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Noninteracting spinless electrons in one-dimensional quasicrystals, described by the Aubry-André-Harper
(AAH) Hamiltonian with nearest-neighbor hopping, undergo a metal-to-insulator transition at a critical strength
of the quasiperiodic potential. The AAH Hamiltonian is also known to be self-dual. Interestingly, the critical
point and the self-dual point are identical in this case. In this work, we have studied the one-dimensional
quasiperiodic AAH Hamiltonian in the presence of spin-orbit coupling of Rashba-type, which introduces an
additional spin-conserving complex hopping and a spin-flip hopping. We have found that the AAH Hamiltonian
remains self-dual in the presence of Rashba spin-orbit coupling, and the self-dual point follows a simple
rescaled relationship among the parameters of the Hamiltonian. This system also undergoes a metal-to-insulator
transition, and the nature of this transition has been found to be identical with the original AAH Hamiltonian.
However, the critical points do not follow the same relationship as the self-dual points in general. In fact, the
metal-to-insulator transition happens earlier than the self-dual point, except in some special cases in which they
are observed to coincide.
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I. INTRODUCTION

In a one-dimensional (1D) lattice with random disorder, all
the electronic single-particle states of the noninteracting An-
derson Hamiltonian localize exponentially even if the strength
of the disorder is arbitrarily small [1,2]. In a pure Anderson
Hamiltonian, the metal-to-insulator transition exists only in
three dimensions, while in two dimensions there are no ex-
tended states, but for a weak disorder, single-particle states are
marginally localized [2]. In contrast, a quasiperiodic lattice
described by the Aubry-André-Harper Hamiltonian (AAH)
[3–5] with nearest-neighbor hopping undergoes a metal-to-
insulator transition (MIT) at a critical disorder strength, even
in one dimension. Interestingly, the AAH Hamiltonian is also
self-dual, unlike the Anderson Hamiltonian, and the self-dual
point coincides exactly with the critical point. There had been
an intense search for MIT in lower-dimensional systems with
random disorder as well, which led to the understanding that
the spin-orbit (SO) coupling can induce a MIT in such sys-
tems, at least in two dimensions [6–14]. By analogy to these
results, it is expected that the SO coupling will have a similar
antilocalization effect in quasiperiodic systems. However, it
is also reasonable to expect that the SO coupling might have
a nontrivial effect on the self-duality and the critical points
since the localization mechanism in these two systems is not
the same [15]. Moreover, it is not obvious whether the AAH
Hamiltonian in the presence of SO coupling is self-dual or
not, and if it is, then whether or not the metal-to-insulator
transition takes place exactly at the self-dual point.
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There have been studies on quasiperiodic 1D systems
with SO coupling, mainly with broken time-reversal sym-
metry [16–19]. While Ref. [16] indicates the existence of
self-duality in this system, the results of Refs. [18,19] suggest
broken self-duality, although this has been attributed to the
SO coupling and magnetic field, respectively. The broken
time-reversal symmetric quasiperiodic systems are quite in-
teresting in their own merit. However, as we are going to
see, the question of self-duality, critical behavior, and their
interrelationship in the time-reversal symmetric quasiperiodic
systems with SO coupling requires closer attention as well.

To address these issues, in this work we have studied
the AAH model with nearest-neighbor hopping in the pres-
ence of spin-orbit coupling of Rashba-type [20]. Our choice
of this type of spin-orbit coupling is also motivated by the
fact that it plays a crucial role in various device applica-
tions, especially in spintronic devices [21], which are built
on the idea of controlling the electron’s state by the ex-
ternal tuning of the Rashba spin-orbit (RSO) coupling, and
this type of coupling is experimentally realizable in an op-
tical setup as well. Localization in quasiperiodic systems
has already been experimentally verified in the optical lat-
tice experiments [22–25]. More recently, the critical behavior
of the spinless version of the AAH Hamiltonian has also
been experimentally observed in polaritonic 1D wires, created
with the help of cavity-polariton devices [26]. In addition,
SO coupling of Rashba-type has also been experimentally
simulated in ultracold atomic systems [27–29]. Hence it is
expected that, in the future, the Hamiltonian studied in this
work can also be experimentally implemented in these se-
tups, and our results are going to be a useful guide to these
experiments.
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The fundamental, spinless AAH Hamiltonian can be
represented by the eigenvalue equation, t (ψn+1 + ψn−1) +
W cos(2πbn + φ)ψn = Eψn, where W is the strength of
the disorder, t is the nearest-neighbor hopping amplitude,
and ψn is the amplitude of the electronic wave function
at the lattice site n. When b is irrational, we obtain a
quasiperiodic lattice. Irrespective of the filling factor, this
original AAH Hamiltonian undergoes a metal-to-insulator
transition at a critical strength of the quasiperiodic poten-
tial given by Wc/t = 2, where all the single-particle states
are extended for W/t < 2 and localized for W/t > 2. At
the critical point, all the states show multifractal character,
that is, they are extended but nonergodic. Interestingly, the
Fourier transformed AAH Hamiltonian, W

2 (ψk+1 + ψk−1) +
2t cos(2πbk + φ)ψk = Eψk , becomes the same as the real-
space Hamiltonian when W/t = 2. Because of this unique
feature, the AAH Hamiltonian is termed self-dual, and W/t =
2 is also known as the self-dual point.

In this work, we have found that in the presence of RSO
coupling, the AAH Hamiltonian remains self-dual and under-
goes a metal-to-insulator transition at a critical strength of the
quasiperiodic potential, but the self-dual point and the critical
point are not the same in general. While in the presence of
RSO coupling the self-dual point follows a simple rescaled
relationship between the parameters of the Hamiltonian, the
critical points do not follow this relationship, although both
values shift to a higher strength of the quasiperiodic potential
with an increase in the RSO coupling strength. Interestingly,
we have found that under special circumstances, the self-
dual points are extremely close to our numerically estimated
critical points. To determine the critical point precisely, we
have used the idea of a many-body localization tensor, pri-
marily developed to characterize the localization and the
electric polarization simultaneously. The results of the lo-
calization tensor calculations indicate that the nature of the
metal-to-insulator transition is identical to the original AAH
Hamiltonian. For a better examination of the nature of this
MIT, we have studied the behavior of the eigenstates in the
metallic and insulating regimes, and at the critical point. To
do this, first we have used the participation ratio and von
Neumann entropy to get a quick overall idea, and then we
carried out a detailed multifractal analysis to show that the
eigenstates are indeed multifractal at the critical point, while
all of them are extended below it and localized above it.

The paper is organized as follows: In Sec. II we introduce
the Hamiltonian considered in this work. In Sec. III we present
an analysis of the self-duality of our Hamiltonian, and we
obtain an analytical expression of the self-dual point. The
phase diagram has been discussed in Sec. IV, while in the
subsequent subsections we present our method and results to
determine the phase diagram. Then we proceed to present our
participation ratio and the von Neumann entropy analysis in
Secs. V and VI, respectively. Finally, in Sec. VII we present
the multifractal analysis of the eigenstates.

II. AUBRY-ANDRÉ MODEL WITH RSO COUPLING

The Hamiltonian considered in this work consists of two
parts,

H ′ = H + HR, (1)

where H is the usual AAH Hamiltonian given by

H = −t
L−1∑

i=1,σ

(c†
i+1,σ ci,σ + H.c.)

+W
L∑

i=1,σ

cos(2πbi + φ)c†
i,σ ci.σ . (2)

Here, t is the hopping amplitude from site i to site i + 1, and
L = Na is the length of the lattice, where N is the number of
lattice sites and a = 1 (arbitrary unit) is the lattice spacing.
c†

i,σ and ci,σ are the fermionic creation and annihilation oper-
ators, respectively, for the particle at the site i having spin σ

(σ = ↑,↓). W is the strength of the quasiperiodic potential.
φ is an arbitrary phase varying from (0, 2π ). The choice of
the phase φ does not affect our conclusion, and henceforth we
shall set it to zero. We have used b = (

√
5 + 1)/2. It is impor-

tant to note that sometimes in the literature b = (
√

5 − 1)/2 is
also used, but our conclusions are independent of the particu-
lar choice of b.

The RSO Hamiltonian HR is given by [30]

HR = −αz

L−1∑
i=1,σ,σ ′

[c†
i+1,σ (iσy)σ,σ ′ci,σ ′ + H.c.]

−αy

L−1∑
i=1,σ,σ ′

[c†
i+1,σ (iσz )σ,σ ′ci,σ ′ + H.c.], (3)

where σy and σz are Pauli spin matrices in the y- and
z-directions, respectively. αy is a complex spin-conserving
hopping due to the confinement in the y-direction, and αz is
a spin-flip hopping due to the confinement in the z-direction.
The hopping amplitude αy and αz could be different in general,
and they could also be site-dependent. The pure RSO Hamil-
tonian HR, which is studied in this work, has also been studied
in the context of transport properties in quantum nanowires
[31,32]. Also, localization properties of attractive fermions
have been studied recently in the presence of the spin-flip
component of the RSO Hamiltonian [33].

III. SELF-DUALITY OF THE AAH HAMILTONIAN
IN THE PRESENCE OF RSO

To understand the self-duality of the AAH Hamiltonian in
the presence of RSO, we start with the stationary Schrödinger
equation H |�〉 = E |�〉, where |�〉 = ∑

n,σ ψσ
n c†

n,σ |0〉. In
real space, we obtain the following set of coupled eigenvalue
equations:

−t (ψ↑
n+1 + ψ

↑
n−1) + αy(e−iπ/2ψ

↑
n+1 + eiπ/2ψ

↑
n−1)

+αz(ψ↓
n+1 − ψ

↓
n−1) + W cos(2πbn + φ)ψ↑

n = Eψ↑
n , (4)

−t (ψ↓
n+1 + ψ

↓
n−1) + αy(e−iπ/2ψ

↓
n+1 + eiπ/2ψ

↓
n−1)

−αz(ψ↑
n+1 − ψ

↑
n−1) + W cos(2πbn + φ)ψ↓

n = Eψ↓
n . (5)

Multiplying Eq. (5) by i and adding it to Eq. (4), the two
coupled eigenvalue equations can be combined into a single
equation as follows:

γ [e−iηψ̃n+1 + ψ̃n−1eiη] + W cos(2πbn + φ)ψ̃n = Eψ̃n, (6)
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FIG. 1. The metal (M) to insulator (I) transition and self-duality of the AAH Hamiltonian in the presence of RSO coupling. The phase
diagrams have been plotted in the parameter space spanned by the strength of quasiperiodic potential W and the RSO coupling. The critical
points are plotted for a half-filled system. However, they are independent of filling fraction (see Sec. V). (a), (b) Comparison of the self-dual
line with the critical points when αy, the spin-conserving complex hopping amplitude of the RSO Hamiltonian, is nonzero, while αz, the
spin-flip hopping component, is zero, and vice versa. In both of these cases, the self-dual lines match extremely well with our estimated critical
points. Numerical data are presented in Table I. (d), (e) Comparison of the self-dual line with the critical points as a function of αy (αz/t = 0.6)
and αz (αy/t = 0.6). The self-dual line and the critical points are separated except when αy/t = 0 or αz/t = 0. (c), (f) In both of these cases,
t has been set to zero and the critical points have been computed as a function of αz and αy. It is clear that the critical points are identical to
(a) or (b), but they do not coincide with the self-dual line.

where ψ̃n = ψ↑
n + iψ↓

n , γ = √
t2 + (αy + αz )2, and η =

tan−1[−(αy + αz )/t]. The above eigenvalue equation is equiv-
alent to the original AAH Hamiltonian, except for the extra
phase factor in the effective hopping amplitude γ . However,
a constant phase factor in the hopping amplitude does not
affect the self-duality. To see this explicitly, we first apply the
transformation ψ̃n = ∑

k ψ̃kei(2πbn+φ)k in Eq. (6) to obtain the
momentum space equation as follows:

2γ cos(2πbk − η)ψ̃k + W

2
(ψ̃k+1 + ψ̃k−1) = Eψ̃k, (7)

where ψ̃k = ψ
↑
k + iψ↓

k . Now, applying the inverse Fourier
transformation ψ̃k = ∑

n ψ̃ne−i(2πbk−η)n in Eq. (7), we finally
obtain the following eigenvalue equation in real space:

γ [ψ̃n+1 + ψ̃n−1] + W cos(2πbn)ψ̃n = Eψ̃n. (8)

The above expression is exactly identical with the original
AAH eigenvalue equation (φ = 0), with a rescaled hopping
amplitude γ . Hence, the AAH Hamiltonian is also self-
dual like the original AAH Hamiltonian in the presence
of RSO coupling, with the self-dual point being Ws/t =
2
√

1 + (αy/t + αz/t )2. It is important to note that Eq. (6)
could also have been obtained by choosing ψ̃ ′

n = ψ↓
n − iψ↑

n .

IV. ANALYSIS OF THE PHASE DIAGRAM

From the analytical expression of the self-dual point, it
is obvious that when each of the three hopping processes

is considered separately with the quasiperiodic potential, we
recover a self-duality condition for each of them, given by
Ws/t = 2, Ws/αy = 2, and Ws/αz = 2, respectively. For the
original AAH Hamiltonian, the self-dual point and the criti-
cal point are identical. In analogy with this, we also expect
the metal-to-insulator transition to take place at the self-dual
point when only αy or αz is considered with the quasiperiodic
potential. We have verified this numerically, and the results are
presented in Appendix A. We have also found that the critical
point and the self-dual point coincide with each other in the
two limiting cases (i) αy = 0 and (ii) αz = 0. In Figs. 1(a) and
1(b), we have plotted the self-dual line along with the critical
points, obtained after solving the eigenvalue equations numer-
ically, for these two special cases. It is evident that, within
the accuracy of our numerical calculations, the critical points
and the self-dual line agree with each other extremely well
in both cases. Furthermore, the critical points are the same
in Figs. 1(a) and 1(b). However, the critical point, Wc/t , does
not coincide with the self-dual point when all three hopping
processes have nonzero amplitude. Surprisingly, when both αy

and αz are nonzero, then the critical points and the self-dual
line get separated from each other, with the separation getting
larger with the increase in the RSO coupling strength. These
results are plotted in Figs. 1(d) and 1(e). It is clear that in these
cases, Wc/t < Ws/t always. However, there are some strik-
ing similarities between the behavior of the self-dual points
and the critical points in general. Like the self-dual points,
the critical points are identical for αy/t = c1, αz/t = c2
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and αy/t = c2, αz/t = c1, where c1 and c2 are some
constants.

To understand the origin of this mismatch between the
critical point and the self-dual point, in Figs. 1(c) and 1(f)
we have considered the special case when the tight-binding
hopping amplitude, t , is zero. In Fig. 1(c) we have studied the
critical behavior of the resulting Hamiltonian as a function
of the spin-flip hopping amplitude αz, measured in units of
αy, while αy, measured in units of αz, has been chosen as
the independent parameter in Fig. 1(e). From the analytical
expression of the self-dual point, it is easy to see that, in
this special case, the self-dual points follow the equation of
a straight line. However, the critical points remain identical to
the cases when αy = 0 or αz = 0. Naturally, the critical points
and the self-dual line do not coincide with each other. Hence,
the separation between the critical and the self-dual points in
the full Hamiltonian can be attributed to the combined effect
of the two hopping processes of the RSO Hamiltonian.

A. Kohn’s localization tensor and the metal-to-insulator
transition

It is tempting to conclude, in analogy with the original
AAH Hamiltonian, that the metal-to-insulator transition takes
place exactly at the location of the self-dual point in the
presence of RSO coupling as well. However, from the dis-
cussion of the phase diagram we have found that one has
to be very careful before drawing any such conclusion from
the analytical expression of the self-dual point directly. In
fact, to compare the two aspects, it is imperative to determine
the critical points with a high degree of accuracy. In this
section, we present our method to determine the critical point
precisely and discuss the key results for a half-filled system.
To locate the critical points, we have used the idea of Kohn’s
localization tensor. It is a reliable way to characterize metallic
and insulating states.

Based on the idea first proposed by Kohn [34], Resta
and Sorella [35,36] formulated a localization tensor λαβ , al-
ternatively known as Kohn’s localization tensor, to describe
polarization and localization in terms of a single many-body
expectation value zα

N . Here, α and β are the spatial coordi-
nates. It is independent of system sizes for insulating states,
while for metallic states it diverges as system size becomes
infinite. It is important to note that λαβ is a measure of the
many-body localization length, and it does not indicate the
spatial extent of single-particle eigenstates. In the case of a
noninteracting band insulator, it is related to the spatial extent
of maximally localized Wannier functions [37]. However, for
disordered systems, a similar conclusion cannot be drawn.
Nevertheless, recently it has been shown [38] that the lo-
calization tensor can capture the metal-to-insulator transition
accurately in the 1D AAH model. In this work, we have
found that it can also be used to locate the critical point quite
accurately in the presence of RSO coupling.

Here, we briefly discuss the key aspects of the localiza-
tion tensor and methods to calculate it for different boundary
conditions [38–40]. A more elaborate discussion on the lo-
calization tensor and ways to compute it can be found in
Ref. [39] and in Ref. [41]. For the periodic boundary condition
(PBC), the localization tensor, λαβ (here α = x, β = x), can

be expressed as

λ2
xx = − L2

4π2N
ln

∣∣zx
N

∣∣∣∣zx
N

∣∣∣∣zxx
N

∣∣ , (9)

where the quantity zx
N is given by

zx
N = 〈�|ei 2π

L R̂x |�〉, (10)

whereas zαβ
N can be obtained by replacing R̂α with R̂α − R̂β .

Hence, in our case, |zxx
N | = 1. In the above equation, |�〉 is the

many-body ground-state wave function, and R̂ = ∑N
i=1 r̂i is

the many-body position operator, with R̂x being the x compo-
nent. For a half-filled system (L = N) in one dimension, the
localization tensor reduces to

λ2
xx = λ2 = − L

2π2
ln{|zN |}. (11)

In the absence of electron-electron interaction, z(x)
N can be

simplified further [39,40] and represented as z(x)
N = det2[Sx

j j′ ],
where Sx

j j′ is a matrix whose elements are given by

Sx
j, j′ =

∫
dr ψ∗

j (r)ei 2π
L r̂x ψ j′ (r). (12)

In the above equation, ψ j (r) represents the amplitude of a
single-particle wave function at position r for a spin-up or
spin-down electron arranged in order of increasing energies.
The indices j and j′ indicate the energy level. Since, in
the absence of RSO coupling, spin-up and spin-down elec-
trons are completely decoupled, it is sufficient to consider
only one type of spin and j, j′ = 1, 2, . . . , N/2 to compute
λ2

xx at half-filling. However, in the presence of RSO, and
more specifically because of the spin-flip hopping process,
in Eq. (12) ψ j (r) now represents the amplitude of a single
quasiparticle wave function at position r corresponding to the
jth eigenenergy. Hence, in our case, j, j′ = 1, 2, . . . , N.

In the case of open boundary conditions (OBCs), the
squared localization length (λ2), in units of the nearest-
neighbor distance, can be expressed as follows [41,42]:

λ2 = 1

νN

N∑
i,i′=1

|ρii′ (ν)|2(i − i′)2, (13)

where i, i′ = 1, . . . , N represents the lattice site, ν is the filling
factor, and ρii′ (ν) is the one-body density matrix defined as

ρii′ =
N∑

j=1

ψ j (i)ψ
∗
j (i′), (14)

where ψ j (i) is the amplitude of a single quasiparticle wave
function at lattice site i, corresponding to the jth eigenvalue.
Since we are interested to compute λ2 at half-filling, we set
ν = 1 in Eq. (13). However, our conclusions are independent
of filling fractions. In Appendix B, we have presented results
for a quarter-filled system, which are identical to those of a
half-filled system. It is important to note that there could be
some special filling fraction when the system does not show
any metal-to-insulator transition. We have discussed this issue
in Sec. V.
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FIG. 2. (a) Squared localization length λ2 for the half-filled 1D pure AAH model with respect to disorder strength W/t for some selected
lattices. (b) Scaling of inverse localization length 1/λ2 with inverse chain length (1/L). For finite-size scaling, we have used 1/λ2 = a0 + b0/L.
(c) Plot of 1/λ2 with 1/L at the critical point. It is evident that at the critical point, 1/λ2 does not follow the scaling pattern of either metallic
or insulating states. All the results are for the open boundary condition.

1. Localization tensor without RSO

Before presenting the localization tensor results for our
Hamiltonian, in this section, we first benchmark our λ2 cal-
culations for the original AAH Hamiltonian at half-filling. We
also highlight the behavior of λ2 with varying system sizes at
the critical point. In Figs. 2 and 3, we have shown these results
for open and periodic boundary conditions respectively. In
case of PBC, the system sizes are restricted to lattice sizes,
given by the Fibonacci sequence, while for OBC there is no
such restriction. We have found that the critical behavior is
independent of the boundary conditions.

In Figs. 2(a) (OBC) and 3(a) (PBC), we have shown the
variation of squared localization length λ2 with increasing dis-
order strength (W/t ) for different 1D lattices at the half-filling.
As expected, the transition from delocalized to localized phase
occurs at Wc/t 	 2 for both the boundary conditions. The
λ2 values are finite and independent of system sizes above
W/t > 2, whereas for W/t < 2, it increases with the increase
in system size. These observations are similar to Ref. [38].
From the plots of 1/λ2 versus 1/L in Figs. 2(b) and 3(b), it is
clear that, irrespective of the boundary condition, λ2 diverges
for L → ∞ in the metallic phase, while it is nearly constant
and converges to a finite value in the insulating phase. For pure
AAH Hamiltonian, we have found that 1/λ2 scales linearly
with the inverse of the system size. For finite-size scaling,
we have used 1/λ2 = a0 + b0/L, where a0 and b0 are two
adjustable parameters.

At the critical point Wc/t = 2, scaling behavior of λ2 with
an increase in the system size is expected to be erratic as all

the single particle eigenstates are multifractal in case of pure
AAH model. However, it can be an useful indicator to detect
the existence of multifractal eigenstates within a spectrum.
Since there is no characteristic length-scale for the multifrac-
tal states, we can expect an anomalous behaviour of 1/λ2 with
respect to 1/L compared to the pure metallic and insulating
phases. In Figs. 2(c) and 3(c) we have plotted 1/λ2 versus 1/L
for Wc/t = 2. In the case of OBC, it is clear that λ2 neither
converges to a finite value, nor does it approach to zero in
the limit when L becomes very large. With PBC, λ2 oscillates
with increasing L without any indication of convergence.

2. Localization tensor in the presence of RSO

We now present our localization tensor results for the one-
dimensional AAH model in the presence of RSO coupling.
To illustrate the effect of RSO on the critical point, in this
section we primarily focus on the αy = 0 case. In the next
section, we have presented the results for the other cases.
Here, we have used αz/t = 0.8. There is nothing special about
this value, as all our conclusions are independent of it, ex-
cept the location of the critical point. In Figs. 4(a) (OBC)
and 5(a) (PBC), the variation of the squared localization
length λ2 with an increasing value of the disorder strength
W/t have been shown. It is obvious that in the presence
of the RSO coupling, the localization tensor is qualitatively
identical to the original AAH Hamiltonian. However, the
critical point has shifted to higher disorder strength given
by Wc/t 	 2.5.
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FIG. 3. Localization tensor λ2 for the half-filled 1D pure AAH model with PBC. (a) λ2 vs W/t for a few selected chain lengths. (b) Finite-
size scaling of 1/λ2 vs (1/L). (c) Once again, similar to the OBC case, 1/λ2 lacks simple scaling behavior with 1/L at the critical point.
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FIG. 4. The localization tensor λ2 for a half-filled 1D AAH model with RSO coupling. (a) λ2 vs W/t for selected lattices with OBC.
(b) Scaling of inverse localization length 1/λ2 vs 1/L. Here, 1/λ2 scales linearly with 1/L similar to Fig. 2(b). (c) Plot of 1/λ2 vs 1/L at the
critical point Wc/t = 2.55. Lack of proper scaling of 1/λ2 indicates that our estimation of the critical point is quite correct.

The above observations have been further validated with
the finite-size scaling of 1/λ2 below and above the critical
point. These results are presented in Figs. 4(b) and 5(b). In the
case of OBC, it is clear that 1/λ2 converges to zero as L → ∞
for W/t < 2.5, as expected for a delocalized phase. On the
other hand, as expected in the case of an insulating phase, the
localization tensor is independent of system size for W/t >

2.5. In the case of PBC, these fundamental conclusions remain
the same. Interestingly, however, with PBC, the dependence
of 1/λ2 on 1/L deviates significantly in the presence of RSO
in the metallic phase. For finite-size scaling, especially for
the metallic phase, we have used 1/λ2 = a0 + b0/L + c0/L2,
where a0, b0, and c0 are adjustable parameters.

It is easy to pinpoint the critical disorder strength from
the λ2 versus W/t data almost exactly. We are going to see
that this information can also be reliably extracted from the
multifractal analysis (Sec. VII A). From the localization ten-
sor result, we estimate Wc/t = 2.55 for αz/t = 0.8 with a
maximum error of δWc/t = ±0.01. In Appendix C, we have
shown the variation of λ2 around the critical point to illustrate
the accuracy of this estimation. A similar analysis has been
performed to determine the phase boundaries. To cross-check
this estimation, we have also plotted 1/λ2 versus 1/L sepa-
rately at Wc/t = 2.55 in Figs. 4(c) and 5(c). It is quite clear
that 1/λ2 does not follow any discernible pattern with 1/L.

B. Evolution of the critical point with RSO interaction

In this section, we first study the evolution of the critical
point for two limiting cases, i.e., (i) αy = 0 and (ii) αz = 0.

We then present the results for the general case where αz �= 0
and αy = fixed, and vice versa. We have found in the previous
sections that the critical behavior is independent of the bound-
ary conditions. Hence, in this section, the results are presented
only for OBC and for a lattice having N = 1597 sites. In
Fig. 6(a), we have considered only the spin-flip hopping αz

in the RSO Hamiltonian. It is clear, even from the results for
a single finite lattice, that the critical point moves to a higher
strength of the quasiperiodic potential with an increase in the
RSO coupling strength. In Fig. 6(b), we present the results
for the limiting scenario when αy �= 0 and αz = 0. It is clearly
evident that the effect on the critical point is exactly identical
to the previous case. Exactly similar trends have been found
when the tight-binding hopping amplitude t is set to zero.
These results have been presented in Appendix D.

Figure 6(c) represents the general nature of the evolution of
the critical point when the full RSO Hamiltonian is considered
along with the original AAH Hamiltonian. As expected, in the
presence of both the spin-preserving and spin-flip components
of the RSO Hamiltonian, the critical point is pushed further to
a higher disorder strength. It is interesting to observe that the
critical point is the same for the two possible combinations for
which the condition (αy + αz )/t = c, where c is a constant,
is satisfied. This relationship between the critical point and
the SO coupling terms is similar to that of the self-dual point,
although the metal-to-insulator transition happens earlier. In
Table I, we have presented the critical points estimated from
the localization tensor calculations and compared with the
self-dual point obtained from the analytical expression. It
is clear that the critical point and the self-dual point agree
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FIG. 5. The localization tensor λ2 for a half-filled 1D AAH model with RSO coupling. (a) λ2 vs W/t for selected lattices with PBC.
(b) Finite-size scaling of 1/λ2 with inverse chain length 1/L, below and above the critical point. We have used 1/λ2 = a0 + b0/L + c0/L2 for
scaling in the metallic phase. (c) With PBC as well, we find anomalous behavior of 1/λ2 with increasing system size at W/t = 2.55.
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FIG. 6. (a) Evolution of the self-dual point in the AAH with only spin-flip hopping induced by RSO coupling. The results are for a lattice
L = 1597 with OBC. (b) The self-dual point moves toward higher strength of the quasiperiodic potential when the pure AAH Hamiltonian
is considered with only the complex hopping induced by the RSO coupling. (c) Evolution of the self-dual point when the AAH Hamiltonian
is considered with the full RSO Hamiltonian. Here we have shown the change in the critical point for αy/t + αz/t = 1.0 and 1.4. For each
case there are two possibilities, and the critical point is the same for these different possibilities. This behavior is identical in nature with the
self-dual point, although the self-dual points are different.

extremely well when αy = 0 or αz = 0, while they differ from
each other for the general case.

V. PARTICIPATION RATIO

The existence of the MIT in the presence of RSO is evi-
dent from the results of the localization tensor calculations.
Although at the critical point an anomalous behavior of the
localization tensor with the inverse of the system size does
indicate the absence of a characteristic length scale, the true
nature of the quasiparticle eigenstates across the entire energy
spectrum is not clear. For example, if an energy spectrum con-
tains predominantly delocalized states, then the localization
tensor can suppress the contribution of the localized states
while calculating it up to a certain filling fraction. To dis-
tinguish the localized and delocalized states, the participation
ratio (PR) is regularly used as a first indicator. PR can also
provide some hint, although only qualitatively, of multifractal
eigenstates, if it exists. Generally, PR is used to immediately
identify the existence of a mobility edge. Typically, a mobility
edge is defined as the energy that separates localized and
delocalized eigenstates in the energy spectrum. If a mobility
edge exists, the PR jumps from a system-size-independent

TABLE I. Numerically determined critical points from the lo-
calization tensor. All the quantities are represented relative to the
tight-binding hopping amplitude t . The critical points (not shown
here for brevity) are the same as the second column when t = 0, and
Wc is measured with respect to either αy or αz. Numerical values of Ws

(presented only up to the third decimal place) have been calculated
from the analytical expression.

Wc (±0.01) Ws Wc (±0.01) Ws

αz/y (αy/z = 0) (αy/z = 0) (αy/z = 0.6) (αy/z = 0.6)

0.0 2.00 2.000 2.33 2.332
0.2 2.04 2.039 2.37 2.561
0.4 2.15 2.154 2.47 2.828
0.6 2.33 2.332 2.62 3.124
0.8 2.55 2.561 2.83 3.441
1.0 2.83 2.828 3.07 3.773

(insulating/localized states) higher value to a lower value
(ergodic metallic/extended states) that scales inversely with
the system size. In our case, we have observed that away from
the critical point, the states are either delocalized (W < Wc)
or localized (W > Wc). The other important question that
remains to be answered is, what is the nature of the eigenstates
at the critical point?

In the AAH model without RSO, all the eigenstates are
extended but nonergodic at the critical point. PR data qual-
itatively indicate that RSO does not alter this behavior. At
this point, we would like to mention that, studying the
single-particle energy spectra En and the distribution of the
level-spacing δn = En+1 − En can also reveal a great deal
about the nature of the eigenstates [43–45]. Typically, the
energy spectrum of the AAH Hamiltonian consists of sub-
bands and many gaps between these subbands. Recently, it has
been reported that there are some special states inside these
subband gaps [46] which are localized even in the metallic
phase of the pure AAH Hamiltonian. We have checked that
these states are mostly concentrated at the lattice edges. These
states may or may not appear, depending on the combination
of various factors, such as the boundary conditions, the sys-
tem size, and the irrational number b. As long as the filling
is not fixed up to these special states, these states do not
influence the critical behavior in any way. However, if the
system is filled up to these special states, then there is no
metal-to-insulator transition. In fact, the system behaves like
an insulator, as expected. In Appendix E, we have presented
some results to demonstrate this.

Formally, for the νth quasiparticle eigenstate, the usual
definition of PR [47] can be generalized as follows:

Pν (q) =
∑

σ

N∑
i=1

|ψν,σ (i)|2q, q = 2. (15)

Here the νth single quasiparticle eigenstate is given
by |�ν〉 = ∑

σ

∑N
i=1 ψν,σ (i) |1, σ 〉i , where |1, σ 〉i =

|0, 0, . . . , σi, . . . , 0, 0〉 represents the localized basis state
having one particle with spin σ at site i. Since this is a
noninteracting problem, the usual scaling properties with
respect to system size are also expected to hold for the
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FIG. 7. Evolution of PR In with increasing disorder strength for a fixed RSO coupling αz/t = 0.8 and αy = 0. (a) W/t = 2.5, (b) W/t =
2.55, and (c) W/t = 2.6. Here the index represents the ratio of serial number of eigenstates to total number of eigenstates [i/(2L)], where
i = 1, 2, . . . , 2L.

quasiparticle states, i.e., for a perfectly extended metallic
state Pν (q) = 1/N , and for a completely localized state
Pν (q) = 1. For a localized state, the PR value is supposed to
be system-size-independent. These distinct scaling properties
of PR enable it to identify delocalized and localized states
quickly. We have numerically verified that the spin-up
and spin-down contributions are identical to the PR of the
quasiparticle they constitute.

In Fig. 7, we have plotted the PR spectrum for (a)
W/t = 2.5, (b) W/t = 2.55, and (c) W/t = 2.6. These
results are for αz/t = 0.8, αy/t = 0. It is evident that for
W/t < 2.55, all the eigenstates are delocalized as the PR
value in this region depends inversely on the system size
across the entire energy spectrum, while all the states are
localized for W/t > 2.55. On the other hand, at the critical
point the PR spectrum behaves differently, i.e., it is neither
independent of system size nor does it scale inversely
with L like the extended states. This behavior is similar to
the PR spectrum of the AAH model without RSO at the
critical point, i.e., these are multifractal. Furthermore, the
correlation between the energy level-spacing spectra and the
scaling behavior of PR with L for all three different types of
electronic states is similar to the AAH model without RSO
[46]. In the delocalized phase, PR typically behaves inversely
with L across the whole energy spectrum, except at the
special positions, where the level spacing jumps abruptly. At
the critical point, both of them show anomalous behavior with
the system size, while in the localized phase the PR spectrum
behaves opposite as compared to the delocalized phase at
these special points of level-spacing spectra apart from being
system-size-independent. All of these results are presented
for PBC. OBC does not change any fundamental conclusions.

VI. von NEUMANN ENTROPY

From the results of the previous sections, it is evident
that at the half-filling there is a transition from the metallic
phase to an insulating phase at a critical disorder strength
Wc/t > 2.0, which increases as the strength of RSO is in-
creased. Furthermore, these results also hint that at the critical
point the states are multifractal, a preliminary observation that
we are going to establish firmly in Sec. VII. In this section,
we present the results of the von Neumann entropy (vNE),
an alternative indicator of single-particle properties, which

can also be used to qualitatively identify the nature of the
eigenstates.

In the case of noninteracting spin-1/2 fermions, and in the
presence of RSO coupling, the individual eigenstates are oc-
cupied by quasiparticles. The quasiparticle eigenstate having
energy Eν can be written as

|�ν〉 =
N∑

i=1

[
ψν

i,↑|1,↑〉i + ψν
i,↓|1,↓〉i

]
, (16)

where |1,↑〉i = |1〉i ⊗ |↑〉 and |1,↓〉i = |1〉i ⊗ |↓〉. |1,↑〉i =
c†

i,↑|0〉 and |1,↓〉i = c†
i,↓|0〉. Here |0〉 represents the vac-

uum state for the lattice in a real-space basis. c†
i,↑, c†

i,↓ are
the creation operators for spin-up and spin-down particles,
respectively, at the lattice site i. The average number of spin-
up and spin-down particles at site i is given by |ψν

i,↑|2 =
〈�ν |c†

i,↑ci,↑|�ν〉 and |ψν
i,↓|2 = 〈�ν |c†

i,↓ci,↓|�ν〉, respectively.
Then, the local density matrix ρν

j can be obtained from the
total density matrix ρν by tracing over all the lattice sites
except site j, and it can be written as

ρν
j = ∣∣ψν

j,↑
∣∣2|1,↑〉 j〈1,↑| j + (

1 − ∣∣ψν
j,↑

∣∣2)|0,↑〉 j〈0,↑| j

+∣∣ψν
j,↓

∣∣2|1,↓〉 j〈1,↓| j + (
1 − ∣∣ψν

j,↓
∣∣2)|0,↓〉 j〈0,↓| j .

(17)

It is important to note that |0,↑〉 j and |0,↑〉 j represent the local
vacuum states for jth site. A similar interpretation applies to
the states |1,↑〉 j and |1,↓〉 j . The von Neumann entropy for
spin-1/2 quasiparticles follows easily from Eq. (17) as

Snis
j,ν = −(∣∣ψν

j,↑
∣∣2

log2

∣∣ψν
j,↑

∣∣2 + (
1 − ∣∣ψν

j,↑
∣∣2)

ln
(
1 − ∣∣ψν

j,↑
∣∣2))

− (∣∣ψν
j,↓

∣∣2
ln

∣∣ψν
j,↓

∣∣2 + (
1 − ∣∣ψν

j,↓
∣∣2)

ln
(
1 − ∣∣ψν

j,↓
∣∣2))

.

(18)

Finally, summing over all the lattice sites, the von Neumann
entropy for a quasiparticle eigenstate is defined as

Snis
ν =

N∑
j=1

Snis
j,ν . (19)

Similar to the spinless AA model, for a purely extended
quasiparticle state Snis

ν ≈ (log2N + 1), and for a completely
localized state Snis

ν ≈ 0.
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FIG. 8. Evolution of the von Neumann entropy Sn with an increasing disorder strength for a fixed RSO coupling αz/t = 0.8 and αy = 0.

(a) W/t = 2.5, (b) W/t = 2.55, and (c) W/t = 2.6.

In Figs. 8(a)–8(c), the results of the von Neumann entropy
calculations are presented for αz/t = 0.8 and αy/t = 0.0. To
show the dramatic change in vNE as we move slightly away
from the critical point (Wc/t 	 2.55), in Figs. 8(a) and 8(c),
we have plotted our results for W/t = 2.5 and 2.6, respec-
tively. It is clear that for W/t = 2.5, the von Neumann entropy
increases with the system size and roughly scales as expected,
while it is independent of the system sizes, and the value
is close to zero for W/t = 2.6. It is clear from the results
of Fig. 8(b) that at the critical point, these results do not
completely follow the expected pattern of purely extended or
localized states. These results, along with the localization ten-
sor calculations and PR data, qualitatively capture the nature
of the eigenstates at the critical point. However, it is neces-
sary to have a more rigorous analysis to quantify the degree
of multifractality of the eigenstates at the critical point. To
address this, in the next section we have presented a detailed
and careful analysis of the multifractal spectrum around the
critical point.

VII. MULTIFRACTAL SPECTRUM AND THE
QUASIPARTICLE EIGENSTATES

The “absence of length scale” at the critical point of a phase
transition has led to the understanding that the concept of
multifractals can be extended to analyze the critical properties
[48,49]. This approach is quite general and has been used to
study a wide range of problems in condensed-matter systems,
such as the Anderson transition in different lattices [50,51],
the localization-delocalization transition in quantum Hall sys-
tems [52], magnetization time series of the two-dimensional
Ising model [53], conductance fluctuation in graphene [54],
and transport properties in quasiperiodic systems [55], to
name a few.

In multifractal analysis, the primary objective is to identify
a local order parameter that could characterize the critical
properties of a given system. The distribution of this local
order parameter typically shows a fractal nature at the critical
point. In the case of Anderson transition, the squared ampli-
tude of the wave function plays the role of this local order
parameter, and the distribution of the critical wave function
has been found to be multifractal. Interestingly, the Anderson
transition has been found in two dimensions in the presence
of strong spin-orbit coupling, and in this case as well, the
critical wave function has a multifractal character. In the

case of the AAH Hamiltonian, all the wave functions at the
critical point are multifractal in nature. From our localization-
tensor calculations, we have found an identical signature of
the metal-to-insulator transition in the AAH Hamiltonian in
the presence of RSO coupling. Naturally, the question arises
whether the critical wave functions also have multifractal
character or not.

In contrast to a simple fractal structure, which is charac-
terized by a single fractal dimension, a multifractal requires
infinitely many exponents to characterize the complex dis-
tribution of the local order parameter. In our case, this can
be achieved by identifying that P(q), the qth moment of the
probability of finding a quasiparticle within a linear box of
length L (L = Na, a = 1 in arb. units), satisfies the following
relation:

P(q) =
N∑

i=1

|ψn(i)|2q ∝ N−τ (q), (20)

where ψn is the quasiparticle wave function corresponding
to the nth eigenvalue, and τ (q) is the q-dependent exponent
that encodes the information about the fractal character of
the wave function. In the case of multifractals, the infinite
set of independent exponents τ (q) follows a nonlinear scaling
relation in contrast to a normal fractal. The exponent τ (q) is
alternatively expressed in terms of D(q) as

τ (q) = D(q)(q − 1), (21)

where D(q) is called the generalized dimension. In the case
of ergodic extended (EE) eigenstates, τ (q) = q − 1 [50]. This
conclusion follows from the argument that the real-space av-
erage P(q)/N converges to the ensemble average 〈Pq〉/N =
〈|ψn(i)|2q〉 in the limit N → ∞ [56]. Effectively, it means that
for EE states D(q) = 1, whereas for a completely localized
eigenstate D(q) = 0. For multifractal states, τ (q) deviates
from these two limiting cases, leading to q dependence of
the generalized dimension D(q). Out of the possible set of
generalized dimensions, D(2) is frequently used to character-
ize different states. In practice, however, instead of computing
τ (q) directly, an equivalent quantity f (α) is evaluated. f (α)
and τ (q) are connected by the Legendre transformation,

f (α(q)) = qα(q) − τ (q), (22)

where α(q) = dτ (q)/dq. In general, f (α) is a smooth non-
monotonic positive valued function having negative curvature
and a global maximum, but no local minima or maxima. In
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fact, fmax = f (α(q = 0)) = d , where d is the Euclidean di-
mension of the system [49]. From the analysis of the function
f (α), one can easily identify the nature of the eigenstates.
For EE states, in the large system size limit f (α = 1) =
1, while f (α �= 1) = −∞. For nonergodic (NE) eigenstates
f (α(q)) → 0 for 0 < αmin < α(q) < αmax, while fα(q=0) =
fmax appears when α(q = 0) > 1. In contrast to EE and NE
states, for insulating states f (α(q)) → 0 as α(q) → 0, while
α(q = 0), i.e., the position of the maxima of the f (α) spec-
trum shifts toward a larger value than 1 as the disorder strength
is increased. It is quite evident that to identify the nature of the
quasiparticle eigenstates, it is sufficient to have an estimation
of αmin ( f (αmin) → 0) and α(q = 0) [ fmax = f (α(q = 0)) =
d]. This allows us to use a well-established method [49,57]
to compute the multifractal spectrum for our Hamiltonian.
This spectrum is computed and compared for both PBC and
OBC. Both of these boundary conditions lead to identical
conclusions.

A. Calculation of the multifractal spectrum

Before discussing the results, we briefly summarize the key
steps to compute the multifractal spectrum. Initially, the lattice
is divided into small boxes of linear size l < L. The first step
is to find the normalized box-probability given by

Pk (l, q) = Pq
k (l )∑Nb

j=1 P
q
j (l )

, (23)

where 1 � k � Nb = L/l represents the kth box and
Pk (l, q) = ∑

i∈lk
|ψn(i)|2q, lk = l ∀ k, is the probability of

the nth eigenstate. Then α(q, L) and f (α(q, L)) are obtained

from the following relations:

α(q, L) = lim
δ→0

∑Nb
k=1 Pk (l, q)ln(Pk (l, 1))

lnδ
(24)

f (α(q, L)) = lim
δ→0

∑Nb
k=1 Pk (l, q)ln(Pk (l, q))

lnδ
, (25)

where δ = l/L. It is important to note that this method of com-
puting the multifractal spectrum is valid for a � l < L. For
different system sizes L, we have chosen l in such a way that
the above condition is satisfied and 0.1 � δ � 0.5. α(q, L)
and f (α(q, L)) have been computed for system sizes up to
L = 8 × 103, and averaged over the entire energy window up
to the half-filling. Finally, the value of α(q) = limL→∞α(q, L)
and f (α(q)) = limL→∞ f (α(q, L)) for a large system have
been estimated using finite-size scaling [50]. It is important to
note that, although we have not observed any kind of change
in the qualitative nature in our large L limit results based on
the system sizes used in our calculations, care should be taken
while using the finite-size scaling to obtain the large-L limit
result in the quasiperiodic systems [58,59]. For finite-size
scaling, we propose the following set of functions for αq(L)
and f (αq(L)):

αq(L) = αq + aqL−1 + bqL−2,

f (αq(L)) = f (αq) + cqL−1 + eqL−2, (26)

where αq, f (αq), aq, bq, cq, and eq are all adjustable param-
eters. In Fig. 10, we present the scaled results of αq(L) and
f (αq(L)) for three different regions, i.e., at, above, and below
the critical point. Before discussing the scaling results, we first
discuss the f (α(q)) versus α(q) spectrum, presented in Fig. 9.
In Figs. 9(a)–9(c), we present the results for PBC, while the
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FIG. 9. Multifractal spectrum of the AAH Hamiltonian with RSO coupling for PBC (top row) and OBC (bottom row). Here, αy/t = 0 and
αz/t = 0.8. From left to right: (a), (d) W/t = 2.5, (b), (e) W/t = 2.55, and (c), (f) W/t = 2.6. D(2) is the generalized dimension D(q) for q = 2.
For extended ergodic states D(2) = 1, and D(2) = 0 for insulating states, while for multifractal/nonergodic extended states 0 < D(2) < 1.

The dotted lines in (a), (b), (d), and (e) are the linear extrapolation of the data (solid red line).
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FIG. 10. Top row: the finite-size scaling of α(q) with 1/L; and bottom row: the finite-size scaling of f (α(q)) with 1/L, for some limiting
values of the moment q. The scaling functions are given in Eq. (26). The complex hopping amplitude αy/t = 0. From left to right, W/t = 2.5,
2.55, and 2.6. All of these results are presented for the open boundary condition.

results with OBC are presented in Figs. 9(d)–9(f). All these
results are for αz/t = 0.8.

In Figs. 9(a) and 9(d), αz/t = 0.8 and W/t = 2.5. From
the results of the localization tensor, the quasiparticle states
are expected to be extended and ergodic. It is clear from
the results of the multifractal spectrum that in the case of a
large system size we have f (α(q = 0)) → 1, while α(q) →
1. These two values are not exactly 1, as one would expect
for the case of ideal extended ergodic states, but they are
very close to the ideal value. We have computed D(2) us-
ing Eqs. (21) and (22). As expected for metallic states, our
estimated value of D(2) is 0.98 (0.99) for periodic (open)
boundary conditions, respectively. As we increase W/t to
2.55 [Figs. 9(b) and 9(e)], we observe the dramatic change
in the multifractal spectrum. When L → ∞, f (αq) → 0 for
α(q) < 1, while fmax = f (α(q = 0)) = 1 for α(q = 0) > 1.
This clearly indicates that all the states have multifractal char-
acter. This observation is also in close agreement with our
estimated results of D(2). At the critical point D(2) = 0.89 for
PBC, while D(2) = 0.93 for OBC according to our estimate.

It is interesting to have a closer look at the behavior of
f (αq(L)) versus αq(L) spectra with a system size L. For dif-
ferent system sizes, the spectra cross each other at some point.
How a spectrum moves with increasing system size on either
side of the crossing indicates the nature of the eigenstates.
For EE and NE states, the spectrum moves toward α = 1
with increasing system size. This evolution of the multifractal
spectrum with system size gets reversed quite dramatically
as we increase the disorder strength just a little to the value
W/t = 2.6. In this case, with increasing the system size, the
spectrum moves toward α = 0 on the left of the crossing point,
while on the right of the crossing point it moves further away

from α = 1. The results are presented in Figs. 9(c) and 9(f).
It is evident that as the system size increases, f (αq) → 0 for
αq 	 0.0, while fmax = f (α(q = 0)) = 1 for α(q = 0) � 1,
indicating that all the states are localized. From the numerical
data, we find that D(2) = 0.02 (0.01) for PBC (OBC), as
expected. These results are also consistent with our estimation
of the critical point from the localization tensor calculations,
as well as with the PR and vNE results.

In Fig. 10, we have presented the scaling data for αy/t =
0, αz/t = 0.8, and a few limiting values of q. Here, the
results are presented for only OBC. For PBC, the results
are nearly identical. To demonstrate the dramatic change in
the multifractal spectrum, we have chosen the self-dual point
Wc/t = 2.55, and two different potential strengths just below
and above it. In Figs. 10(a)–10(c), αq(L) has been plotted
with 1/L, while Figs. 10(d)–10(f) are for f (αq(L)). From
Fig. 10(a), it is clear that just below the critical point αq(L) →
1 with an increase in the system size for all q. The same
pattern can be observed for f (αq(L)) as well, although for
higher q the convergence is not perfect. The convergence of
f (αq(L)) to 1 becomes perfect as the disorder strength is low-
ered slightly from W/t = 2.5. From Fig. 10(b), we can see that
at the critical point, αq(L) and f (αq(L)) do not converge to a
single value for different q with the increase in system size.
αq=0(L) converges to a value greater than 1, while it converges
to a single value much less than 1 as q increases beyond 2.0.
At the same time, limL→∞ f (αq(L)) → 0 as q is increased.
This indicates that the eigenstates are extended but noner-
godic. Quite dramatically, as W/t is increased just by a small
amount to 2.6, limL→∞αq=0(L) converges to a value much
larger than 1, while limL→∞αq �=0(L) and limL→∞ f (αq(L))
converge rapidly to the origin at the same time with higher
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moment q. This indicates that the states are localized across
the entire spectrum.

VIII. CONCLUSIONS

In conclusion, we have studied the effect of RSO coupling
on the critical behavior of a one-dimensional quasiperiodic
lattice, described by the AAH Hamiltonian. We have shown
analytically that the RSO coupling terms do not break the self-
dual nature of the AAH Hamiltonian. The critical points have
been determined numerically with a high degree of accuracy
with the help of the localization tensor. The results of the lo-
calization tensor, PR, von Neumann entropy, and multifractal
analysis prove that the critical behavior is identical to the orig-
inal AAH Hamiltonian. However, the self-dual and the critical
points are not the same when all three hopping processes have
nonzero amplitude. However, for the two limiting cases, when
either the spin-conserving hopping or the spin-flip hopping
processes are set to zero, the self-dual point and the criti-
cal point coincide with each other. Interestingly, when only
the RSO Hamiltonian is considered with the quasiperiodic
potential, the self-dual and the critical points get separated
from each other. This indicates that the difference between the
critical and self-dual point in the case of the full Hamiltonian
is due to the combined effect of the two hopping processes of
the RSO Hamiltonian. Generally, the critical point is pushed
toward a higher strength of the quasiperiodic potential with an
increase of the SO coupling strength. Furthermore, the above
conclusions are independent of the filling fraction, unless the
system is filled up to the special subgap states, which are
actually localized at the boundaries, that might exist in the en-
ergy spectrum depending on the lattice size and the boundary
conditions.
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FIG. 11. The localization tensor results of a half-filled lattice for
three cases: (i) αy = αz = 0, (ii) t = 0, αz = 0, and (iii) t = 0, αy =
0. To compute λ2, we have used OBC and L = 1597.
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FIG. 12. The effect of RSO on the critical point is exactly the
same at the quarter-filling. For αy/t = 0, αz/t = 0.8 and αy/t =
0.8, αz/t = 0.0, the critical point appears at the same point as in
the half-filled case. This is true as well when both αy/t and αz/t are
nonzero. Here, L = 1597.
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APPENDIX A

In Sec. III, we have stated that when each of the hop-
ping processes is considered separately with the quasiperiodic
potential, there is a self-duality exactly at W/t = W/αy =
W/αz = 2. The metal-to-insulator transition is expected at
the same disorder strength. In Fig. 11, we have verified this
assertion numerically.

APPENDIX B

Our results are independent of the filling fraction. Here,
we show the exact same trend in the critical point at quarter-
filling. In Fig. 12, we have presented some representative
results of our localization tensor calculations for L = 1597.
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FIG. 13. It is clear that the transition happens between W/t =
2.55 and 2.57. The maximum error in determining the critical point
is δWc/t = ±0.01. OBC has been used to compute λ2.
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FIG. 14. The evolution of the critical point when t is set to zero.
All the parameters of the Hamiltonian are measured in units of the
parameter which is set to unity. We have used L = 1597.

APPENDIX C

To demonstrate the accuracy of the numerical value of the
critical point, in Fig. 13 we present the localization tensor
results for increasing system sizes and �W/t = 0.01. Similar
calculations have been performed to determine the critical
points presented in Table I.

APPENDIX D

From the discussion of the phase diagram, we have seen
that the critical behavior is identical when only a pair of the
hopping process is considered while the remaining hopping
amplitude has been set to zero. In Sec. IV B, the results for two
such cases have been presented. Here, we present the results
for the third such case, that is, when the tight-binding hopping
amplitude is set to zero. From Fig. 14, it is clear that the metal-
to-insulator transition takes place at the same critical strength
of the quasiperiodic disorder as that in Figs. 6(a) and 6(b).
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FIG. 15. The localization tensor for a lattice L = 1000 with
OBC. The filling fraction has been fixed at the position where special
state, Es appear in the subband gap of the metallic states. The filling
fraction up to ES is 0.382. Here, αy = 0.

APPENDIX E

In the quasiperiodic lattice, some electronic states may
appear in the energy spectrum inside the subband gaps in
the metallic phase. The appearance of these states is very
sensitive to many factors, such as the lattice size, the boundary
conditions, the quasiperiodic modulation controlled by the
parameter b, etc. In Sec. V, we mentioned that these states
do not affect the critical properties as long as the system is
not filled up to this energy level. However, when the system is
filled up to such special states, there is no metal-to-insulator
transition. The localization tensor behaves identically to a
1D Anderson insulator [38]. In Fig. 15, we have plotted the
localization tensor of a lattice of size 1000 when the system
is filled up to the special state Es, and just below Es. λ2 have
been computed for αy/t = 0 and αz/t = 0.8. It can be clearly
seen that the critical point is unaffected when the system is
filled up to the state just below Es. When the filling goes up to
Es, there is no metal-to-insulator transition.
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