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Disordered quantum systems feature an energy scale known as the Thouless energy. For energy ranges below
this scale, the properties of the energy spectrum can be described by random matrix theory. Above this scale a
different behavior sets in. For a metallic system it was shown long ago by Altshuler and Shklovskii [Sov. Phys.
JETP 64, 127 (1986)] that the number variance should increase as a power law with power dependent on only
the dimensionality of the system. Although tantalizing hints at this behavior were seen in previous numerical
studies, it is quite difficult to verify this prediction using the standard local unfolding methods. Here we use a
different unfolding method, i.e., singular value decomposition, and establish a connection between the power
law behavior of the scree plot (the singular values ranked by their amplitude) and the power law behavior of the
number variance. Thus, we are able to numerically verify Altshuler and Shklovskii’s prediction for disordered
three-, four-, and five-dimensional single-electron Anderson models on square lattices in the metallic regime.
The same method could be applied to systems such as the Sachdev-Ye-Kitaev model and various interacting
many-body models for which the many-body localization occurs. It was recently reported that such systems
exhibit a Thouless energy, and analyzing the spectrum’s behavior on larger scales is of much current interest.
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I. INTRODUCTION

Weakly disordered quantum systems are known to exhibit
a universal behavior of their energy spectrum which depends
on only the symmetry of the system [1]. The statistical prop-
erties of the energy spectrum do not depend on the details
of the system and are described by a random matrix model
with the same symmetry. This behavior is extremely useful in
identifying and understanding various properties of metallic
systems [2–6].

As pointed out by Altshuler and Shklovskii [7], this uni-
versal behavior holds only for energy scales which are below
the Thouless energy ET . The Thouless energy corresponds to
ET = h̄/tT , where the Thouless time tT = L2/D (L is the lin-
ear dimension of the sample, and D is the diffusion constant)
depicts the time it takes for a diffusing particle to sample the
whole system. For shorter times the motion is not yet diffusive
and therefore dependent on details of the local system. Thus,
above this energy scale, the behavior of statistical properties
of the spectrum will diverge from the random matrix predic-
tions. The canonical measure used to probe this deviation is
the number variance [1], defined as the variance in the number
of energy levels within an energy window for an unfolded
energy spectrum. Defining a window of size E , one can count
the number of levels within this window for a given realization
of disorder and obtain the average number of levels 〈n(E )〉
and the variance 〈δ2n(E )〉 = 〈[n(E ) − 〈n(E )〉]2〉, where 〈· · · 〉
denotes an average over an ensemble of different realizations
of disorder. For the Wigner-Dyson random matrix ensemble
[Gaussian orthogonal ensemble (GOE)] 〈δ2n(E )〉 = 0.44 +
(2/π2) ln[〈n(E )〉], while for the localized regime 〈δ2n(E )〉 =
〈n(E )〉. Metallic systems correspond to the Wigner-Dyson

random matrix predictions up to an energy window of size ET ,
and Altshuler and Shklovskii [7] predicted that for E > ET

the number variance will follow 〈δ2n(E )〉 ∝ 〈n(E )〉d/2, where
d is the dimensionality.

The deviation of the number variance from the ran-
dom matrix logarithmic behavior to a stronger than linear
behavior at large energies has been observed in metallic
systems [8,9]. Recently, it has gained much interest beyond
traditional single-particle disordered systems. Stronger than
linear deviations of the number variance beyond a certain
energy scale have been seen in the context of the Sachdev-
Ye-Kitaev (SYK) model [10,11], many-body localization
systems [12–15], and the generalized Rosenzweig-Porter ran-
dom matrix model [16,17]. In all these cases it was argued that
the energy for which the number variance becomes stronger
than linear corresponds to the inverse of the timescale for
which the motion can no longer sample the entire phase space.

Although the prediction for the behavior of the num-
ber variance on scales larger than the Thouless energy is
straightforward, it is not easy to corroborate even for simple
single-particle systems such as the Anderson model with any
degree of certainty. We shall see that the main problem is
the local unfolding procedure, as has been noted by previous
studies [15,18].

Here we intend to address this challenge of verifying Alt-
shuler and Shklovskii prediction [7]. We shall illustrate in
detail that a straightforward study of the number variance
using local unfolding is fraught with ambiguities. Therefore, it
is clear that a different tack is needed. Here we will suggest a
couple of different measures which are based on the singular
value decomposition (SVD) method. This method has been
used to classify whether a system follows Wigner or Poisson
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statistics [19–21] and, recently, to identify the nonergodic
extended signature in the Rosenzweig-Porter model [22]. As
we shall demonstrate, using the SVD method to replace the
short-range unfolding provides a clearer way to study the
behavior of the energy spectrum beyond the Thouless energy.

This paper is organized as follows. In Sec. II we define
the single-particle Anderson model on a square lattice for
different dimensionalities. Section III presents the numerical
results for the number variance using local unfolding and
discusses the challenges it presents. Section IV shows the
use of the SVD to tease out the behavior of the large energy
scales. In Sec. IV A we give an overview of the SVD method.
In Sec. IV B we use the SVD to perform a global unfolding
by filtering out the low modes of the singular values which
correspond to the global features of the energy spectrum,
thus retaining only the fluctuations. Establishing analytically a
connection between the power spectrum of these fluctuations
and the number variance enables us to glean the long-range
behavior of the energy spectrum. Since there is a connection
between the power spectrum and the scree plot of the singular
value modes (the singular values ranked by their amplitude),
as established in Sec. IV B, the scree plot may be used to
read off the long-range spectrum properties. It is used in
Sec. IV C in order to verify the dependence of the number
variance on dimensionality. Issues related to the number of
eigenvalues taken into account and the number of realizations
of disorder considered are also discussed. In Sec. V we discuss
the possibility of applying the SVD to additional interesting
systems such as the Sachdev-Ye-Kitaev model and disordered
interacting many-body models known to exhibit many-body
localization.

II. MODEL

We consider a simple one-particle Anderson model on a d-
dimensional square lattice with sites at �r = jxx̂ + jyŷ + · · · ,
where ji = 1, 2, . . . , Li and Li is the length in the î direction.
Each site has an on-site energy ε�r chosen randomly from a
box distribution in the range −W/2 · · ·W/2. Nearest-neighbor
hopping between the sites is considered, with a hopping ma-
trix element set to 1. Thus, the Hamiltonian is written as

H =
∑

�r
ε�rc†

�r c�r +
∑

�r

∑
â

c†
�r+âc�r, (1)

where c†
�r is the creation operator at site �r and â = ±x̂,±ŷ, . . .

are unit vectors to the nearest-neighbor sites.
This model is known to exhibit a metal-insulator transition

at a critical disorder WC = 16.5 for the three-dimensional
(3D_ case, WC = 34.5 for the four-dimensional (4D) case,
and WC = 57.5 for the five-dimensional (5D) case [23].
In order to study the long-range spectra behavior deep
in the metallic regime, we concentrate on values of dis-
order much lower than the critical disorder, i.e., W = 5
and W = 10. Using exact diagonalization, we calculate the
eigenvalues for the Ld × Ld matrices, where we consider
hypercubes of size L = Lx = Ly · · · and hard-wall boundary
conditions. For the 3D case we consider sizes L = 20, 24, 28,
corresponding to L3 = 8000, 13 824, 21 952, while in the
4D case we evaluate sizes L = 9, 10, 11, 12, 13, result-
ing in L4 = 6561, 10 000, 14 641, 20 736, 29 561, and for the

5D case we consider L = 6, 7, 8, which amounts to L5 =
7776, 16 807, 32 768. Unless noted differently, in all cases the
spectra were calculated for 3000 different realizations.

III. NUMBER VARIANCE

To begin, we shall investigate the behavior of number vari-
ance at large energies as a function of the dimensionality and
system size. Using the Ld eigenvalues εi obtained for each
realization, the spectrum is locally unfolded. The following
local unfolding was applied: each eigenvalue obtains the value
εi = εi−1 + 2p(εi − εi−1)/〈εi+p − εi−p〉, where 〈· · · 〉 is an av-
erage over realizations, and we have checked that the results
are not very sensitive to the value of p (for all results presented
here p = 6 was chosen). The number variance is also averaged
over 41 positions of the center of the energy window E (k),
equally spaced around the band center, where the farthest
point is no more than 1/15 of the bandwidth from the center.
For each E (k), the number of states in a window of width E
centered at E (k), nk (E ), is evaluated; then the averages 〈n(E )〉
and 〈n2(E )〉 are taken over all positions of the center k and all
realizations.

One expects that for E < ET , the number variance will
follow the Wigner Dyson prediction, while for E > ET ,
〈n2(E )〉 ∼ 〈n(E )〉d/2. This is probed in Fig. 1, where the
variances 〈δ2n(E )〉 as a function of 〈n(E )〉 for 3D, 4D, and
5D samples of different sizes are plotted. In all cases the
GOE logarithmic behavior is followed for small energy win-
dows. For energy windows larger than the Thouless energy,
〈n〉 > 〈n(ET )〉, stronger than linear growth sets in. The Thou-
less energy depends on disorder and dimensionality, and we
chose the strength of disorder for each case (W = 5 for 3D
and 4D samples, W = 10 for 5D samples), so ET will be
such that 〈n(ET )〉 will be of order O(10–100). Since the di-
mensionless conductance is defined as the ratio between the
Thouless energy and the mean level spacing, g = ET /�, and
〈n(ET )〉 = g. Above 〈n(ET )〉 the variance crosses over to a
different behavior and shows a stronger than linear increase.
Fitting the variance to an 〈n(E )〉β behavior shows that beyond
the crossover region, there is a wide range for which the power
law β is constant, and at even higher energies deviations
appear.

This general behavior is seen for all dimensionalities and
system sizes. For the 3D case with W = 5, the Thouless
energy, i.e., where the variance starts to diverges from the
Wigner-Dyson (GOE) predictions, appears around 〈n(ET )〉 ∼
20. Fitting β after the variance substantially diverges from
the logarithmic behavior; that is, the region 50 < 〈n(E )〉 <

150 results in β = 1.23, 1.26, 1.31 for L = 20, 24, 28, which
seems to hold well up to 〈n(E )〉 < 350, 400, 450, respec-
tively. Above these values, the numerical computed variance
tapers off to a more moderate increase. The reason may be
finite-size effects or a problem with local unfolding on larger
energy scales. For three dimensions we expect β = 1.5, while
the values we see are lower but increase with the system
size L. Thus, it may be that for much larger system sizes the
predicted value would be reached; nevertheless, extrapolating
from the change in β as L increases, we conclude that much
larger systems will be needed in order to reach β = 1.5.
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FIG. 1. The variance 〈δ2n(E )〉 as a function of 〈n(E )〉 for (a) 3D,
(b) 4D, and (c) 5D samples of different sizes. (a) Three-dimensional
samples of sizes L = 20, 24, 28 and disorder W = 5. For 〈n〉 <

〈n(ET )〉 ∼ 20, Wigner-Dyson (GOE) behavior is followed, as can be
seen clearly in the inset. In the region 50 < 〈n(E )〉 < 150 a fit to
〈n(E )〉 ∼ 〈n(E )〉β is performed, resulting in β = 1.23, 1.26, 1.31 for
L = 20, 24, 28, respectively. Above 〈n(E )〉 > 80, deviations from
the power law become apparent, and the variance increases more
moderately. In the inset the deviation from the GOE logarithmic
behavior at 〈n(ET )〉 ∼ 20 can be clearly seen. (b) Four-dimensional
samples of sizes L = 9, 10, 11, 12, 13 and disorder W = 5. For
〈n〉 < 〈n(ET )〉 ∼ 80 Wigner-Dyson (GOE) behavior is followed.
In the region 400 < 〈n(E )〉 < 800 a fit to 〈n(E )〉 ∼ 〈n(E )〉β is
performed, resulting in β = 1.52, 1.56, 1.65, 1.68, 1.73 for L =
9, 10, 11, 12, 13, respectively. In the inset the behavior for larger
values of the energy window is depicted. Clearly, the variance does
not continue to grow at the same pace. (c) Five-dimensional samples
of sizes L = 7, 8 and disorder W = 10. For 〈n〉 < 〈n(ET )〉 ∼ 60,
Wigner-Dyson (GOE) behavior is followed, as can be seen clearly
in the inset. In the region 200 < 〈n(E )〉 < 400 for L = 6 and the
region 400 < 〈n(E )〉 < 800 for L = 7, 8 a fit to 〈n(E )〉 ∼ 〈n(E )〉β

is performed, resulting in β = 1.75, 1.83 for L = 7, 8, respectively.
Again, as shown in the inset, for larger values of 〈n(E )〉 a weaker
growth in variance appears.

A similar behavior is seen for higher dimensionality. For
the 4D case with the same disorder W = 5 the Thouless
energy is larger, and 〈n(ET )〉 ∼ 80. This is expected because
as the number of nearest neighbors to which the particle can
hop increases, the effect of disorder should decrease. Again,
we fit β for the region for which the variance begins to sig-
nificantly diverge from GOE, 400 < 〈n(E )〉 < 800, 〈n(E )〉 ∼
〈n(E )〉β , and obtain β = 1.52, 1.56, 1.65, 1.68, 1.73 for L =
9, 10, 11, 12, 13. Once more, values are below the expected
power law β = 2 but get closer as the system size is increased.
The same pattern emerges also for 5D samples where the
disorder was increased to W = 10 so that the Thouless energy
would be similar to the value obtained for lower dimensions
〈n(ET )〉 ∼ 60. A fit for the region 400 < 〈n(E )〉 < 800 yields
β = 1.75, 1.83 for L = 7, 8, far from the expected β = 2.5.
Once more, for 4D and 5D samples, for large energy scales,
〈n(E )〉 > 1500, the increase in the variance tapers.

Thus, although with much effort probing even larger sizes
may be possible, it nevertheless does not seem very promising,
and we shall turn in a different direction. This direction is
based on the singular value decomposition method and is
described in the following section.

IV. SINGULAR VALUE DECOMPOSITION

A. General

SVD is a mathematical method applied mainly in the field
of data analysis and has enjoyed growing popularity [24]. In
this method a matrix X of size M × P (not necessarily Her-
mitian or square) is decomposed to a multiplication of three
matrices. In general the relevant data are arranged by rows
and columns, where the specifics depend on the application.
Thus, X is decomposed to X = U�V T , where U and V are
M × M and P × P matrices, while � is an M × P diagonal
matrix of rank, which r = min(M, P). σk stands for the r
diagonal elements of � are called the singular values (SVs) of
X . The SVs are always positive and can be arranged by size so
σ1 � σ2 � · · · � σr . The Hilbert-Schmidt norm of the matrix
||X ||HS =

√
TrX †X = √∑

k λk (where λk = σ 2
k ). Thus, X can

be written as a sum of matrices X (k), where Xi j = ∑
k σkX (k)

i j

and X (k)
i j = UikV T

k j . Since the SVs are ordered by amplitude,
the main contribution to X comes from the first m modes,
and X may be approximated by X̃ = ∑m

k=1 σkX (k), for which
||X ||HS − ||X̃ ||HS is minimal. Thus, if λk becomes relatively
small for some value m, X̃ could be used as an approximation
of X [25,26]. Moreover, by plotting λk as a function of its
ranking k (known as a scree plot in the context of statistical
factor analysis [27]) one may gain some insight into the sta-
tistical properties of the data in X .

Here we study an ensemble of M realizations of disorder
each with P eigenvalues. For the SVD analysis we construct
a matrix X of size M × P where Xmp is the p level of the mth
realization. After carrying out SVD on X , the singular value
square λk are ranked from the largest to the smallest. This
approach was applied to the spectrum of disordered systems
in several studies [19–22]. As is usual in the SVD analysis
in these studies, the first few λk [k � O(1)] correspond to
global features of the spectra. Larger SV (λk) show a power
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FIG. 2. A scree plot of the ranked singular values for M = 4096
different realization of the 3D case of size L = 28, where P = 4096
eigenvalues around the center of the band are considered. The first
two modes k = 1, 2 are clearly orders of magnitude larger than
the rest. Lower modes seem to follow the power law λk ∼ kα . For
3 < k < 20, α = 2.5 fits well, while for k > 50, α = 1. Inset: The
contribution of the first couple of modes to the jth eigenvalue of
a particular realization ei=1

j and the contribution of the remaining
modes δi=1

j . The dashed magenta lines indicate a range of ±� around
zero.

law behavior k−α with α = 2 at the Poisson regime and α = 1
for the Wigner regime.

Here we will examine whether the large-scale behavior of
the energy can be gleaned with the help of SVD. We will use
two different approaches which will eventually lead to similar
results. In the first, we shall use SVD to perform a global
unfolding. The second will use the scree plot to tease out the
power law behavior of the relevant energy scale.

B. Global unfolding

The idea behind global unfolding using SVD is to filter
out the low modes which represent the global behavior while
retaining the lower modes that encode local fluctuations. We
shall illustrate the global unfolding procedure for an ensemble
of realizations for the 3D case of size L = 28. As previously
described, we construct a matrix X , where each row contains
P = 4096 eigenvalues around the center of the band for each
realization and M = 4096 columns representing the different
realizations. Matrices U , V , and � are numerically extracted,
and the r = M diagonal terms σk are ranked according to
amplitude, from the largest to the smallest. The matrices X (k)

are constructed out of U and V , paying attention to the correct
sign [28]. As can be seen in Fig. 2 where the SVD values
of λk = σ 2

k are plotted, the first couple of modes λk=1,2 are
clearly orders of magnitude larger than the lower modes. This
is a feature common to all the cases considered here. Thus,
we may attribute the global features of the spectrum to the
first two modes and the local fluctuations to the rest.

We define the contribution of the first couple of modes to
the jth eigenvalue of the ith realization as ei

j = ∑2
k=1 σkX (k)

i, j ,
and the contribution of the rest of the modes is δi

j =∑r
k=3 σkX (k)

i, j . An illustration of the behavior of ei=1
j and δi=1

j

1 10 100 1000
j

1e-10

1e-08

1e-06

0.0001

f j

L=28
�=1.1

����


FIG. 3. The power spectrum Fk for the ensemble studied in
Fig. 2. Low frequencies (4 < k < 15, corresponding to large energy
scales) follow the power law Fk ∼ kγ , with γ = 2.5, while high
frequencies (k > 50, corresponding to small energies) have γ = 1.1,
within the expected slope for Wigner-Dyson statistics.

for the first realization in the ensemble is presented in the
inset of Fig. 2. It is obvious that ei=1

j corresponds to the linear
increase of the eigenvalues as a function of j expected in
the Anderson model around the center of the band (at zero
energy). Thus, the broad features of the spectra are captured
by these two modes. The local fluctuations are captured by
δi=1

j , and one can see the fast short-range fluctuations and also
some longer-range ones. Estimating the mean level spacing �

from ei=1
j and comparing it to δi=1

j (see lower inset in Fig. 2)
further strengthens the case for longer-range fluctuations.

This behavior leaves a very clear mark on the scree plot.
Fitting the lower modes to a power law λk ∼ kα results in two
distinct regions. For 3 < k < 20, a power of α = 2.5 fits well,
while 50 < k < 1000 suggests α = 1. Intuitively, one would
guess that modes 3 < k < 20 correspond to longer energy
scales for which E > ET while k < 50 correspond to shorter
energy scales. Nevertheless, one would like to confirm this
assertion.

There has been much work devoted to studying the ex-
pression of the statistics of local fluctuations on the power
spectrum of these fluctuations. It was shown that the power
spectrum of the local fluctuation of chaotic systems is differ-
ent than the power spectrum of integrable systems [18,29–32].
Specifically, the power spectrum of the local fluctuations for
each realization is defined as

F i
k =

∣∣∣∣∣
1

r

r∑
j=1

δi
j exp

(−2π ik j

r

)∣∣∣∣∣
2

, (2)

and averaging over all realizations Fk = 〈F i
k 〉. For chaotic

systems Fk ∼ k−1, while for integrable (localized) systems
Fk ∼ k−2. The power spectrum of the local fluctuations for
the 3D case of size L = 28 is presented in Fig. 3. As for the
singular value modes, two regimes are apparent. The high
frequencies follow the power law Fk ∼ k−γ , with γ = 1.1,
while after a crossover a range of low frequencies fits to γ =
2.5. Thus, for the high frequencies (k > 50, corresponding to
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FIG. 4. (a) The contribution of the lower modes (3 < k < 30)
δ

i=1(I)
j and the higher modes (31 < k < r) δ

i=1(II)
j to the jth eigen-

value of a particular realization i = 1. The dashed magenta lines
indicate ±� (average level spacing). A clear difference between
the low modes which encode long-range fluctuations and the higher
modes which represent short-range fluctuations is apparent. (b) The
power spectrum F (I,II)

k of δ
i(I,II)
j . The low modes’ power spectrum F (I)

k

shows a slope of γ = 2.5 for the low frequencies (4 < k < 20) and
tapers for higher frequencies. The power spectrum F (II)

k for the higher
modes reveals that these modes correspond to high frequencies at the
range k > 100, with slope γ = 0.9.

small energies), the behavior of the power spectrum is close
to what was observed in other chaotic (GOE) systems [18,29–
32]. There are a couple of interesting observations that one
can draw from the behavior of the low frequencies. The first
has to do with the equivalence between the power laws of
the SVD scree plot for low modes and the power law at low
frequencies, i.e., α = γ = 2.5, and for the high modes and
frequencies α ∼ γ ∼ 1. Such correspondence between the
power law of the SVD modes and power spectrum frequencies
was noted for the energy spectrum in Refs. [19–22] and elu-
cidated in Ref. [33]. The correspondence also determines the
energy scale of the singular values. The kth Fourier transform
frequency corresponds to an energy scale P�/2k; thus, the re-
gion for which GOE statistics holds is of the order of 40�, not
too far from the estimation of the Thouless energy obtained
via the number variance. As can be seen in Fig. 2, also the
singular value modes follow the GOE expectation (α = 1) up
to k = 50. Moreover, both curves show a similar behavior, and
one may assume that the scree plot depicts the same physics as
the power spectrum of the globally unfolded energy spectrum
and that the energy scales probed by the modes of the SVD
are similar to the energy scales of the Fourier transform.

In order to substantiate the proposed connection between
the energy scale and the SVD mode number, we split the con-
tribution of the modes into two parts: δ

i(I)
j = ∑30

k=3 σkX (k)
i, j and

δ
i(II)
j = ∑r

k=31 σkX (k)
i, j . As can be seen in Fig. 4(a) for the same

realization presented in the inset of Fig. 2, δ
i(I)
j indeed de-

picts longer-range fluctuations, while δ
i(II)
j portrays short-scale

fluctuations. This can be confirmed by the power spectrum

10 100 1000
k

0.0001

0.001

0.01

0.1

1

10

100

1000

	 k

W=5, L=20

W=10, L=20

W=5, L=24

W=10, L=24

W=5, L=28

W=10, L=28


���


����

��

FIG. 5. The SVD mode scree plot for 3D systems where an
ensemble of M = 3000 realizations of disorder and sizes L =
20, 24, 28 are considered. In all cases P = L3/2 eigenvalues around
the center of the band are taken into account. Two different strengths
of disorder, W = 5 and W = 10, for all sizes are presented. Lines
depict different slopes λk = k−α , with α = 2.5, 2.3, 1.

of the fluctuations δ
i(I,II)
j . For the low singular value modes

the corresponding power spectrum [see Fig. 4(b)] frequencies
are in the range of 4 < k < 20 with the same power law
α = γ = 2.5, while for the higher modes the corresponding
frequencies are at k > 100 with a slope γ = 0.9. Thus, one
can reasonably conclude that low modes in the SVD probe
the large energy scales of the spectrum.

Another observation is that both for the power spectrum
and for the SVD scree plot the lower frequencies and modes
exhibit a power law with a slope of 1 + d/2. The slope of
the power spectrum could be generally associated with the
value of the power of the variance [34,35]. As detailed in the
Appendix, indeed, the expected value of the power spectrum
γ = 1 + d/2 can be analytically explained. In the next section
we will further substantiate these observations.

C. Scree plot

As we have previously seen, the scree plot of the singular
values characterizes the behavior of the large energy scale by
showing a power law behavior of the low modes correspond-
ing to 1 + d/2 power, clearly distinct from α = 1 seen for
higher modes. Here we check whether this behavior is robust
for different system sizes, disorder strengths, ranges of the
spectrum, and dimensionalities.

First, we continue to present results for the SVD mode
scree plot for 3D samples in Fig. 5. All results are for an
ensemble of M = 3000 different realizations at each size
and disorder strength. Three different sizes, L = 20, 24, 28,
are considered, each for two different strengths of disorder,
W = 5 [which, as we saw, corresponds to n(ET ) = g = 20]
and W = 10 [n(ET ) = g = 5, which makes sense since ET ∼
1/W 2]. Thus, for the W = 5 samples we are deep in the
metallic regime where Altshuler and Shklovskii’s predictions
are expected to hold, while for W = 10 we are already closer
to the localized regime (g = 1). Indeed, we can see that the
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FIG. 6. The SVD mode scree plot for 3D systems (M = 4096
realizations) of size L = 28. Three different ranges of eigenval-
ues straddling the center of the band are presented: P = L3/2 =
10 976, P = L3/4 = 5488, and P = M. The qualitative behavior of
the slopes, i.e., α = 2.5 (magenta line) for low modes and α = 1 for
higher modes (cyan line), does not change, although the crossover
occurs at smaller values of k as P becomes smaller.

range of modes for which the GOE behavior holds (α ∼ 1)
is much lager for the weaker disorder. The weak disorder
singular values fall on top of each other for the lower modes,
with a slope of α = 2.5 = 1 + d/2. Then for higher modes the
slope switches to the GOE behavior (α ∼ 1) where the value
of k for which the switch occurs is higher as the system size
increases. We speculate that this is the result of the fact that for
larger systems there are more eigenvalues in the range of L3/2.
We shall further substantiate this assertion shortly. A similar
behavior is seen for the stronger disorder (W = 10), although
the slope deviates a bit from α = 1 + d/2 and is closer to
α = 2.3. This is not surprising since the predictions in Ref. [7]
were obtained using diagrammatic reasoning, strictly valid
only deep in the metallic regime (g � 1).

In Fig. 6 we examine the influence of the change in the
range of the eigenvalues P on λk . Indeed, the main influence
of narrowing the range of P is to shift the crossover from the
α = 2.5 slope to the GOE α = 1 slope to lower values of k.
This makes sense since the smaller the range is, the smaller
the number of energies larger than the Thouless energy is in
this range. Thus, when one wants to focus on energies beyond
the Thouless energies and there is a limit on the ensemble size
M, one should expand P to the largest available range, even if
P � M.

The number of realizations taken in the ensemble M also
plays a role in the behavior of the SVD modes. As can be
seen in Fig. 7, the slope for the low mode does not depend
on the number of realizations in the ensemble M and re-
mains α = 2.5 for all values of M. On the other hand, for
the high modes the slope varies from α = 0.85 at M = 1000
to α = 1 for the largest number of realizations M = 8000, in
line with the predictions for the Wigner-Dyson statistics. Such
behavior was previously seen in the study of the generalized
Rosenzweig-Porter model where the scree plot of the SVD
modes for large k (the GOE regime) also follows a slope
of α ∼ 0.8 [22] for small values of M. This behavior was
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FIG. 7. The SVD mode scree plot for 3D systems of size L = 28
and different numbers of realizations M = 1000, 2000, 4000, 8000
for the same P = L3/2 = 10 976. The behavior of the low mode
slopes is not sensitive to the ensemble size, and a slope of α = 2.5
is seen for all values of M. Lower modes are more susceptible to the
number of realizations. For small values of M = 1000 the slope fits
α = 0.85 for M = 1000 at higher modes, while it shifts to α = 1 at
M = 8000.

attributed there to the fact that M 	 P. This fits well with our
current results where, as M grows, α is closer to 1.

Finally, we wish to examine the dependence on dimen-
sionality of the SVD modes. As we have seen for d = 3
and argued analytically, we expect to observe a slope of
α = 1 + d/2 for the lower modes crossing over to a slope
of α = 1 at higher modes. Indeed, the scree plot shown in
Fig. 8 confirms that the slope of the low modes corresponds
to α = 3, and α = 3.5 for d = 4 and d = 5, as expected from
the number variance behavior at large energies predicted in
Ref. [7]. Higher modes show a slope of α = 0.95 for both
d = 4 and d = 5, close to the expected value of α = 1, except
for the largest length at each dimensionality for which the
number of realizations M = 1000 is smaller than for the other
length, and the slope is α = 0.83. This is in line with the
behavior shown in Fig. 7.

V. DISCUSSION

The detection of the Thouless energy in the spectrum of
weakly disordered chaotic systems has long been achieved
by detecting the deviation from the expected Wigner Dyson
logarithmic dependence of the number variance. Thus, it could
be assumed that the number variance will also reveal the
behavior of the spectrum at energy scales beyond the Thouless
energy derived by Altshuler and Shklovskii [7]. Indeed, a
stronger than linear dependence has frequently been observed;
nevertheless, extracting the expected power law behavior from
the number variance after local unfolding has turned out to be
far from trivial. As has been shown here, the number variance
does, indeed, show an 〈n2(E )〉 ∼ 〈n(E )〉β behavior for a sig-
nificant range of levels. Although the value of β rises as the
size of sample increases towards the expected d/2 value, it
remains hard to extrapolate a value with the largest samples
we are able to compute.
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FIG. 8. The SVD mode scree plot for (a) 4D and (b) 5D systems
(M = 3000 realizations, except for the largest size in each case where
M = 1000) of sizes L = 9, 10, 11, 12, 13 for the 4D case and L =
6, 7, 8 for 5D realizations of disorder W = 5 (4D) and W = 10 (5D).
The number of eigenvalues P = L3/2. For both dimensionalities the
low mode slopes follow a 1 + d/2 behavior, i.e., α = 3 for d = 4 and
α = 3.5 for d = 5, and a slope close to 1 (α = 0.95) for the higher
modes except at the largest sizes where α = 0.83.

By taking the route of the SVD, it is possible to over-
come these difficulties. The SVD essentially decomposes the
spectrum to modes where the low modes (large amplitudes)
capture the longer-range features. As we have shown, the
SV modes are, in a sense, similar to the Fourier transform
frequencies and show similar regularities of the frequencies
and modes. Nevertheless, the SVD saves the need to first
unfold and then perform a power analysis over all realizations
and finally average; thus, it is a much more concise method.
Moreover, since the contribution of the lowest modes ei

j fil-
tered out is custom set for each realization i, one overcomes
the problem of individual realization global variations raised
in Ref. [15]. Thus, either by unfolding with SVD and then
performing a power spectrum or by directly examining the
singular values using the scree plot, it is possible to extract the
properties of the energy spectra beyond the Thouless energy
and to see the predictions of Ref. [7] clearly hold.

This success might encourage the application of the SVD
method to other systems for which interesting long-range

properties of the energy spectrum are expected such as the
SYK model and systems which show many-body localization.

APPENDIX: CONNECTION BETWEEN THE NUMBER
VARIANCE AND THE POWER SPECTRUM

Here we aim to show that the relation between the slope of
the power spectrum 〈Fk〉 ∝ k−γ and the slope of the number
variance 〈δ2n(E )〉 ∝ 〈n(E )〉d/2 is γ = 1 + d/2.

Following McDowel et al. [34], the local fluctuations δ̃i
j =

δi
j/� may be rewritten as

δ̃i
j = 1

kmax − kmin

kmax∑
k=kmin

√
2F i

k cos
(
K j + φi

k

)
, (A1)

where kmin and kmax are the ranges for which the power spec-
trum exhibits a particular power law behavior with slope γ ,
K = 2πk/r, and φi is a phase. The number variance δ2ni

j (E )
for a particular realization i where the energy window E starts
at the energy of the averaged jth eigenvalue j� and ends at
( j + l )� (E = l�) can be written as

δ̃2ni
j (l�) = (

δ̃i
j+l − δ̃i

j

)2
. (A2)

Substituting δ̃i
j by Eq. (A1) and averaging over the beginning

of the energy window j and the phase φk , one obtains

〈δ2n(l�)〉 = 1

r − l

r−l∑
j=1

1

(kmax − kmin)2

×
kmax∑

k=kmin

kmax∑
k′=kmin

2Fk

(2π )2

∫ 2π

0
dφkdφk ′

× [cos(K( j + l ) + φk ) − cos(K j + φk )]

× [cos(K( j + l ) + φk ′) − cos(K j + φk ′)],
(A3)

resulting in

〈δ2n(l�)〉 = 1

r − l

r−l∑
j=1

1

kmax − kmin

kmax∑
k=kmin

× 2Fk

2π

∫ 2π

0
dφk{cos2[K( j + l ) + φk]

+ cos2(K j + φk ) − 2 cos[K( j + l ) + φk]

× cos(K j + φk )}. (A4)

Performing the integration over φk and summation over j and
retaining only the l-dependent part, one obtains

〈δ2n(l�)〉 ∼ 1

kmax − kmin

kmax∑
k=kmin

Fk cos(Kl ). (A5)

Replacing the summation with an integration and using the
power law dependence of the power spectrum lead to

〈δ2n(l�)〉 ∼
∫ Kmax

Kmin

dKK−γ cos(Kl ) ∼ lγ−1. (A6)

Thus, since, following Altshuler and Shklovskii [7],
〈δ2n(l�)〉 ∼ ld/2, we conclude that the power spectrum
should exhibit a slope γ = d/2 + 1.
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