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The statistical properties of spectra of quantum systems within the framework of random matrix theory are
widely used in many areas of physics. These properties are affected if two or more sets of spectra are superposed,
resulting from the discrete symmetries present in the system. The superposition of spectra of m such circular
orthogonal, unitary, and symplectic ensembles are studied numerically using higher-order spacing ratios. For
given m and the Dyson index β, the modified index β ′ is tabulated whose nearest-neighbor spacing distribution
is identical to that of k-th order spacing ratio. For the case of m = 2 (m = 3) in the Circular Orthogonal Ensemble
(Circular Unitary Ensemble) a scaling relation between β ′ and k is given. For COE, it is conjectured that for k =
m + 1 (m � 2) and k = m − 3-th (m � 5) order spacing ratio distribution the β ′ is m + 2 and m − 4, respectively,
whereas in the case of the Circular Symplectic Ensemble, for k = m + 1 (m � 2) and k = m − 1-th (m � 3) the
β ′ is 2m + 3 and 2(m − 2), respectively. We also conjecture that for given m (k) and β, the sequence of β ′ as a
function of k (m) is unique. Strong numerical evidence in support of these results is presented. These results are
tested on complex systems like the measured nuclear resonances, quantum chaotic kicked top and spin chains.
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I. INTRODUCTION

Random matrix theory (RMT) has been successfully ap-
plied to study the spectral fluctuations in various complex
quantum systems [1–9]. These include spin chains from
condensed matter physics [10–14], nuclear physics [1,2,15],
chaotic billiards [16,17], etc. These fluctuations are used to
characterize various phases of these systems, for example,
thermal or localized phase of spin chains [12–14,18], inte-
grable to chaotic limit of the underlying classical system
[19,20], etc. For correct characterization of the system, its
spectra need to be desymmetrized [21]. If the Hamiltonian
H for a given system possess an additional symmetry S,
i.e., [H, Ŝ] = 0, where Ŝ is the operator corresponding to S,
then the eigenvalues get superposed. This can lead to en-
tirely different fluctuation properties failing to characterize
the system [8,21–27]. Due to symmetry S the H becomes
block diagonal in the basis formed by the eigenfunctions of S,
i.e., H = H1 ⊕ H2 ⊕ . . . ⊕ Hm. Here, m denotes the number
of nondegenerate eigenvalues of S. Thus, due to the symmetry
S, in the spectra of H , the eigenvalues from different blocks
get superposed. Symmetries also have played an important
role in our understanding of many areas of physics [28–31],
mathematics [31,32], biology [33], etc. The importance of
symmetries can be understood from the works of Emmy
Noether, where she has related continuous symmetry and con-
servation laws in her famous theorem [34,35]. Symmetries
have also played an important role in the RMT [7,8]. This
goes back to Wigner who defined a class of Gaussian random
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matrix ensembles to understand the fluctuations in the nuclear
spectra. The class of ensemble one uses depends on the sym-
metry present in the system. In RMT, the spectral fluctuations
are modeled using the most popular measure, namely, the
nearest-neighbor (NN) level spacings, si = Ei+1 − Ei, where
Ei, i = 1, 2, . . . are the eigenvalues of the Hamiltonian H .
Wigner surmised that in time-reversal invariant systems with-
out a spin degree of freedom, these spacings are distributed
as P(s) = (π/2)s exp(−πs2/4), which indicates the level re-
pulsion. For these systems, the statistical properties of the
spectra are modeled correctly by the Gaussian Orthogonal
Ensemble (GOE) having Dyson index β = 1. Other ensem-
bles that are used commonly in RMT are Gaussian unitary
ensemble (GUE) and Gaussian symplectic ensemble (GSE)
having Dyson index β = 2 and 4, respectively, having ap-
plications to various fields [4,36]. In this work, the circular
class of ensembles has been studied [7] and based on previous
studies our results can be extended to Gaussian ensembles for
large matrix dimensions under certain conditions as explained
in Sec. II [7,8,21,37–39]. The symmetries that are used in
defining respective Gaussian ensembles are the same for those
of circular ensembles. Indices β = 1, 2, and 4 correspond
to Dyson’s threefold way and have played an important role
in physics. Matrix representation for these indices was given
in the initial development of RMT. But these ensembles are
valid and exits for continuous parameter β ∈ (0,∞) and a
tridiagonal random matrix model have been defined for them
[40]. It has been used recently in the study of level statistics of
many-body localization for β ∈ (0, 1] [41,42]. The index β is
interpreted as the inverse temperature of T = 1/β in the RMT
literature. In 1984, Bohigas, Giannoni, and Schmidt conjec-
tured that quantum chaotic systems display NN level statistics
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consistent with that of an appropriately chosen random ma-
trix ensemble [9,16]. This conjecture is supported by many
theoretical studies [43–45]. Due to the additional symmetry
S, which may not be known a priori, the eigenvalues from
different blocks get superposed. This results in level clustering
of NN and one obtains their spacings distribution to be Pois-
sonian [8,9,46–48], P(s) = exp(−s), which also corresponds
to the NN spectral fluctuations of integrable systems known as
Berry and Tabor’s conjecture [49]. This implies that to study
the genuine spectral correlations, eigenvalues must be drawn
from the same subspace. Motivated by the works of Wigner,
Dyson introduced a new class of ensembles of random matri-
ces known as circular β-ensembles which are measures in the
spaces of unitary matrices [50]. They have played important
roles in RMT. The Dyson index β = 1, 2, and 4 corresponds
to the Circular Orthogonal Ensemble (COE), the Circular Uni-
tary Ensemble (CUE), and the Circular Symplectic Ensemble
(CSE), respectively. These ensembles have found applications
in the scattering from a disordered cavity [7], condensed mat-
ter, and optical physics [4]. The algorithm for generating these
ensembles numerically is nontrivial compared with that of
Gaussian ensembles and is given in Ref. [51]. Similar to the
Gaussian β-ensemble, the circular β-ensemble is also defined
for continuous parameter β ∈ (0,∞), and a corresponding
tridiagonal model is defined for them [24,52]. Previous studies
have shown connections within ensembles corresponding to
β = 1, 2, and 4. A theorem that relates the properties of the
CUE and COE has been conjectured in Ref. [22] and later
proved by Gunson [23]. It states that the alternate eigenvalues
obtained after superposition of spectra of two matrices (m = 2
as per our notation) of the same dimension from COE belong
to that of CUE. A similar theorem relating properties of COE
and CSE were proved in Ref. [53]. It states that the alternate
eigenvalues of an even-dimensional COE belong to that of
CSE. Thus, these two theorems together state that all the
statistical properties of the three ensembles are derivable from
that of COE alone [53]. In fact, these two theorems hold at
the level of joint probability distribution function (jpdf). As
a corollary of these theorems, one can also say that level
fluctuations of CUE and CSE can be obtained using COE.
It is also conjectured that similar relationships hold true for
Gaussian ensembles of infinite dimensions, in which the GOE
underlies the GUE and GSE [38,39]. There are recent studies
where higher-order spacing ratios are studied in the super-
posed spectra [21]. There it is shown that when the m number
of COE spectra is superposed then the distribution of the m-th
order spacing ratios is the same as that of NN spacing ratios
of the circular ensemble with modified Dyson index m. (The
definition of higher-order spacing ratios will be given in detail
in Sec. II.) This result is then used to find symmetries in
various physical systems like spin chains, quantum billiards,
and experimentally measured nuclear resonances. Similarly in
Ref. [25], the distribution of NN spacing as well as the NN
spacings ratio is studied in Gaussian ensembles when discrete
symmetries are present with no restriction of their numbers.
These results are then applied to quantum many-body sys-
tems, anyonic chains to periodically driven spin systems, and
quantum clock models. It can be seen that only the special
cases of spacings and their ratios for given m are studied in
Refs. [21,25]. In this paper, our main aim is to study k-th

higher-order spacing ratios for given m superpositions for
each of the COE, CUE, and CSE ensembles. There will be no
restriction on the value of k as it was in Ref. [21] where k = m.
We will be validating our COE results by testing them on the
physical model like the quantum kicked top (QKT), experi-
mentally measured nuclear resonances, and spin Hamiltonian.
Our results can also be used as a stringent test for studying
symmetries in other systems. The structure of the paper is
as follows: In Sec. II, the definitions of various quantities,
namely, the NN spacing ratios and higher-order spacing ratios
are given. Previous studies from RMT and other fields using
these definitions are presented. In Sec. III, our results using
the higher-order spacing ratios of superposition of COEs are
presented. In Sec. IV, we show the application of these results
to the physical systems. In Sec. V (Sec. VI), we present re-
sults on higher-order spacing ratios of superposition of CUEs
(CSEs). In Sec. VII, various numerical methods used in this
paper in support of our results are presented. In Sec. VIII, a
summary of the results and conclusion is given.

II. PRELIMINARIES

For the study of the spacing distribution, one needs to un-
fold the spectra which removes the system-dependent spectral
features, i.e., the average part of the density of states (DOS)
[3,6,8,49,54]. This procedure is nonunique and cumbersome
in many cases which can give misleading results [55]. This
difficulty can be solved by using the NN spacing ratios [18],
i.e., ri = si+1/si, i = 1, 2, . . ., since it is independent of the lo-
cal DOS and thus does not require unfolding. The distribution
of ri, P(r) has been obtained for Gaussian ensembles and is
given as follows [56,57]:

P(r, β ) = 1

Zβ

(r + r2)β

(1 + r + r2)(1+3β/2)
, β = 1, 2, 4, (1)

where Zβ is the normalization constant that depends on β.
This quantity has found many applications, like the numerical
investigation of many-body localization [18,41,58–62], local-
ization in constrained quantum system [63], and quantifying
the distance from integrability on finite size lattices [26,64–
67] and to study localization transition in Lévy matrices [68],
symmetries in various complex systems [21,25], the degree of
chaoticity in different random matrix models [69], quantum
chaos in Sachdev-Ye-Kitaev models [70–72], and quantum
field theory [73]. Variations of the spacing ratios have been
studied in the recent past [57,74–76] including generalization
to complex eigenvalues [77]. In this work, the nonoverlapping
k-th order spacing ratio is considered, where no eigenvalue is
shared between the spacings of numerator and denominator,
and is defined as follows:

r (k)
i = s(k)

i+k

s(k)
i

= Ei+2k − Ei+k

Ei+k − Ei
, i, k = 1, 2, 3, . . . . (2)

This ratio has been used to study higher-order fluctuation
statistics in the Gaussian [37], circular [37], and Wishart
ensembles [78], and a scaling relation is given as follows:

Pk (r, β, m = 1) = P(r, β ′), β � 1

β ′ = k(k + 1)

2
β + (k − 1), k � 1.

(3)
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TABLE I. Tabulation of higher-order indices β ′ for various k and
β using Eq. (3).

k β = 1 β = 2 β = 3 β = 4 β = 5 β = 6 β = 7

1 1 2 3 4 5 6 7
2 4 7 10 13 16 19 22
3 8 14 20 26 32 38 44
4 13 23 33 43 53 63 73
5 19 34 49 64 79 94 109
6 26 47 68 89 110 131 152
7 34 62 90 118 146 174 202
8 43 79 115 151 187 223 259

It tells that the distribution of k-th order spacing ratio for a
given β-ensemble is the same as that of NN spacing ratios of
β ′(> β ) ensemble. It has been applied successfully to various
physical systems like spin chains, chaotic billiards, Floquet
systems, observed stock market, etc. [37,78,79]. It was also
used recently to find the symmetries in complex systems [21].
It should be noted here that the results obtained for the case
k = 1 are found to be universal since it does not depend on the
local DOS, whereas for k > 1 one needs to be careful since the
DOS, which changes from ensemble to ensemble, can affect
the distribution of r (k)

i . For example, in the case of circular
ensembles (introduced in Sec. III), the DOS is uniform; for
Gaussian ensembles, it is Wigner’s semicircle; whereas for
the Wishart ensemble, it is given by Marchenko-Pastur dis-
tribution [8]. Thus, only in the case of circular ensembles,
DOS will not affect the higher-order spacing ratios. In the case
of physical systems, DOS can be different even if their NN
fluctuation properties are explained by the same kind of RMT
ensemble [2,12–14,26,27,37,80]. Thus, the results for k > 1
cannot be claimed to be universal that easily. But evidence
from Ref. [37] (see Fig. 5 therein) suggests that for a given
k, if the matrix dimension is increased large enough, which
will depend on the RMT ensemble and the physical system
under consideration, then our RMT results can be applied
to them. This means that the effects of nonuniform density
can be minimized by increasing the matrix dimension for a
given value of k. This will also be demonstrated in Sec. IV,
where we apply the RMT results to the physical system of spin
chain. Recently, the same relation between the higher-order
and the NN spacing distributions had been shown rigorously,
which is tested on random spin systems and nontrivial zeros
of the Riemann zeta function [12,39,81–84]. In Ref. [21] (as
explained in the Introduction), the distribution of the m-th
order spacing ratios after superposing the spectra of m COEs
is studied. It is shown to be converging to the distribution of
the NN spacing ratios P(r, β ′) with β ′ = m, i.e.,

Pk (r, 1, m) = P(r, β ′), where β ′ = k = m. (4)

Equation (3) is tabulated for few values of β and k in Table I.
It can be observed from the β = 1 series in Table I that the
β = 4 series appears at its even places. This is because the
relation between COE and CSE exists at the level of the jpdf of
the eigenvalues [22,23] as discussed in the Introduction. This
observation plays an important role in further analysis in the
subsequent parts of this paper. The special case of the Eq. (3)

TABLE II. Tabulation of higher-order indices β ′ for various k
and superposition of m COEs each having dimension N = 8400.

k m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
β ′ β ′ β ′ β ′ β ′ β ′

1 0 0 0 0 0 0
2 2 1.25 1 1 0.75 0.75
3 4 3 2.5 2 2 2
4 7 5 4 3.5 3 3
5 10 7.5 6 5 5 4
6 14 10 8 7 6 6
7 18 13 11 9 8 7
8 23 17 13 12 10 9
9 28 20 16 14 12 11
10 34 24 20 17 15 13
11 40 29 23 20 17 16
12 47 33 27 23 20 18
13 54 38 31 26 23 21
14 43 35 30 26 23
15 49 39 33 29 26
16 44 32 29
17 32
18 35
19 39
20 42

for 0 � β � 1 is given in Refs. [85,86] at the level of the joint
probability distribution of eigenvalues. There, it is shown that
the jpdf of every k-th eigenvalue in certain β-ensembles with
β = 2/k is equal to that of another β-ensemble with β = 2k.
Based on numerical simulations, the results of our work will
now be presented.

III. SUPERPOSITION AND HIGHER-ORDER SPACING
RATIOS IN COE

In this work, the main object of study is the circular β

ensembles. The jpdf is given as follows:

QN,β[{θi}] = CN,β

N∏
k> j

| exp(iθ j ) − exp(iθk )|β, (5)

where N is the dimension and Cβ,N = (2π )−N {�(1 +
β/2)}N {�(1 + Nβ/2)}−1 is the normalization constant [7,8].
The eigenvalues θi are distributed uniformly on the unit cir-
cle and display level repulsion, characterized by β � 0 [8].
Larger the value of β larger is the repulsion. It can be seen that
if β = 0 is put in the jpdf all the eigenvalues are independent
and thus uncorrelated. For such eigenvalues the level statistics
follow a Poisson law. In this section, we consider the superpo-
sition of m � 2 number of COEs and study its nonoverlapping
k-th order spacing ratio distribution Pk (r, β, m). For COE,
β = 1 is taken and is used in modeling Hamiltonians which
possess time-reversal symmetry and no half-integer spin [8].
This is then related with the NN spacing ratio distribution
P(r, β ′) for β ′ > β. For given m and k we tabulate the value
of β ′ for which both these distributions are very close to
each other numerically. These values are given in Table II
for m = 2 to 7 and various values of k. It can be seen that
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FIG. 1. Distribution of the k-th order spacing ratios (circles) for a
superposition of m = 2 COE spectra. The dimension of the matrices
is N = 8400. The solid curve corresponds to P(r, β ′) as given in
Eq.(1) with β ′ given in Table II. The insets show D as a function
of β ′.

except for a few, all values of β ′ are whole numbers (this is the
case for the superposition in CUEs and CSEs, which will be
discussed in subsequent parts of the paper). These results are
plotted in Figs. 1–5. The insets show the D(β ′) function, the
minimum of which gives the best fit P(r, β ′) to the numerical
data Pk (r, β, m). Its detailed definition and other numerical
methods with which we find β ′ will be discussed in Sec. VII.
We have also plotted a representative data for noninteger β ′ in
Sec. V (see Fig. 14 later in the paper) where we have studied
the superposition of CUEs. The m = 2 is an interesting case
for which we have obtained scaling relations for even and odd
values of k and β ′ as given below:

β ′ = 5k

2
− 3 + (k − 2)(k − 4)

4
, k = 2, 4, 6, . . . (6)

and

β ′ = 3k − 5 + (k − 3)(k − 5)

4
, k = 3, 5, 7, . . . (7)

For even k the scaling relation reduces to Eq. (3) for β = 2 by
suitable change of variables as l = k/2 where l = 1, 2, 3, . . . .
This is a known result in the connection between CUE and the
superposition of two COEs [22,23]. For odd k changing the
variable as q = (k − 1)/2 then Eq. 7 reduces to a simpler form
as β ′ = q(q + 3) for q = 1, 2, 3 . . . . It can be compared with
Eq. (3) and can be seen that it does not reduce to Eq. (3) for
any β. Thus, using the scaling relation in Eq. (7), no statement
can be made at the level of jpdf of circular β-ensemble. Based
on the results in Table II, we have given two conjectures on
the lines of Eq. (4) (see Ref. [21]) at the level of spectral
fluctuations. The first conjecture is as follows:

Pk (r, 1, m) = P(r, β ′), for β ′ = k + 1 = m + 2, (8)

and m � 2, while the second one is as follows:

Pk (r, 1, m) = P(r, β ′), for β ′ = k − 1 = m − 4, (9)

and m � 5. Our conjectures hold true for asymptotic value of
N . These conjectures have appeared in Ref. [87].

TABLE III. Tabulation of higher-order indices β ′ for various k
and superposition of m CUEs, each having dimension N = 10000.

k m = 2 m = 3 m = 4 m = 5
β ′ β ′ β ′ β ′

1 0 0 0 0
2 3 1.5 1 0.75
3 6 4 3 2
4 11 7 6 4
5 15 11 8 7
6 22 15 11 10
7 28 20 15 13
8 36 25 20 16
9 43 31 24 20
10 55 37 29 24
11 64 44 34 28
12 75 51 40 33
13 59
14 67
15 76
16 85

IV. TESTING RMT RESULTS TO PHYSICAL SYSTEMS

In this section, we test our COE results on the physical
model of the QKT, experimentally measured data of nuclear
resonances and a spin Hamiltonian. Using these systems it
will be shown that our results hold true for m = 2 case. First,
we consider the model of QKT. This is a fundamental and
important time-dependent model for the chaotic Hamiltonian
system. This model was introduced in Ref. [19] and has
been the topic of theoretical and experimental research since
then [19,88–103]. It has been realized in various experiments,
namely, the hyperfine states of cold atoms [92], three coupled
superconducting qubits [95], and in a two-qubit NMR system
[99]. This is also an important model from the perspective of
RMT and quantum information. This model shows regular to
chaotic behavior as a function of chaoticity parameter. Effects
of the underlying phase space on various measures quantum
correlations are studied [95–97,104]. For classical limit being
fully chaotic, the NN fluctuations of symmetry reduced spec-
tra of the QKT corresponds to that of COE ensemble [16,19].
QKT is characterized by an angular momentum vector J =
(Jx, Jy, Jz ) and its components obey the standard algebra of
angular momentum. The unitary time evolution operator for
QKT is given as follows:

Û = exp (−ipJy) exp

(
−i

k

2 j
J2

z

)
. (10)

It represents free precession of the top around the y axis with
angular frequency p while the second term is periodic δ kicks
applied to the top. Here, k is called as the kick strength or
chaos parameter. For k = 0 the top is integrable and for k > 0
it becomes increasingly chaotic. For given j the Hilbert space
dimension is equal to 2 j + 1. As discussed in Ref. [19], for
p �= π/2, the case relevant for us, there are two symmetries
present in QKT, since Û commutes with the rotation operator
R̂y having two eigenvalues. Thus, the matrix representation
of Û in the basis of Ry is block diagonal consisting of two
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TABLE IV. Tabulation of higher-order indices β ′ for various k
and superposition of m CSEs each having dimension N = 1000.

k m = 2 m = 3 m = 4 m = 5 m = 6
β ′ β ′ β ′ β ′ β ′

1 0 0 0 0 0
2 5 2 1 0.75 0.75
3 7 7 4 2.5 2
4 18 9 8 6 4
5 21 14 11 10 8
6 36 23 14 13 12
7 39 27 21 16 15
8 60 35 28 20 18
9 63 47 33 27 21
10 88 53 38 35 27
11 92 63 48 40 34
12 122 79 59 44 40

blocks, and their dimensions are j and j + 1. The large j case
is relevant to us as these dimensions are very close to each
other. For the fully chaotic case, the eigenvalue fluctuations
of Û in each such block are found to follow COE statistics
[19]. Taking these eigenvalues together and studying their
higher-order spacings ratio is an ideal case for our study. We
can compare them with our COE results of m = 2. For our
study j = 1000 and 20 realizations for large and different
values of k is taken. Thus, the dimension of the matrix Û is
2001. The dimension of two blocks when Û is written in the
eigenbasis of R̂y is 1000 and 1001, respectively. Thus, we can
test our RMT results of m = 2 case of COE. The results are
plotted in Figs. 6 and 7 for k = 2 to 13. It can be seen here
that the results agree very well with the RMT results, m = 2
case of COE in Table II, thus implying that there are two
symmetries in the QKT, which were already known a priori
[19]. The RMT results hold true for such a large value of k due
to the uniform density in both the COE ensemble and the QKT
(as discussed in the Sec. II). Now, we go on to test our results
to experimentally measured nuclear resonances of Tantalum
(Ta181) [80,105]. It is known that it belongs to the GOE and
there are two symmetries present in it [80,105]. We have 434
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FIG. 2. The same as Fig. 1 for m = 3.

0

1

2

0 1 2
0

1

2

Pk (r
,1

,m
), 

 P
(r

,�
��

0 1 2

r
0 1 2 3

10 12
0

0.4

0.8

38 40

��
0

0.1

D
(�
¢�

30 32

0.15

22 24
0

0.2

14 15 16 17 18

0.3

0.6

38 40
0

0.1

 m=4
 k=5 
��=6

 m=4
 k=7 
��=11

 m=4
 k=9 
��=16

 m=4
 k=15 
��=39

 m=4
 k=13 
��=31

 m=4
 k=11 
��=23

FIG. 3. The same as Fig. 1 for m = 4.

such resonances and the results are plotted in Fig. 8. The value
of β ′ is chosen such that P(r, β ′) is the best fit to the data.
The results are compared with m = 2 case of COE in Table II.
It can be seen that the results hold true only for k = 2 and
3. From k = 4 onward we observe deviations from our RMT
results. This is due to the nonuniversal effects in the DOS (not
shown here) and the small sample size. With this example,
we have tested our COE result on a GOE system with a
small sample size and found the number of symmetries in it
successfully. Now, a Hamiltonian corresponding to spin-1/2
chain [27,106] is considered as follows:

H =
L−1∑
i=1

[
Jxy

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) + JzS
z
i Sz

i+1

]

+ α

L−2∑
i=1

[
J ′

xy

(
Sx

i Sx
i+2 + Sy

i Sy
i+2

) + J ′
zS

z
i Sz

i+2

]
, (11)

where L is the total number of sites, and the NN coupling
strengths in three directions are denoted by Jxy and Jz (cou-
plings in x and y directions are the same). Similarly, J ′

xy and
J ′

z are the next-NN coupling strengths. For α = 0 this Hamil-
tonian is integrable [21], whereas it is chaotic for α � 0.2
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and follows GOE statistics [27]. There are various symmetries
in this model [107,108]. The first one is due to conservation
of total spin in the z direction denoted as Sz = ∑L

i=1 Sz
i . For

our work we are restricting to the case Sz = 0 (even L) and
Sz = −1/2 (odd L) such that the block-matrix is of maximum
possible dimension. The Hamiltonian commutes with the par-
ity operator with eigenvalues ±1 leading to two invariant
subspaces in a given Sz block. Results for this case are plotted
in Fig. 9 for odd value of L. It can be seen that our RMT
results for m = 2 case from Table II holds true for k = 2, 3,
and 4. For even L, the Hamiltonian also commutes with the
operator corresponding to rotation symmetry with eigenvalues
±1. Thus, in this case there will be a total of four invariant
subspaces in a given Sz block. The results for this case are
plotted in Figs. 10 and 11. In this case our results hold from
k = 2 to 6 with the corresponding RMT results for m = 4
from Table II. Thus, our m = 2 and m = 4 the COE results
agree with spin Hamiltonian having GOE statistics when there
are two and four symmetries present in it, respectively. In
these cases, the block-matrix dimensions are 1716 and 3432
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respectively. In this case also the deviations are due to the
nonuniversal effects in DOS which is Gaussian in nature (not
shown here). But the results seems to improve due to the
increased matrix dimension.

V. SUPERPOSITION AND HIGHER-ORDER SPACING
RATIOS IN CUE

In this section, we study higher-order spacings ratio in the
superposition of CUEs on the lines in Section III where the
superposition of COEs is studied. The CUE is used in mod-
eling Hamiltonians that lack time-reversal symmetry [8]. The
results are tabulated in Table III for m = 2 to 5 and various
values of k. In this case also, except for a few, all values of β ′
are the whole number. The results are plotted in Figs. 12–14.
Figure 14 shows noninteger values of β ′ which is found by
best fit. In the case of superposing of CUEs, m = 3 is an
interesting case for which we have obtained a scaling relation
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FIG. 8. The same as Fig. 6 but for experimentally measured
nuclear resonances of Ta181. Here, k varies from 2 to 5 while for
solid curves β ′ = 2, 4, 6, and 8.
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FIG. 9. The distribution of the k-th order spacing ratios for k = 2
to 7 is shown for the spin-1/2 chain Hamiltonian with L = 13 with
7 up spins, Jxy = J ′

xy = 1, Jz = J ′
z = 0.5 and α = 0.5. The dimension

of the block-matrix is 1716. The numerical data Pk (r) (circles) are
obtained from the computed eigenvalues of the Hamiltonian. The
solid line represents P(r, β ′), with β ′ = 2, 4, 7, 11, 12, 16.

for even and odd values of k and β ′ as given below:

β ′ = 4k − 9 + (k − 4)(k − 6)

4
, k = 4, 6, 8, . . . (12)

and

β ′ = 1 + k + 5(k − 3)

2
+ (k − 3)(k − 5)

4
, k = 3, 5, 7, . . . .

(13)
By suitable change of variables as l = k/2, Eq. (12) reduces
to β ′ = l2 + 3l − 3 where l = 1, 2, 3, . . .. While using q =
(k − 1)/2, Eq. (13) reduces to β ′ = q2 + 4q − 1 where q =
1, 2, 3 . . .. Comparing these series with Eq. (3), one can see
that it does not reduce to Eq. (3) for any β. Thus, using the
scaling relations in Eqs. (12) and (13), no statement can be
made at the level of jpdf of circular β-ensemble.
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VI. SUPERPOSITION AND HIGHER-ORDER SPACING
RATIOS IN CSE

In this section, we study higher-order spacings ratios in the
superposition of CSEs on the lines in Section III. The CSE is
used in modeling Hamiltonians with time-reversal symmetry
and half-integer spin interaction [8,109]. The results are tabu-
lated in Table IV for m = 2 to 6 and various values of k. The
results are plotted in Figs. 15 and 16. In this case also, except
for a few, all values of β ′ are whole numbers. Based on the
results in Table IV, we have given two conjectures at the level
of spectral fluctuations. The first conjecture is as follows:

Pk (r, 4, m) = P(r, β ′), for β ′ = 2k + 1 = 2m + 3, (14)

and m � 2, while the second one is as follows:

Pk (r, 4, m) = P(r, β ′), for β ′ = 2(k − 1) = 2(m − 2),
(15)

and m � 3. Our conjectures hold true for asymptotic value
of N . Although we are able to find scaling relations for only
a few cases, for given m one can compare the sequence of
β ′ as a function of k with that of m′ �= m, within and across
Tables II–IV. It can be seen that these sequences are unique for
given m and the type of ensemble considered. One can also see
that this is an increasing sequence on the lines of the earlier
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the matrices is N = 10000. The solid curve corresponds to P(r, β ′)
as given in Eq. (1) with β ′ given in Table III. The insets show D as a
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FIG. 13. The same as Fig. 12 but for k = 9 to 14 with corre-
sponding β ′ given in Table III.

result in Eq. (3) from Refs. [37,78]. With this observation, we
would like to conjecture that for a given number of symme-
tries m and the Dyson index β of the circular ensemble or a
quantum chaotic system, the sequence of β ′ is an increasing
function of k and completely characterizes the ensemble or the
system uniquely. Similarly, for given k one can compare the
sequence of β ′ as a function of m with that of k′ �= k, within
and across Tables II–IV. Also, the sequences are unique for
given k and decreasing. Thus, with this observation, we would
like to conjecture that for given k and the Dyson index β,
the sequence of β ′ is decreasing as a function of m and is
unique. This can be interpreted physically as follows: The
level repulsion present in the eigenvalues characterized by β ′
for given m and k is reduced as m is increased and is reflected
in the reduction of the new value of β ′. The implication of
this conjecture is that for given β, k, and m → ∞ we will
see β ′ → 0. It can be seen easily that one conjecture does
not imply the second one. Proving our results mathemati-
cally is challenging but we give an intuitive argument for
the last conjecture. We know that NN as well as the k-th
eigenvalues in circular or Gaussian spectra repel each other
[7]. It has also been established mathematically (analytically
and numerically) that when two same-dimensional COE/GOE
spectra are superposed. the NN don’t repel each other (level
clustering) in the limit of matrix dimensions tending to
infinity, which results in their spacings distribution to be
Poissonian [8,9,46–48]. In other words, before superposition,
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FIG. 14. The same as Fig. 12 but for k = 2, m = 3 and 5 with
corresponding noninteger values of β ′ given in Table III.

TABLE V. The overlap probability p and the maximum absolute
difference d for the results on the superposition of COEs for m =
2, 3, 4, and various k’s.

k m = 2 k m = 3 k m = 4
p, d p, d p, d

3 0.983,0.004153 3 0.992,0.00085 2 0.991,0.00164
5 0.986,0.003421 4 0.991,0.00117 4 0.991,0.00156
7 0.989,0.002506 6 0.994,0.00057 5 0.992,0.00116
9 0.994,0.001173 7 0.989,0.00246 6 0.995,0.00081
11 0.996,0.000651 8 0.988,0.00268 7 0.988,0.003263
13 0.993,0.001836 9 0.994,0.00105 8 0.995,0.00079

10 0.988,0.0023 9 0.986,0.003078
11 0.995,0.0014 11 0.996,0.000431
12 0.995,0.00077 13 0.994,0.001768
13 0.994,0.00077 15 0.996,0.000466

the level repulsion present (characterized by β = 1) has now
vanished after superposition (characterized by β = 0). And
this is what is also observed in our last conjecture, i.e., for
given k and m the value of β ′ (characterizing the repulsion
between the k-th eigenvalues) reduces as m is increased. In
most of the cases we studied here, although not guaranteed,
these reductions are integer number. The special case of our
conjecture where k = 1, N = 2, and m → ∞ is shown to have
NN spacing distribution as Poissonian in Ref. [46].

VII. NUMERICAL METHODS

Now, various numerical pieces of evidence supporting our
results are presented. These best fits are checked with the
numerical data quantitatively. As a numerical check for our
claims, analysis using Eq. (3) for P(r, β ′) is carried out, where
no fitting parameter is involved. For this, the difference be-
tween the cumulative distributions is numerically found and
defined as follows:

D(β ′) =
∑

i

∣∣F k
obs(ri, β, m) − F (ri, β

′)
∣∣, (16)

where F k
obs(r, β, m) and F (r, β ′) denote cumulative distri-

bution functions corresponding to the observed histogram
Pk

obs(r, 1, m) and the numerical fit or the postulated func-
tion P(r, β ′), respectively. This definition has been used in

TABLE VI. The same as Table V but for m = 5, 6, and 7.

k m = 5 k m = 6 k m = 7
p, d p, d p, d

2 0.957,0.01088 3 0.967,0.00822 3 0.941,0.001464
3 0.989,0.00186 4 0.991,0.0009 4 0.978,0.005134
6 0.995,0.00044 5 0.965,0.00882 5 0.991,0.000112
7 0.987,0.00253 6 0.976,0.00562 6 0.978,0.005358
8 0.981,0.00479 7 0.988,0.00248 7 0.974,0.006416
9 0.996,0.00046 8 0.996,0.00046 8 0.987,0.003019
10 0.990,0.00232 9 0.983,0.00416 9 0.990,0.002234
11 0.990,0.00264 10 0.991,0.00241 10 0.995,0.00096
12 0.996,0.00206 12 0.996,0.00054 15 0.997,0.00094
13 0.996,0.00037 16 0.996,0.00138 20 0.996,0.0013
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FIG. 15. Distribution of the k-th order spacing ratios (circles)
for various values of k and superposition of m CSE spectra. The
dimension of the matrices is N = 1000. The solid curve corresponds
to P(r, β ′) as given in Eq. (1) with β ′ given in Table IV. The insets
show D as a function of β ′.

earlier works [21,37,78] in similar kinds of analyses. It can
be seen that D(β ′) can take any positive value (upper bound)
depending on the range of i in the summation, but is minimum
only for that value of β ′ for which P(r, β ′) is best fit for the
observed histogram. The values of k for given m are the same
as those in Figs. 1–13, 15, and 16. The results of D(β ′) are
shown in the insets of these figures. It can be seen that the
minima of D(β ′) in each case coincides remarkably with those
of corresponding β ′ from the main figures. After finding the
best fit for the observed data using D(β ′), we go on to check
how close the two probability distributions and their respec-
tive cumulative functions are. First, the overlap (p) between
the probability plots in Figs. 1–13, 15, and 16 is calculated
using the following definition:

p = 1 −
∫ ∣∣Pk

obs(r, β, m) − P(r, β ′)
∣∣ dr. (17)

Second, the cumulative distribution functions corresponding
to observed data Pk

obs(r, β, m) and P(r, β ′) are studied. The
maximum absolute difference (d) between these cumulative
distributions is calculated using the following definition:

d = Sup
ri

|F k
obs(ri, β, m) − F (ri, β

′)|. (18)

By definition 0 � p, d � 1 and larger (smaller) value of p
(d) will indicate that the numerically observed distribution is
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FIG. 16. The same as Fig. 15 but for different values of k and m.

TABLE VII. The same as Table V but for CUE and m = 3.

k m = 3 k m = 3
p, d p, d

3 0.9673,0.008161 9 0.9977,0.0006759
4 0.9965,0.0007662 10 0.9976,0.00080449
5 0.9813,0.005530 11 0.9965,0.0015069
6 0.9948,0.000936 12 0.9961,0.0005231
7 0.9893,0.004329 13 0.9971,0.0011679
8 0.9960,0.0017572 14 0.99709,0.0006004

close to that of the postulated one. Unlike D(β ′), these values
will only improve as the range of i is increased. The values are
shown in Tables V–XI. Tables V–VIII give strong evidence for
our results in Tables II–IV corresponding to the superposition
of COE, CUE, and CSE, respectively. In Tables IX–XI results
are shown for the physical system of QKT, measured nuclear
resonances, and the spin Hamiltonian as plotted in Figs. 6–11.
It can be seen that in all cases the values of p and d shown
in these tables give strong evidence for our results in these
figures. The effect of small sample size in the case of nuclear
resonances can be seen in Table X.

VIII. SUMMARY AND CONCLUSIONS

This paper has studied the long-range correlations in the
superposed spectra of COE, CUE, and CSE using higher-
order spacing ratios. We have given a table for the modified
Dyson indices (β ′) corresponding to the distribution of k-th
order spacing ratio when the m number of matrices each from
COEs, CUEs, and CSEs is superposed. For the case when two
COEs are superposed, two scaling relations relating β ′ and
k are found for even and odd values of k, respectively. The
relation corresponding to even k is related to the earlier result
on the connection between CUE and the superposition of two
COEs at the level of jpdf [22,23]. Conjectures on the lines of
Ref. [21] are given. For the case of COE, it is conjectured
that for given m, the distribution of the k-th order spacing
ratio is related to β ′ such that the relation β ′ = k + 1 = m + 2
for m � 2 and β ′ = k − 1 = m − 4 for m � 5 holds true.

TABLE VIII. The same as Table V but for CSE and m = 4, 5, and
6.

k m = 4 k m = 5 k m = 6
p, d p, d p, d

2 0.9821,0.00884 4 0.9966,0.00657 3 0.9698,0.00709
3 0.9538,0.009765 5 0.9896,0.00114 4 0.9530,0.00870
4 0.9784,0.005174 6 0.9896,0.00216 5 0.9760,0.00540
5 0.9856,0.00353 7 0.9880,0.00209 6 0.9850, 0.00379
6 0.988,0.002077 8 0.9888,0.00247 7 0.9918,0.00129
7 0.9907,0.002545 9 0.9872,0.00272 8 0.9874,0.00298
8 0.9873,0.002881 10 0.9948,0.00132 9 0.9931,0.00100
9 0.9913,0.002375 11 0.9941,0.00114 10 0.9916, 0.00195
10 0.9917,0.001246 12 0.9923,0.00152 11 0.9907, 0.00179
11 0.9938,0.001067 12 0.9897,0.00212
12 0.9636,0.001533
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TABLE IX. The overlap probability p and the maximum absolute
difference d for the distribution of higher-order spacing ratios using
the eigenvalues of QKT in chaotic case. The value of β ′ for given k
is the same as that in Figs. 6 and 7.

k β ′ p, d k β ′ p, d

2 2 0.97263,0.003742 8 23 0.97814,0.002949
3 4 0.95997,0.008608 9 28 0.98059,0.002558
4 7 0.97056,0.003950 10 34 0.97707,0.002847
5 10 0.97393,0.004558 11 40 0.97981,0.001904
6 14 0.98118,0.001842 12 47 0.97895,0.004052
7 18 0.97883,0.003812 13 54 0.98250,0.002808

Similarly, for the case of CSE, the relation β ′ = 2k + 1 =
2m + 3 for m � 2 and β ′ = 2(k − 1) = 2(m − 2) for m � 3
holds true.

We have tested our results on three different physical sys-
tems. The first one is the QKT in the quantum chaotic limit
belonging to COE. The other two are the measured nuclear
resonances and a spin Hamiltonian both corresponding to the
GOE. These systems are known to have symmetries. For the
case of QKT, we have tested our RMT results of the m = 2
case up to k = 13 and found very good agreement. This agrees
with the earlier analytical result from Ref. [19], where it is
shown that its Hamiltonian has two symmetries, whereas in
the case of nuclear resonances, we could find agreement only
up to k = 3 due to nonuniform density as well as small sample
size. But the results of k = 2 and 3 were enough to conclude
the presence of two symmetries using the uniqueness of our
tabulated COE results. The third system we considered is the
quantum chaotic spin Hamiltonian. Depending on the values
of the parameter, a given spin sector can have two or four
symmetries. In both the cases we tested our COE results of
m = 2 and m = 4. In this case, we also observed the effects of
nonuniform density but at large values of k compared with the
previous case due to the large matrix dimension. These results
imply that our RMT results hold very well to quantum chaotic
physical systems modeled by circular ensembles. For others,
we may see the deviations for higher values of k depending
on the system and its matrix dimension or the sample size.
Despite this we could successfully find the symmetries of sys-
tems modeled by Gaussian ensembles. Looking at our results
and Refs. [7,8,21,37–39], especially Ref. [37], our results can
be claimed to be true for Gaussian ensembles in the limit of
large matrix dimensions. Thus, our results can be used to find
the symmetries in unknown physical systems.

For the case of m = 3 superposition of CUEs, two scaling
relations relating β ′ and k are found for even and odd values

TABLE X. The same as Table XI but for the data of nuclear
resonances. The value of β ′ for given k is the same as that in Fig. 8.

k β ′ p, d k β ′ p, d

2 2 0.88868,0.018197 4 6 0.89450,0.028502
3 4 0.85402,0.027265 5 8 0.87177,0.031754

TABLE XI. The overlap probability p and the maximum absolute
difference d for the distribution of higher-order spacing ratios using
the eigenvalues of spin chains in chaotic case. The value of β ′ for
given k is the same as that in Figs. 9 (left), 10 (right), and 11 (right).

k β ′ p, d k β ′ p, d

2 2 0.93226,0.01725 2 1 0.92570,0.01059
3 4 0.92965,0.01293 3 2.5 0.95498,0.01021
4 7 0.93976,0.01779 4 4 0.95163,0.00550
5 11 0.92546,0.03858 5 6 0.93557,0.01493
6 12 0.95894,0.00826 6 8 0.93278,0.01389
7 16 0.94367,0.01096 7 10 0.94717,0.01175

8 12 0.94094,0.00822
9 16 0.94468,0.01891
10 17 0.94992,0.00791

of k. These scaling relations along with other results are con-
firmed numerically using large matrix dimensions. We have
used various numerical tests for the verification of our results.
We conjectured that for given m (k), the sequence of β ′ as a
function of k (m) is increasing (decreasing) and is unique to a
given circular β-ensemble. As a corollary, finding symmetries
as well as whether a given quantum chaotic system is time-
reversal invariant (with or without the spin degree of freedom)
or not can be found unambiguously. The Gaussian ensem-
bles have been implemented in various experimental systems
[110–114]. Thus, our circular ensemble results can be tested
using these experiments by taking experimental systems with
suitable geometrical symmetry corresponding to given m.

This work has given rise to new future directions as well.
We would like to test our results as an additional and stringent
test for finding symmetries in various other quantum complex
systems [21,25,73]. Various quantum chaotic systems with
and without time-reversal invariance and having additional
symmetries can be tested. Our study can be extended to the
case when matrices of unequal dimensions are superposed,
which will be relevant to understanding symmetries in var-
ious other spin systems [21,25,115,116]. Our study can be
extended to other relevant ensembles from RMT, for example,
the ensembles with chiral symmetry [117–123] and Wishart
ensemble [4,78,124–126].
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