studies based on different
ring parameters. We found there are two predominant geomet-
rical features that are most relevant to manifest the regional
characters affecting PBG. One is the variation of ring lengths.
Ring length is the summation of edge lengths of a ring as
depicted in Fig. 4(b), which is relevant to the length scale that
a ring extends. The other is related to the stereoscopic feature
of the ring as calculated by the ring volume. Ring volume is
referred to the volume of convex hull [49] bounded by vertices
of a ring, as depicted in Fig. 4(c). The convex hull entangles
stereoscopic features of a ring as a rational volume, relevant
to the 3D spatial occupation of a ring.

We calculate RRD contributed from ring length and ring
volume by the process flow as shown in Fig. S6 [50]. RRD
of the three networks and the corresponding PBG widths are
shown in Fig. 5. We can see that RRD is negatively corre-
lated with PBG width for all the networks, indicating that the
variation of rings is closely related to PBG forming ability.
We can further examine how RRD varies when structures

undergo different deformations. For CRN, RRD ranges from
0.1 to 0.28 depending on the annealing level. A better an-
nealed CRN displays a lower level of RRD. For the RV series,
CRN′-RV is derived from a better annealed network, so RRD
values are smaller compared to those of CRN′′-RV. From the
analysis, we can see a relatively large variation of RRD is
displayed for CRNs of different annealing levels. It is ascribed
to bond transposition in the annealing process, which leads to
a larger ring variation. On the other hand, vertex relocation
only involves shifts of vertices without varying the network
connectivity. For better annealed networks, the disruption on
ring statistics owing to vertex shift is less severe. This can be
revealed by a smaller RRD variation (0.1–0.17) in CRN′-RV.
The RRD disruption is even less pronounced for an ordered
gyroid undergoing vertex relocation. For example, the change
of RRD of an ordered gyroid undergoing vertex relocation is
only around 0.03 with a relatively large relocation distance of
2.5 as shown in Fig. S7 [51].

We further compare the three networks by their RRD and
LSU analyses. For CRN, the annealing process results in
networks with high �22 within a finite range (0.8–0.9), yet a
wide distribution of RRD. For the RV series, vertex relocation
leads to networks of widely distributed LSU and smaller RRD.
It shows the distinct structural characteristics introduced by
annealing and vertex shift. In addition, to yield sizable PBG,
networks of low �22 also possess low level of RRD. That is,
networks with less similar local units exhibit a more uniform
property in ring statistics. It indicates local similarity and
ring uniformity play seemingly complementary roles in the
formation of PBG.

VI. ROBUSTNESS OF PBG

PBG formation in 3D dielectric networks has been asso-
ciated with Bragg and Mie scattering [20,27,52]. The optical
characteristics are normally manifested by the localized distri-
butions of electromagnetic fields around the gap edge, where
the localization properties can be characterized by the inverse
participation ratio [53,54]. We monitor the modes with a high
inverse participation ratio around the band edges, referred to
as the band-edge states, to examine the localized properties.
Specifically, the fields of lower band-edge states are well
localized in the dielectric regions, whereas those of higher
band-edge states are localized in the air fraction. To feature the
properties of localized states, we examine the field distribu-
tions of the CRN structure at the lower and higher band edges
as shown in Figs. 6(a) and 6(b), respectively. It is observed that
the dielectric band below the PBG is strongly localized in the
small dielectric ring, whereas the air band at the upper edge is
localized at a space surrounded by a larger ring. It implies the
present localized fields are more spatially confined by a 3D
space, enclosed by closed loop rings.

As featured by the geometrical dependence of localized
fields, geometries of dielectric local units may be more critical
in governing the lower band-edge modes, while geometrical
features of the 3D air regions play a more dominant role for
the higher band-edge modes. When the network is deformed,
PBG is disturbed in a way that reflects the corresponding
structural characters. Similar observation is also reported in
2D photonic foam, where the upper frequency of PBG is most
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FIG. 6. Localized modes of CRN at the lower band edge (a) and
higher band edge (b). The specific rings surrounding the localized
modes are marked in red.

related to the diversity of dielectric nodes coordination (va-
lences) [55]. Diverse node distribution may split the air space
into a less-uniform group, leading to reduction of PBG width.
As described in the previous section, when vertices undergo
a moderate shift, the air fractions of the network are less dis-
turbed in spite of the deformation of dielectric local units. The
RV algorithm yields a scenario where spatial regions in the air
fractions are better preserved, leading to less disturbance of
the higher band-edge states. An example is depicted in Fig. S8
to show how PBG evolves with respect to relocation distance
for CRN′-RV [56]. As the relocation distance increases, a
narrowing PBG is observed, yet with different behaviors in
the lower and higher band edges. With a moderate relocation
distance varying from 0 to 1.5, the lower band-edge frequency
exhibits a pronounced shift, whereas the movement of higher
band-edge frequency is less apparent. It is ascribed to a larger
distortion of dielectric local units under vertex relocation,
resulting in more severe disruption to localized resonances
within the dielectric. On the other hand, the 3D spatial air
regions are relatively less disturbed under vertex relocation.
The resonances for higher band-edge states are less disrupted,

manifested by the subtle higher band-edge frequency shift.
While further increasing the relocation distance above 2, the
distortion in the air regions is also significant. The shift of
the higher band edge then becomes comparable to that of the
lower band edge toward PBG narrowing.

VII. CONCLUSION

In this work we carry out structural and photonic band gap
analysis for continuous random networks undergoing geomet-
rical variations. By virtue of the wide degree of structural
variations via bond transposition and vertex relocation, we
present amorphous networks that exhibit decent band gap
forming ability in spite of low degrees of short-range order
and local similarity. It reveals that the band gap forming
ability is ascribed to structural features beyond similarity of
local units. We develop geometrical analysis based on rings
to qualitatively evaluate regional characters, and show the ro-
bustness of PBG against low local similarities is attributed to
the maintenance of ring uniformity. The regional attribute can
be further manifested by the spatial distribution of localized
fields at the band edges, where the evolution of band gap can
also be observed in reflection of the corresponding structural
distortion. The methodology can be applied to a wide vari-
ety of disordered networks, advancing the comprehension of
amorphous PBG materials.
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[22] B. R. Djordjević, M. F. Thorpe, and F. Wooten, Computer
model of tetrahedral amorphous diamond, Phys. Rev. B 52,
5685 (1995).

[23] H. Yin, B. Dong, X. Liu, T. Zhan, L. Shi, J. Zi, and E.
Yablonovitch, Amorphous diamond-structured photonic crystal
in the feather barbs of the scarlet macaw, Proc. Natl. Acad. Sci.
USA 109, 10798 (2012).

[24] L. Shi, H. Yin, R. Zhang, X. Liu, J. Zi, and D. Zhao, Macro-
porous oxide structures with short-range order and bright
structural coloration: A replication from parrot feather barbs,
J. Mater. Chem. 20, 90 (2010).

[25] K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe,
A soft glassy colloidal array in ionic liquid, which exhibits
homogeneous, non-brilliant and angle-independent structural
colours, Chem. Commun. 2009, 3603 (2009).

[26] S. Torquato and F. H. Stillinger, Local density fluctuations,
hyperuniformity, and order metrics, Phys. Rev. E 68, 041113
(2003).

[27] M. Florescu, S. Torquato, and P. J. Steinhardt, Designer disor-
dered materials with large, complete photonic band gaps, Proc.
Natl. Acad. Sci. USA 106, 20658 (2009).

[28] L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, and J. Zi,
Amorphous photonic crystals with only short-range order, Adv.
Mater. 25, 5314 (2013).

[29] S. F. Liew, J.-K. Yang, H. Noh, C. F. Schreck, E. R. Dufresne,
C. S. O’Hern, and H. Cao, Photonic band gaps in three-
dimensional network structures with short-range order, Phys.
Rev. A 84, 063818 (2011).

[30] S. Torquato, G. Zhang, and F. H. Stillinger, Ensemble Theory
for Stealthy Hyperuniform Disordered Ground States, Phys.
Rev. X 5, 021020 (2015).

[31] L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J.
Haberko, S. C. Glotzer, and F. Scheffold, Role of Short-Range
Order and Hyperuniformity in the Formation of Band Gaps in
Disordered Photonic Materials, Phys. Rev. Lett. 117, 053902
(2016).

[32] L. S. Froufe-Pérez, M. Engel, J. J. Sáenz, and F. Scheffold, Band
gap formation and anderson localization in disordered photonic
materials with structural correlations, Proc. Natl. Acad. Sci.
USA 114, 9570 (2017).

[33] M. J. Cliffe, A. P. Bartók, R. N. Kerber, C. P. Grey, G. Csányi,
and A. L. Goodwin, Structural simplicity as a restraint on the
structure of amorphous silicon, Phys. Rev. B 95, 224108 (2017).

[34] S. R. Elliott, Medium-range structural order in covalent amor-
phous solids, Nature (London) 354, 445 (1991).

[35] S. Le Roux and P. Jund, Ring statistics analysis of topological
networks: New approach and application to amorphous GeS2

and SiO2 systems, Comput. Mater. Sci. 49, 70 (2010).
[36] Y. Hiraoka, T. Nakamura, A. Hirata, E. G. Escolar, K. Matsue,

and Y. Nishiura, Hierarchical structures of amorphous solids
characterized by persistent homology, Proc. Natl. Acad. Sci.
USA 113, 7035 (2016).

[37] S. S. Sørensen, C. A. Biscio, M. Bauchy, L. Fajstrup, and
M. M. Smedskjaer, Revealing hidden medium-range order in
amorphous materials using topological data analysis, Sci. Adv.
6, eabc2320 (2020).

[38] M. Maldovan and E. L. Thomas, Diamond-structured photonic
crystals, Nat. Mater. 3, 593 (2004).

[39] F. Wooten, K. Winer, and D. Weaire, Computer Generation of
Structural Models of Amorphous Si and Ge, Phys. Rev. Lett.
54, 1392 (1985).

[40] G. T. Barkema and N. Mousseau, High-quality continuous ran-
dom networks, Phys. Rev. B 62, 4985 (2000).

[41] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.104.054208 for details of the modified
Wooten-Winer-Weaire algorithm.

[42] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.104.054208 for details of the simulation
settings of band structure calculations.

[43] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.104.054208 for details of the algorithm of
random relocation of vertices.

[44] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.104.054208 for details of calculations of
LSU.

[45] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.104.054208 for PBG width vs LSU of an
ordered gyroid under vertex relocation.

[46] A. Pandey, P. Biswas, B. Bhattarai, and D. A. Drabold, Realistic
inversion of diffraction data for an amorphous solid: The case
of amorphous silicon, Phys. Rev. B 94, 235208 (2016).

[47] V. L. Deringer and G. Csányi, Machine learning based in-
teratomic potential for amorphous carbon, Phys. Rev. B 95,
094203 (2017).

[48] D. S. Franzblau, Computation of ring statistics for network
models of solids, Phys. Rev. B 44, 4925 (1991).

[49] M. De Berg, M. Van Kreveld, M. Overmars, and O.
Schwarzkopf, Computational geometry, in Computational Ge-
ometry (Springer, Berlin, 1997), pp. 1–17.

054208-7

https://doi.org/10.1063/1.1920409
https://doi.org/10.1002/adom.201901680
https://doi.org/10.1038/nmat1841
https://doi.org/10.1103/PhysRevLett.84.2064
https://doi.org/10.1103/PhysRevB.62.1516
https://doi.org/10.1002/adfm.201000143
https://doi.org/10.1021/cm020100z
https://doi.org/10.1038/ncomms14439
https://doi.org/10.1103/PhysRevLett.100.013901
https://doi.org/10.1103/PhysRevB.52.5685
https://doi.org/10.1073/pnas.1204383109
https://doi.org/10.1039/B915625A
https://doi.org/10.1039/b905108b
https://doi.org/10.1103/PhysRevE.68.041113
https://doi.org/10.1073/pnas.0907744106
https://doi.org/10.1002/adma.201301909
https://doi.org/10.1103/PhysRevA.84.063818
https://doi.org/10.1103/PhysRevX.5.021020
https://doi.org/10.1103/PhysRevLett.117.053902
https://doi.org/10.1073/pnas.1705130114
https://doi.org/10.1103/PhysRevB.95.224108
https://doi.org/10.1038/354445a0
https://doi.org/10.1016/j.commatsci.2010.04.023
https://doi.org/10.1073/pnas.1520877113
https://doi.org/10.1126/sciadv.abc2320
https://doi.org/10.1038/nmat1201
https://doi.org/10.1103/PhysRevLett.54.1392
https://doi.org/10.1103/PhysRevB.62.4985
http://link.aps.org/supplemental/10.1103/PhysRevB.104.054208
http://link.aps.org/supplemental/10.1103/PhysRevB.104.054208
http://link.aps.org/supplemental/10.1103/PhysRevB.104.054208
http://link.aps.org/supplemental/10.1103/PhysRevB.104.054208
http://link.aps.org/supplemental/10.1103/PhysRevB.104.054208
https://doi.org/10.1103/PhysRevB.94.235208
https://doi.org/10.1103/PhysRevB.95.094203
https://doi.org/10.1103/PhysRevB.44.4925


YANG, LAI, XIE, AND HUNG PHYSICAL REVIEW B 104, 054208 (2021)

[50] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.104.054208 for the process flow of RRD
calculation.

[51] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.104.054208 for PBG width vs RRD of an
ordered gyroid under vertex relocation.

[52] H. Kang and Y. Zhu, Observation of Large Kerr Nonlin-
earity at Low Light Intensities, Phys. Rev. Lett. 91, 093601
(2003).

[53] F. Evers and A. D. Mirlin, Fluctuations of the Inverse Participa-
tion Ratio at the Anderson Transition, Phys. Rev. Lett. 84, 3690
(2000).

[54] J. M. Escalante and S. E. Skipetrov, Level spacing statistics for
light in two-dimensional disordered photonic crystals, Sci. Rep.
8, 11569 (2018).

[55] J. Ricouvier, P. Tabeling, and P. Yazhgur, Foam as a self-
assembling amorphous photonic band gap material, Proc. Natl.
Acad. Sci. USA 116, 9202 (2019).

[56] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.104.054208 for the evolution of PBG with
respect to relocation distance for CRN′-RV.

Correction: The name of the first author was misspelled and
has been fixed.

054208-8

http://link.aps.org/supplemental/10.1103/PhysRevB.104.054208
http://link.aps.org/supplemental/10.1103/PhysRevB.104.054208
https://doi.org/10.1103/PhysRevLett.91.093601
https://doi.org/10.1103/PhysRevLett.84.3690
https://doi.org/10.1038/s41598-018-29996-1
https://doi.org/10.1073/pnas.1820526116
http://link.aps.org/supplemental/10.1103/PhysRevB.104.054208

