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Phase diagram of a frustrated Heisenberg model: From disorder to order and back again
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We study the effects of bond and site disorder in the classical J1-J2 Heisenberg model on a square lattice
in the order-by-disorder frustrated regime 2J2 > |J1|. Combining symmetry arguments, numerical energy mini-
mization, and large-scale Monte Carlo simulations, we establish that the finite-temperature Ising-type transition
of the clean system is destroyed in the presence of any finite concentration of impurities. We explain this
finding via a random-field mechanism which generically emerges in systems where disorder locally breaks the
same real-space symmetry spontaneously globally broken by the associated order parameter. We also determine
that the phase replacing the clean one is a paramagnet polarized in the nematic glass order with nontrivial
magnetic response. This is because disorder also induces noncollinear spin-vortex-crystal order and produces a
conjugated transverse dipolar random field. As a result of these many competing effects, the associated magnetic
susceptibilities are nonmonotonic functions of the temperature. As a further application of our methods, we
show the generation of random axes in other frustrated magnets with broken SU(2) symmetry. We also discuss
the generality of our findings and their relevance to experiments.
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I. INTRODUCTION

Understanding the effects of quenched disorder is a long-
standing and fundamental problem in condensed matter
systems. It has long been recognized that it can qualitatively
modify the properties of the phases near a phase transition
[1,2], change the critical behavior of continuous phase transi-
tions [3], turn a first-order phase transition into a continuous
one [4], and even destroy the long-range order of the phase
itself [5], among other effects (for a review, see, e.g., Ref. [6]).

All these effects can be understood in the context of single-
order-parameter field theory in which disorder adds a random
component to either the conjugate field or to the mass terms.
In nonfrustrated magnetic systems (such as those described
by the Ising or Heisenberg models), the random mass term is
generated by any inhomogeneities preserving the symmetry
of the Hamiltonian interactions such as site dilution or bond
defects. This term is particularly important near phase transi-
tions yielding to the so-called Griffiths singularities [1,2] in
addition possibly changing the universality class of a continu-
ous phase transition [3]. (For more recent developments, see,
e.g., Ref. [7] and references therein.)

The effects of random conjugate fields can be even more
dramatic. At sufficiently low dimensions, they produce non-
perturbative effects completely destroying the phase transition
[5]. However, random fields are rarely realized in nonfrus-
trated systems because site and bond disorder generally
preserve the symmetry broken by the resulting magnetic order.
In frustrated systems, conversely, the resulting order com-
monly breaks a real-space lattice symmetry which is usually

locally broken by the impurities. Therefore, a direct coupling
between disorder and the order parameter field is expected.
How this coupling manifests itself in the associated field the-
ory depends on how the order-parameter degeneracy is lifted
by disorder. For a simple Z2-symmetric field, only a random
field can be generated. For a (Zn ⊗ Z2)-symmetric field with
disorder lifting the associated degeneracy down to a Z2 one,
the generated term is then a random easy axis.

In the frustrated J1-J2 Ising model, bond and site disorder
generate a random-field term precluding any long-range stripe
order in dimensions d � 2 [8]. Later, it was shown that part
of this result also applies to the J1-J2 Heisenberg model: bond
disorder generates a random-nematic-field term [9]. However,
it became unclear whether site vacancies produce the same
outcome because (i) the random-field term is not generated
in the one-loop approximation [9] and (ii) there is another
effect taking place: due to the continuous symmetry charac-
ter of the interactions, site vacancies nucleate a noncollinear
spin-vortex-crystal order via the order-by-disorder mecha-
nism [10]. In addition, Monte Carlo numerical simulations
were interpreted as supporting nematic long-range order in the
regime of low dilution [11].1

Clearly, from the symmetry perspective, site and bond dis-
order should produce qualitatively the same effects in this
scenario. Thus, the aforementioned reason (i) is refuted. A

1The nematic and spin-vortex-crystal orders are commonly desig-
nated by collinear (or columnar antiferromagnetic) and anticollinear
order, respectively.
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random-field term is expected in higher orders of approxi-
mation. Reason (ii) is less clear, but the symmetry argument
can be played in the other way around: the spin-vortex-crystal
order is also nucleated by bond disorder, an effect not explored
in the literature so far.

Finally, we point out to a recent development which makes
this problem even less clear. It was shown that more subtle sit-
uations can also generate a coupling between disorder and the
order-parameter field. When the ordered state breaks inversion
symmetry (such as the spin-vortex-crystal one), a single-bond
defect (which does not break this symmetry) generates a
slowly decaying transverse dipolar field [12]. In the presence
of a finite concentration of bond defects, the noncollinear
ordered state is destroyed by these random dipolar fields.

Having enumerated all these uncertainties, a deeper un-
derstanding of the effects of disorder in frustrated magnets
is desirable. In this work, we revisit the effects of site and
bond disorder on the J1-J2 classical Heisenberg model and
show that any finite amount of disorder (either site or bond
impurities) precludes the nematic-paramagnet phase transi-
tion due to generation of random fields. Although the effect
of a single-site vacancy is different from that of a single-bond
defect, the effects of any finite fraction of these impurities
are equivalent because it is possible to find configurations of
these impurities breaking the same real-space symmetries. In
addition, we show that the resulting paramagnet is polarized
in the nematic spin-cluster glass order as the system is broken
into domains exhibiting local nematic order.2 The domain
walls exhibit noncollinear competing order with temperature-
dependent thickness, yielding a nontrivial behavior to the
susceptibilities. At zero temperature, the spin configuration
remains coplanar for weak disorder. The spin-vortex-crystal
order is destroyed by the transverse dipolar random fields re-
sulting in a spin-vortex-crystal glass. However, the associated
vestigial spin-vorticity–density-wave order is perturbatively
stable against these fields. Our conclusions are based on a
simple symmetry analysis for determining how disorder lo-
cally lifts the degeneracy of the order-parameter manifold and
are confirmed by numerical energy minimization and Monte
Carlo simulations.

The remainder of this paper is organized as follows. In
Sec. II we introduce the model and review the order-by-
disorder mechanism which is responsible for stabilizing the
long-range nematic (collinear) order. In Sec. III we study the
effects of bond and site disorder. We review the known effects
of single impurities and establish the equivalence of their
effects when a finite density of them is present. We also show
that random dipolar fields conjugate to the spin-vortex-crystal
order is generated. Finally, we determine the phase diagram
and characterize the resulting thermal state. In Sec. IV we
present extensive numerical simulations to support our sce-
nario. As an example of our method, in the Appendix, we
analyze a class of XY frustrated magnets with off-diagonal
(spin-orbit-induced) couplings and show the disorder-induced

2We adopt the terminology of Ref. [13] in which the spin-cluster
glass differs from the usual Edwards-Anderson spin glass (or other
glasses) as the magnetic correlation length (the nematic domain) in
the former can be arbitrarily large.

generation of a random easy-axis term. In d = 2, this term
destroys long-range order and in d = 3, it stabilizes a cluster-
spin-glass phase for sufficiently strong disorder. Finally, in
Sec. V we present our concluding remarks and briefly discuss
the implication of our results to the case of quantum spins and
materials compounds.

II. THE MODEL AND THE ENTROPIC SELECTION

We revisit the random J1-J2 classical Heisenberg model

H =
∑
〈i, j〉

J1,i jSi · S j +
∑
〈〈i, j〉〉

J2,i jSi · S j (1)

on a square lattice of N = L × L sites with periodic bound-
ary conditions. The classical spins Si are three-component
unity vectors. The exchange interactions J1(2),i j are be-
tween nearest- (next-nearest-) (i, j) neighbor sites quantified
by Jα,i j = Jα + δJα,i j (α = 1 or 2). Quenched disorder is
parametrized by the set {δJα,i j} of random variables. As we are
interested in the effects of geometric frustration, we consider
antiferromagnetic next-nearest-neighbor interactions J2 > 0.
As will become clear, our results do not depend on whether
the nearest-neighbor interactions are ferromagnetic or antifer-
romagnetic and, thus, for concreteness, we consider J1 > 0
from now on.

Let us start our analysis reviewing the well-established
clean-system (δJα,i j = 0) physics [10,14,15] (see also
Ref. [16] for a review). For J1 > 2J2, the classical ground
state is a conventional Néel ground state with ordering vector
QAF = (π, π ) and ground-state energy EN = −2N (J1 − J2).
On the other hand for J1 < 2J2, it breaks up into two inter-
penetrating square sublattices (of unity cell

√
2 × √

2), each
one ordered antiferromagnetically in its own Néel state mini-
mizing the next-nearest-neighbor interaction J2 as sketched in
Fig. 1(a). The corresponding energy is ES = −2J2N indepen-
dent of J1 and on the polar φ and azimuthal ϕ angles between
two Néel states, and thus, the ground state has an additional
O(3) accidental degeneracy (parametrized by a polar φ and an
azimuthal ϕ angle) known to be lifted by the many sorts of
fluctuations: a mechanism known as order by disorder (ObD)
[17,18].

The effects of thermal fluctuations are understood in the
following way. Expanding the free energy up to Gaussian
fluctuations above the highly degenerate ground state, the
resulting (φ, ϕ)-dependent correction to the free energy is

δF ∝ −T cos2 φ (2)

[see Fig. 1(b)] and, therefore, a stripe (collinear) state (φ = 0
or π ) is entropically selected [see Fig. 1(c)]. In other words,
the accidental ground-state O(3) degeneracy is partially lifted
by thermal fluctuations remaining a discrete Z2 one: this is the
order-by-(thermal)disorder mechanism.

Is the stripe phase stable at low temperatures? If that was
the case, then both the continuous O(3) spin symmetry and
the discrete Z2 symmetry would be spontaneously broken.
However, the Mermin-Wagner theorem [19] dictates that no
continuous symmetry can be spontaneously broken at and
below the lower critical dimension d−

c,MW = 2 at finite T
in systems with short-ranged interactions. Interestingly, the
vestigial (or composite) nematic order associated to the Z2
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c d
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FIG. 1. (a) The clean (δJα,i j = 0) classical ground state of the
Hamiltonian (1) in the regime J1 < 2J2: two decoupled antiferro-
magnetic sublattices (red and blue arrows) with the polar φ and
azimuthal ϕ (not shown) angles parametrizing a nontrivial O(3)
degeneracy. (b) The low-T corrections to the free energy δF as a
function of the polar angle φ, indicating the selection of the states
φ = 0 or π . (c) The collinear (stripe) state φ = 0 [ordering wave
vector Q+ = (0, π ) ]. (d) The noncollinear (spin-vortex-crystal) state
φ = π

2 , ϕ = 0 with staggered “handness” pattern.

symmetry breaking still takes place at sufficiently low temper-
atures. Consequently, a continuous finite-T phase transition
in the two-dimensional (2D) Ising universality class occurs in
the ObD regime J1 < 2J2. Here, the nematic order parameter
is quantified by

〈m‖〉 =
〈

N−1
∑

i

m‖,i

〉
, with

m‖,i = 4−1(Si − S j ) · (Sk − Sl ) (3)

being the local nematic order parameter involving the four
spins in the ith plaquette. [Plaquette sites ik jl are arranged
counterclockwise as shown in Fig. 3(a)]. Here, 〈. . . 〉 repre-
sents the standard thermal average. The order parameter being
〈m‖〉 > 0 [〈m‖〉 < 0 ] means a nematic state with ordering
vector Q+ = (0, π ) [Q− = (π, 0) ] and polar angle φ = 0
(φ = π ).

In Ref. [15], the critical temperature was found to be
Tc ≈ 0.55J2, for J2 � 0.9J1. Thus, the effective nematic cou-
pling constant is J‖ ∝ J2 in this regime which is in agreement
with the field-theory predictions [14].

III. EFFECTS OF QUENCHED DISORDER

In this section, we describe the effects of quenched disorder
(namely, vacancies or bond defects) on the model Hamiltonian
(1) in the ObD regime (J1 < 2J2) which will guide our inter-
pretation of the numerical data (see Sec. IV).

We start analyzing how a single and a impurity pair lift
the O(3) ground-state accidental degeneracy. In the following,
we show that any finite concentration of impurities yields
to nonperturbative effects hindering any paramagnet-nematic

phase transition. Finally, combining all these effects in addi-
tion to the thermal fluctuations, we characterize the resulting
paramagnet.

A. Selection by a single impurity

In the ObD regime J1 < 2J2, perturbative approaches
[9,10] confirmed by numerical studies [11] predict that a
site vacancy selects a set of noncollinear states out of the
highly degenerate ground-state manifold, namely, the spin-
vortex-crystal (SVC) states [see Fig. 1(d)]. The corresponding
correction to the ground-state energy due to a density x 	 1
of vacancies is

δE ∝ x cos2 φ, (4)

which favors φ = π
2 . [Notice that this order-by-

(quenched)disorder selection is an energetic one.] Therefore,
isolated vacancies lift the accidental O(3) ground-state
degeneracy leaving a remaining O(2) (associated with the
azimuthal angle ϕ between the two Néel states). The related
vestigial order, named spin-vorticity density-wave (SVDW)
order [20], is quantified by the axial vector

〈m⊥〉 =
〈

N−1
∑

i

m⊥,i

〉
, with

m⊥,i = (−1)ix+iy 4−1(Si − S j ) × (Sk − Sl ) (5)

being the local SVDW order parameter which involves the
four spins of the ith plaquette [as in Eq. (3)], and ix and iy
being the coordinates of site i.

On the other hand, the selection by a single J1-bond defect
is quite different. A vertical bond defect J1 + δJ , for instance,
provides an energy correction to the ground state equal to
δE = −δJ cos φ, and thus, selects the stripe state Q+ (Q−)
if δJ is positive (negative). Interestingly, the two stripe states
extremize the energy correction. This is of no surprise since
the stripe states Q± break the vertical and horizontal real-
space symmetry. As a result, J1-bond disorder acts like a local
conjugate field breaking the symmetry between the two stripe
states [9].

Finally, let us discuss the effect of a weak J2-bond defect.
Clearly, it does not lift the ground-state degeneracy since it
does not affect the collinear Néel states in each sublattice.
We have numerically verified (see Sec. IV E) that a finite
concentration of J2-bond impurities induces only random-
mass disorder which produces only mild effects far from the
J1 = 2J2 transition.

B. Equivalence between site and bond disorder

The effects of a single-site vacancy and a single J1-bond
impurity are quite different as discussed in Sec. III A. The
main reason is because they break different real-space symme-
tries which select different states out of the clean ground-state
manifold. However, for a finite concentration of impurities,
site and bond disorder become equivalent since the symme-
tries broken by them are the same.

For concreteness, consider for instance two J1-bond impu-
rities of same magnitude, one vertical and the other horizontal,
meeting at the same site. As the vertical/horizontal symmetry
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is not locally broken, the Q± stripe states cannot be selected.
Performing numerical energy minimization [21],3 we have
verified that the selected ground state is the SVC, as expected
[see Fig. 2(a)].

We now investigate the robustness of this selection with
respect to (i) the anisotropy between vertical and horizontal
defects, and with respect to (ii) their distance. Using the
energy minimization method, we plot in Fig. 2(b) the ground-
state energy (solid line) as a function of the defective vertical
coupling amplitude J1 + δJ (v) while the horizontal one is
kept missing (δJ (h) = −J1). Clearly, the noncollinear SVC
state is selected even for a fairly large amount of anisotropy
δJ (v) � 0.4δJ (h). Beyond that, the SVC ground state smoothly
evolves into the stripe state. (The perfect stripe state energy
is given by the dashed line.) The inset shows the nematic
and SVDW order parameters. Finally, we have verified that
the SVC state is energetically selected by any two J1-bond
impurities regardless of their distance provided that one is
vertical and the other is horizontal (and their magnitude are
not sufficiently different) as shown in Fig. 2(c).

Given that these two J1-bond impurities separately select
the two different stripe states, one could suppose that the
system would break into two stripe domains (which is the
case for Ising spins). However, the domain-wall cost disfa-
vors this configuration and the system prefers the SVC state.
Alternatively, we can say that, in order to minimize energy,
the domain-wall thickness is unbounded (at T = 0) leaving
no room for the stripe domains. More importantly, the domain
wall exhibits SVC order, the structure factor of which peaks
at the two stripe ordering vectors Q+ and Q−. As will become
clear later, this interpretation is helpful for interpreting the
numerical data.

In order to close the equivalence between site and bond
disorder, we now show that two site vacancies can also select
one of the stripe states. Consider for instance the case of two
missing sites one on top of each other. In this case, three verti-
cal and four horizontal J1 bonds are missing and, thus, the Q+
(φ = 0) state is energetically favored. Two nearest-neighbor
site vacancies are exactly what is needed to locally break the
vertical and horizontal symmetry.4

C. Thermal fluctuations and screening

As shown in Secs. III A and III B, a single or a pair of
impurities either select the SVC or the stripe states out of the
clean ground-state manifold.

3We simply sweep the entire lattice and align the spins to their
local exchange field. This procedure is guaranteed to find a local
energy minima, but it usually struggles to find the global minima
in the case of disordered frustrated system, being therefore limited
to small system sizes [12,22,23]. In order to ensure convergence, we
have used many different random initial states, SVC states, and states
fed from low-temperature Monte Carlo simulations.

4Two distant site vacancies in the same row or column do break the
global vertical and horizontal real-space symmetries. However, they
do not select any of the stripe states as the same amount of vertical
and horizontal J1 bonds is missing. Thus, the terminology of locally
breaking a symmetry means that this is done in a plaquette.

(a)

(b)

(c)

FIG. 2. (a) Ground-state configuration obtained by the iterative
energy minimization method of the spin configurations. The strong
links represent missing nearest-neighbor J1 bonds (δJ (v) = δJ (h) =
−J1). (b) The ground-state energy (measured with respect to the
clean one ES) (solid line) and the perfect-stripe-state energy [ES −
(J1 + δJ (v) ) ] (dashed line) as a function of the bond magnitude
J1 + δJ (v) (the magnitude of the other bond is fixed at δJ (h) = −J1).
Inset: the corresponding nematic m‖ and SVDW m⊥ order-parameter
magnitudes. (c) Same as (a) but with far-apart defects. The system
size is L = 16 and periodic boundary conditions are considered. The
value J2 = 0.55J1.

At T > 0, both orders are melted as they require the
spontaneous breaking of the O(3) (continuous) spin-rotation
symmetry. The associated nematic vestigial order, on the other
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hand, is stable at low temperatures and is also entropically
selected (see Sec. (II)). The associated SVDW vestigial or-
der, however, is melted since it also requires the spontaneous
breaking of a continuous symmetry.5

In the remainder of this section, we discuss the resulting
thermal state in the presence of these impurities. Let us start
with the trivial case of a single J1-bond defect or two nearest-
neighbor site vacancies which select, say, the Q+ nematic
state. As they act as a local nematic field, then at finite T
and for finite system size L, the nematic order 〈m‖〉 is always
positive. It reaches 1 as T → 0 and vanishes in the T → ∞
limit. Upon increasing the system size at finite T , 〈m‖〉 → 0
as L → ∞ because the free-energy difference between the
positive and negative nematic states is nonextensive. Thus, the
limits T → 0 and L → ∞ do not commute.

Let us now discuss the more interesting case of a single-site
vacancy which selects the SVC order. There are two mech-
anisms confining that order in a region of size ξ⊥ around
the impurity: the competing nematic order and the thermal
fluctuations. At finite temperatures (below the clean critical
temperature Tc), the impurity generates a perturbation inside
the nematic state which cannot be propagated beyond the
nematic correlation length ξ‖. Thus, ξ⊥ is bounded by ξ‖.
Evidently, SVC and SVDW orders are also bounded by the
thermal correlation length ξMW of a continuous symmetry
order parameter which, at low temperatures, is ∝eρ⊥/T , with
ρ⊥ being a related stiffness. (The exponentially large ξMW is
characteristic of the lower critical dimension of the problem
d−

c,MW = 2.) Therefore, ξ⊥ ∝ min{ξMW, ξ‖}.
An analogous effect would occur for two bond defects

provided that their distance is smaller than ξ⊥, that one is
vertical and the other horizontal, and that their magnitudes are
similar. If their distance is greater than ξ⊥, the SVDW domain
wall between them is entropically disfavored and the system
will be in either one of the equally equivalent nematic states.

D. Effects of disorder-induced random nematic fields

In this section we show the impossibility of a phase tran-
sition into a nematic phase in the presence of any finite
concentration of impurities in d � 2. The proof is by reductio
ad absurdum. We assume the existence of the transition and
arrive in a contradiction.

Assuming that the transition exists, the symmetry of
nematic order parameter (3) dictates that a spontaneous
symmetry-breaking transition is in the unfrustrated 2D Ising
universality class [11,14,15,20]. Therefore, the nematic tran-
sition can be described by the 2D Ising model with generic
short-range ferromagnetic interactions with the Ising vari-
ables representing the two nematic states Q±. As discussed in
Secs. III A and III B, J1-bond defects and nearest-neighbor
vacancy pairs act as nematic fields locally breaking the sym-
metry between the Q± states. Therefore, in the presence of a

5One could think that the associated O(2) symmetry could be qua-
sibroken in a Berezinskii-Kosterlitz-Thouless transition. However,
symmetry considerations indicate that an O(3) symmetry [related to
the axial vector (5)] must be broken before the O(2) one [20,24],
thus, precluding any quasi-long-range SVDW order at finite T .

finite concentration of impurities we must furnish the effective
Ising model with additional random fields and random cou-
plings. The lower critical dimension of this model is known
to be d−

c,‖RF = 2 [5,25–27]. Consequently, there is no phase
transition in d � 2. This ends our proof.

We recall that, for J1-bond disorder, these conclusions were
previously obtained in Ref. [9] using conventional perturba-
tive field-theory methods. For site disorder, it was suggested
that the transition exists (see also Ref. [11]).

In the case of anisotropic disorder,6 the mean value of the
random fields is finite and hence the corresponding nematic
state is globally favored. In this case, 〈m‖〉 is finite at any
temperature.

In the case of isotropic disorder, the random fields have
zero mean and, thus, the nematic order parameter is always
vanishing. At low temperatures, the system is broken into do-
mains of different nematic order of typical size ξ‖RF ∝ eJ̃2/σ 2

h̃

(up to power-law corrections) [25–27]. Here, J̃ is the mean
value of the effective nematic coupling constants J‖ (propor-
tional to J2 in the regime J2 � J1), and σ 2

h̃
is the variance

of the effective random fields h̃. In the case of low density
of bond defects 0 < x 	 1, σ 2

h̃
∝ x(1 − x). Likewise, for a

low density x of site vacancies, σ 2
h̃

∝ x2(1 − x2). The fact that
ξ‖RF is exponentially large in 1/σ 2

h̃
is a consequence of the

system being at the lower critical dimension d = d−
c,‖RF. It also

points out to the huge difference between the domain sizes
formed by bond and site defects in the limit of small defect
concentrations x.

In the Appendix, we apply these simple arguments to show
the disorder-induced generation of random axes in easy-plane
pyrochlores.

E. Disorder-induced dipolar random fields

We now show that the spin-vortex-crystal state is unstable
in the presence of any finite concentration of impurities in
d � 2 even at T = 0.7 The reason is akin to the instability of
the nematic order discussed in Sec. III D: impurities-induced
random fields. As in the nematic case, it is also related to
a real-space symmetry broken by the ordered state: the in-
version symmetry. However, the random fields are nonlocal
exhibiting a dipolar texture.

This result is a direct consequence of the theory devel-
oped in Ref. [12] where it was shown that any amount of
generic bond disorder destroys any noncollinear order. As a
consequence of the symmetry arguments of Sec. III B, we
extend this result to site disorder as well (see below). Fi-
nally, there is another important difference with respect to
the stripe/nematic case. The vestigial SVDW is perturbatively

6By anisotropic disorder we mean those situations in which the
global vertical and horizontal isotropies are broken such as, for
instance, the cases in which the disorder averages of δJ (v)

1 and of δJ (h)
1

are different, or when the density of horizontal and vertical vacancy
pairs are different.

7This is a pertinent question even in the realistic case of quantum
spins. For a sufficiently high concentration of site vacancies, the SVC
state may percolate.

054201-5



MIRANDA, ALMEIDA, ANDRADE, AND HOYOS PHYSICAL REVIEW B 104, 054201 (2021)

δθ

δθ

δθ
δθ

k

(a)

j
l

i i

k

j

l

100 101 102

r

10−5

10−4

10−3

10−2

10−1

|δθ
|

(b)

Single bond

Single vacancy
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FIG. 3. (a) The spin-rotation field on a plaquette induced by a
strong (δJ > 0) J1-bond impurity (dotted line). (Dashed arrows rep-
resent the unperturbed state.) (b) The spin-rotation field magnitude
|δθ | plotted as a function of distance r from the defect (see text
for details) for the cases of a J1-bond vacancy (δJ = −J1) (black
squares), a single vacancy (red triangles), and a pair of nearest-
neighbor vacancies (green circles). We have used J2 = 0.55J1 and
fixed K = 0.05J1. We used system sizes up to L = 210 with periodic
boundary conditions. The dashed lines are power-law fits ∝r−1 and
∝r−2 in the range 10 � r � 102. Deviations at large r are due to
finite-size effects. We have obtained similar results (not shown) for
system size L = 400, K = 0.1J1, and J2/J1 = 0.55, 0.6 and 0.8.

stable against disorder at T = 0. This does not contradict the
results of Ref. [12] since the SVDW order is collinear.

We start our analysis by numerically verifying that a single
J1-bond defect produces a dipolar spin texture [12]

δθ (r) = αδJ
ê · r
rd

(6)

on the spin-vortex-crystal state [see Fig. 3(a)]. Here, d = 2,
δθ (r) is the in-plane impurity-induced angle deviation (with
respect to the spin-vortex-crystal state) of the spin at position
r measured with respect to the center of the defective bond,
the unity vector ê is the direction of the defective bond (x̂ or
ŷ), and α ≡ α(J1, J2) is a constant the sign of which ensures
that the two spins connected by the defective bond align more
(less) antiparallel for δJ > 0 (δJ < 0). (Notice, therefore, that
the local random field lies within the SVC plane and is per-
pendicular to the local spin order.)

In order to stabilize the noncollinear SVC state in a clean
sample, we supplement the Hamiltonian (1) with a positive bi-
quadratic term K

∑
〈i j〉(Si · S j )2 [10,20]. The T = 0 resulting

spin configuration is obtained via numerical energy minimiza-
tion [21]. Convergence is confirmed by starting from many
different initial random states. In all cases the final configu-
ration is the same and remains coplanar. In Fig. 3(b) we plot
|δθ | as a function of r where r = rê. We have verified the
induced dipolar spin texture (6) by inspection of our data (not
shown).8 This result can be derived analytically through linear
response theory in any dimension d as shown in details in
Ref. [12]. Here, we only mention the reason for such. The
fact that the SVC state breaks the inversion symmetry makes
the distortion field δθ (r) an odd function with respect to the
inversion r → −r. Therefore, the spin texture is p-wave like
which is communicated to the rest of the system by in-plane
Goldstone modes and, thus, decays as ∼1/r [28].

The equivalence between bond and site disorder is con-
firmed in Fig. 3(b) where |δθ | is plotted for the case of a
nearest-neighbor vacancy pair. (Here, r is measured from the
center of the vacancy pair and ê = ŷ or x̂ is the direction per-
pendicular to the vacant sites.) Again, we verify the induced
dipolar spin texture (6). (In contrast, a single vacancy induces
a quadrupolar texture which decays ∼1/r2 [11].)

Having verified the dipolar spin texture (6) induced by a
single-bond impurity or a nearest-neighbor vacancy pair, it
is now straightforward to show the instability of the SVC
order against any finite concentration of impurities in d � 2.
Averaging over the disorder configurations (denoted by [. . . ]),
the mean angle deviation at site j vanishes because disorder
is globally isotropic: [δθ j] ∝ ∑

m δJm
êm·r j,m

rd
j,m

= 0, where r j,m is

the position of site j with respect to the mth impurity. The
variance, on the other hand, behaves quite differently: [δθ2

j ] ∝∑
m,n δJmδJn

êm·r j,m

rd
j,m

ên·r j,n

rd
j,n

∼ ∫
r1−d dr is infrared divergent for

d � d−
c,⊥RF = 2 precluding any SVC order. At the lower crit-

ical dimension of the problem, it was shown that SVC order
is confined in a domain of temperature-independent typical
size ξ⊥RF ∝ eρ2

‖/σ 2
δJ , where ρ‖ is a related stiffness and σ 2

δJ is
the variance of δJ1 [12]. The resulting ground state is a SVC
spin-cluster glass. As expected, we verified that disorder on
the J2 bonds does not induce dipolar random fields.

How about the stability of vestigial SVDW order? At T =
0 in a coplanar state, the local SVDW order (5) reduces to a
scalar and therefore the result of Ref. [12] does not apply. Let
us consider the effects of the dipolar spin texture (6) on the
SVDW order. Far from the impurity, the change in the local or-
der parameter is δm⊥(r) ∝ −(1 + d (d − 2)(ê · r̂)2)(δJr−d )2,
which vanishes sufficiently fast as r → ∞. Consequently, the
mean deviation [δm⊥] ∝ [(δJ )2] is finite and, more impor-
tantly, because δm⊥ is isotropic at d = 2, the corresponding
variance vanishes up to O(δJ )4. This strongly suggests that
SVDW order is perturbatively stable at d = 2. Our numerics
(see Sec. IV F) support this scenario. At weak disorder, the
ground-state spin configuration remains coplanar with van-
ishing SVC order and finite SVDW order. Upon increasing
disorder, the spin configuration becomes noncoplanar and the
SVDW order is destroyed.

8A careful reader will notice in Fig. 2(c) a nondipolar spin texture
near the impurities. We emphasize that the dipolar character (6)
dominates only at larger distances invisible to the naked eye.

054201-6



PHASE DIAGRAM OF A FRUSTRATED HEISENBERG … PHYSICAL REVIEW B 104, 054201 (2021)

F. Phase diagram

As discussed in the previous sections, in the presence
of generic disorder and in the ObD regime (J1 < 2J2) the
model system (1) is a always a paramagnet at T > 0 and
a spin-vortex-crystal cluster-spin glass at T = 0 with finite
spin-vorticity–density-wave vestigial order in the regime of
weak disorder.

It is noteworthy that the paramagnet is not uninteresting. It
is broken into spin clusters locally exhibiting nematic order.
Therefore, it is polarized in the nematic spin-cluster-glass
order. With respect to the nematic order, this paramagnet is
very much similar to that of the Ising model in a random
field which is not a glass [29]. However, with respect to
susceptibilities they are quite different because (i) the ne-
matic effective coupling constant is temperature dependent
(due to the entropic selection) and (ii) the domain walls in
our case have high SVDW susceptibility. As a consequence,
the domain-wall thickness is temperature dependent yielding
nontrivial nematic and SVDW susceptibilities. An explicit
discussion on this issue involving also the glassy properties
is given in Sec. IV D.

IV. NUMERICAL SIMULATIONS

In this section we report our Monte Carlo (MC) sim-
ulations of the system Hamiltonian (1) and our numerical
zero-temperature energy minimization.

A. Technical details

In our MC code, we have used both the Heat Bath [30] and
the Microcanonical [31] local update algorithms. Precisely,
we employ five Heat Bath steps followed by five Micro-
canonical ones (one MC step means one random sweep over
the entire lattice), which proved to be an optimal choice for
equilibration. After these 10 MC steps, we finally perform a
parallel-tempering step. We define a temperature grid such
that the probability of swapping adjacent configurations is
independent of the temperature values and is sufficiently high
so as to ensure frequent exchanges [32]. We typically perform
5 × 105 MC steps to reach equilibrium and M = 5 × 105 MC
steps to take averages.9

As usual in MC studies, the thermal average is replaced by
the MC average, i.e.,

〈O〉 → M−1
M∑

t=1

O(t ), (7)

where O(t ) is the value of the observable O at the t th Monte
Carlo step (after equilibration).

When studying disordered systems, we also average an
observable over Nd = 600 different disorder realizations (de-

9We think it is worthy to mention that we have performed a MC
study without parallel tempering and obtained the same results.
(Although it needs 5 × 105 MC steps to reach equilibrium and
M = 1.5 × 106 MC steps to take averages in order to obtain equiva-
lent error bars.) We interpret this result as the absence of a slowing
down related to any glasslike behavior.
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FIG. 4. The MC results for clean system and J2 = 0.55J1. (a) The
modulus of the nematic order parameter, (b) the specific heat, (c) the
nematic susceptibility, and (d) the Binder cumulant as a function of
the temperature for several system sizes. The inset shows a mag-
nification around the crossing points signaling the location of the
transition temperature Tc ≈ 0.197(1)J1.

noted by [. . . ]), namely, [〈O〉] = N−1
d

∑Nd
k=1〈O〉k , where 〈O〉k

is the MC average of O in the kth -disorder realization.
In addition to the nematic (3) and SVDW (5) order pa-

rameters, we also study the corresponding susceptibilities, the
nematic Binder cumulant, and the specific heat, respectively
given by

χα
a = N

T

[〈(
mα

a

)2〉 − 〈∣∣mα
a

∣∣〉2], (8)

U‖ = 1 − 1

3

[ 〈m4
‖〉

〈m2
‖〉2

]
, (9)

cv = (NT )−1[〈E2〉 − 〈E〉2], (10)

where a =‖,⊥, respectively, refers to the nematic and SVDW
orders, α, β = x, y, z are the order-parameter components (not
applicable to the nematic case), and E is the spin configuration
energy (1).

In addition, we also have studied the nematic and SVDW
Edwards-Anderson order parameters defined as [33,34]

[〈mEA,a〉] =
⎡
⎣

〈√√√√N−1
∑
α,β

∣∣∣∣∣
∑

i

mα(1)
a,i mβ(2)

a,i

∣∣∣∣∣
2〉⎤

⎦, (11)

where the superindices (1) and (2) denote the two simulated
replicas, i.e., we independently simulate two copies of the sys-
tem (same disorder configuration) and, thus, 〈mα(1)

a,i mβ(2)
a,i 〉 =

〈mα(1)
a,i 〉〈mβ(2)

a,i 〉. The corresponding spin-glass susceptibility
χEA,a is the corresponding thermal fluctuation magnitude of
mEA,a quantified by (8) with mα

a replaced by mEA,a.

B. Clean system

In order to benchmark our codes, we review the impurity-
free nematic phase transition in the ObD regime where we fix
J2 = 0.55J1. In Fig. 4 we plot the specific heat, the absolute
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FIG. 5. The finite-size scaling replot of (a) the Binder cumulant
and (b) the nematic susceptibility (right) data of Fig. 4. The lines
are simple quartic best fits representing the corresponding scaling
functions.

value of the nematic order parameter, the nematic susceptibil-
ity, and Binder cumulant as a function of the temperature for
various system sizes.

Clearly, these observables exhibit the usual temperature
dependence of a continuous phase transition. In particular, the
Binder cumulant tends to 2

3 for T < Tc and to 0 for T > Tc

in the thermodynamic limit. For finite-size systems, extrap-
olating the crossings of different sizes (not shown) allows
us to estimate the critical temperature to Tc ≈ 0.197(1)J1.
The standard finite-size scaling analysis [35,36] is shown in
Fig. 5 from which we obtain ν = 1.00(6) and γ = 1.72(5),
compatible with the 2D Ising universality class (ν = 1 and
γ = 7

4 ) and the earlier estimate reported in Ref. [15].

C. Spatially anisotropic disorder

In this section we study the effects of dilution of horizontal
J1 bonds and of horizontal nearest-neighbor site pairs. We do
not find any hint of a phase transition. Instead, the system is
always polarized in the Q+ (Q−) nematic state when of bond
(site) dilution.

We start by reporting the effects of a single J1-bond im-
purity. We have verified (not shown for the sake of brevity)
that, for low temperatures and small sample sizes, the nematic
order parameter (3) is always positive in agreement with the
predictions of Sec. III A. (Recall that m‖ averages to zero in
the clean system.) Accordingly, as the temperature is raised
and the system size enlarged, the difference between the Q±
states diminishes and so does the order-parameter mean value.

We now report our study for the case of a finite fraction
of impurities. Figure 6 is equivalent to Fig. 4 but with 2% of
horizontal J1 bonds missing. Clearly, there are no indications
of singularities as the system size increases. More importantly,
there is no hint of crossings in the Binder cumulant, implying
no phase transition even above the clean critical temperature
Tc ≈ 0.19J1. Notice also that the order parameter is always
finite (and positive) for any finite temperature in agreement
with our expectations (see Sec. III D). Finally, another sup-
port of this conclusion is the strong indication of the Binder
cumulant saturating to 2

3 in the thermodynamic limit for all
temperatures.

Finally, we report that a completely similar study was
conducted when 1% of the lattice sites are diluted in such a
way that they appear in pairs of horizontal nearest neighbors.
We report that completely analogous results as in Fig. 6 were
found and, for that reason, we do not to show them here.
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FIG. 6. The MC results for the case of 2% dilution of horizontal
J1 bonds where J2 = 0.55J1. (b) The specific heat, (a) the nematic
order parameter, (c) the corresponding susceptibility, and (d) the
Binder cumulant as a function of the temperature for several system
sizes.

Instead, we present a complementary result: the density plot
of the local nematic order parameter for a typical disorder
configuration (see the top panel of Fig. 7). Clearly, the Q−
state is selected. We have verified that this is the case in all
temperatures. For comparison, in the bottom panel we show a
typical density plot for the case of 0.5% of vertical J1-bond
dilution. Apart from the localized spin texture around the
defects, these plots are essentially the same.

D. Spatially isotropic disorder

We now report on the more subtle case of isotropic disorder
in which the global (statistical) vertical and horizontal real-
space symmetries are preserved. Specifically, we consider the
cases of uncorrelated J1-bond dilution. [We have also consid-
ered site dilution and obtained similar results but with much
larger finite-size effects since ξ‖RF are considerably larger (see
Sec. III D).]

In agreement with the arguments of Sec. III, we have
verified that there is no phase transition and the system is
always a paramagnet. This is illustrated in Fig. 8 where the
specific heat, the nematic Binder cumulant, order parameter,
and susceptibility are plotted as a function of the temperature
for samples of many sizes when 2% of the J1 bonds are
isotropically diluted. The SVDW order parameter and sus-
ceptibility are also shown. Notice the striking difference with
respect to the clean case. There are no hints of singularities in
any observable. In addition, both the nematic order parameter
and the Binder cumulant decrease with increasing the system
size for all temperatures. This is a strong indication of a state
without nematic long-range order. As expected, the SVDW
order parameter behaves likewise. Notice it vanishes slowly
at lower temperatures since the associated correlation length
ξ⊥ is exponentially large as T → 0.

We now present further details on the glassy features of
the resulting paramagnet. In Fig. 9, the nematic Edwards-
Anderson order parameter (11) and the corresponding sus-
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FIG. 7. A typical density plot of the local nematic order parame-
ter 〈m‖,i〉 [see Eq. (3)] for a lattice of size L = 80, temperature T =
0.18J1, and J2 = 0.55J1. The light dots (top) and light ticks (bottom)
show the position of the missing sites (1% on average) and vertical
bonds (0.5% on average), respectively. Notice that the site impurities
always appear in pairs of horizontal nearest-neighbor sites locally
favoring the nematic Q− state. For these particular disorder realiza-
tions, the nematic order parameter averages 〈m‖〉 = −0.486(1) (site
dilution) and −0.521(1) (bond dilution).

ceptibility for 2% of diluted J1 bonds are plotted. Clearly,
[〈mEA,‖〉] is finite in the entire temperature range studied.
Notice that, similar to the random-field Ising model [29],
this is not a nematic cluster-spin glass but a paramagnet
polarized in that glassy order since χEA,‖ < χ‖. The SVDW
Edwards-Anderson order parameter and the corresponding
susceptibility are also plotted. As expected, [〈m⊥〉] Fig. 8(e)]
and [〈mEA,⊥〉] diminish very slowly as the system size in-
creases. We have studied the cases of 10% (see Fig. 10) and
20% (not shown) of J1-bond dilution and observed qualita-
tively similar results.

As mentioned in Sec. III F, the many competing orders
yield this an interesting paramagnet as evident from the non-
monotonic behavior of χ⊥ in Fig. 10(d). In the following,
we discuss about the usual and glassy nematic and SVDW
susceptibilities in a qualitative level. A full quantitative study
is beyond the scope of this work.

Let us start with the nematic susceptibility. In analogy with
the random-field Ising model, one could naively expect χ‖ to
be round peaked at a temperature T ∗

‖ proportional to the clean
paramagnet-nematic transition temperature Tc as this is the
relevant energy scale for the nematic fluctuations. The weaker
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FIG. 8. The MC results when 2% of J1 bonds are isotropically
diluted and J2 = 0.55J1. The (b) specific heat, the (d) nematic Binder
cumulant, the (a) nematic and (e) SVDW order parameters, and
their corresponding susceptibilities [(c) and (f), respectively], all as a
function of the temperature and for several system sizes. [We verified
that my,z

⊥ (χ y,z
⊥ ) is statistically identical to mx

⊥ (χ x
⊥).]

the disorder, the higher and sharper is the peak (as larger is
the typical size of the nematic clusters ξ‖RF). However, unlike
the Ising model, to the left of of this peak the nematic energy
scale J‖ is temperature dependent and, thus, we expect χ‖ to
remain high at lower temperatures as can be seen in our MC
data Figs. 8 and 10. With respect to the Edwards-Anderson
nematic susceptibility, also in analogy with the random-field
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FIG. 9. The Edwards-Anderson nematic and SVDW order pa-
rameters and the corresponding susceptibilities as a function of the
temperature for the same parameters as in Fig. 8.
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FIG. 10. The conventional and the Edwards-Anderson nematic
and SVDW order parameters and the corresponding susceptibilities
as a function of the temperature for 10% of isotropically dilution of
J1 bonds. [We verified that my,z

⊥ (χ y,z
⊥ ) is statistically identical to mx

⊥
(χ x

⊥).]

Ising model, we expect χEA,‖ to be similar to but bounded by
χ‖, in agreement with our numerics.

Let us now discuss the more subtle SVDW susceptibility
starting our analysis from the low-T limit. We expect both χ⊥
and χEA,⊥ to diverge as T → 0 since the associated correla-
tion length ξ⊥ diverges.10 This is only possible because the
domain walls are sufficiently thick at the lowest temperatures
occupying most of the bulk. (Thus, the greater the impu-
rity concentration the greater χ⊥ and χEA,⊥.) As temperature
increases both χ⊥ and χEA,⊥ decrease due to (i) thermal fluc-
tuations and to (ii) the growth of the nematic domains. Beyond
T ∗

‖ , the nematic domains decrease again giving further room
to the SVDW domain wall and, thus, χ⊥ develops inflection
points (or even a local minimum) near T ∗

‖ . The same effect is
expected on χEA,⊥, however, less intensively due to the high
temperature.

10As discussed in Sec. III E, the SVDW order is perturbatively
stable against disorder and, thus, ξ⊥ is not bounded by the dipolar
random field correlation length ξ⊥RF.

FIG. 11. (Left panels) The nematic order-parameter normalized
histogram P(m‖) for different system sizes and temperatures and
(right panels) the density of the local nematic order 〈m‖,i〉 for a
typical disorder realization. Here, the vertical (light) and horizontal
(dark) ticks represent the missing J1 bonds (2% on average).

We end this section by studying more quantitatively the
temperature dependence of the size of nematic domains. In
Fig. 11, we plot the nematic order-parameter distribution
P(mσ ) for 2% dilution of J1 bonds. It is built as a normal-
ized histogram of the entire MC time series m‖(t ) for all
the disorder realizations. We have studied the temperatures
T = 10−2J1, 10−1J1, and 0.18J1. For each temperature, we
also show the density plot of the local nematic order 〈m‖,i〉
for a typical disorder realization. The density plots show well-
defined domains of static positive (negative) nematic order
perfectly coincident with the regions rich in horizontal (ver-
tical) J1-bond dilution. When the domains are bigger than L,
P(mσ ) exhibits two symmetric peaks, a feature observed in
the clean (disorder-free) samples (not shown). Increasing L
for fixed impurity density and T , more and more domains fit
inside the system and, thus, P(mσ ) approaches a zero-mean
Gaussian of vanishing width ∼1/L as dictates the central limit
theorem.

E. Disorder on the diagonal couplings

For completeness, we have studied the effects of quenched
disorder only on the next-nearest-neighbor J2 couplings. We
have verified that the nematic-paramagnet transition is pre-
served. As discussed in Sec. III D, this is expected since
disorder on the J2 couplings cannot generate random nematic
fields. Based on universality, we then expect this transition
to belong to the usual Ising universality class furnished with
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FIG. 12. Critical temperature Tc vs the dilution concentration of
J2 bonds x. The dashed line is the prediction given by mean field the-
ory Tc = 0.62

√
(2(1 − x)J2 − J1)J1. Here, J2 = 0.55J1 and we have

studied systems of sizes up to L = 80. The MC critical temperature
was estimated from the crossings of the Binder cumulant. The solid
line is just a guide for the eyes.

logarithmic corrections [37–39]. Our results (not shown) are
compatible with this scenario.11

In Fig. 12 we plot the critical temperature Tc as a func-
tion of x, the density of diluted J2 bonds. As before, we
have set J2 = 0.55J1. The critical temperature was obtained
from the crossing of the nematic Binder cumulant (9). For
lower densities x � 2.5%, the critical temperature follows a
simple mean-field prediction as we explain below. At higher
densities, the nematic order is considerably weakened and
completely destroyed above ≈5%.

For 0.5J1 � J2 � 0.9J1, the MC clean critical tempera-
ture obtained in Ref. [11] is well approximated by T (clean)

c ≈
A
√

(2J2 − J1)J1 with A ≈ 0.62. In a simple mean-field ap-
proximation, we replace J2 by its mean value J2(1 − x). The
mean-field critical temperature (shown as a dashed line in
Fig. 12) is thus Tc ≈ A

√
(2(1 − x)J2 − J1)J1.

F. Spin-vortex-crystal glass state and the
spin-vorticity–density-wave order

Finally, for completeness, we briefly study the disorder
effects on the T = 0 spin configuration obtained from the
energy minimization method.

As discussed in Sec. III B, disorder perturbatively selects
the SVC state. Nonperturbative effects, however, destroy this
order (see Sec. III E). The vestigial SVDW order, on the order
hand, is stable against weak disorder. Our aim is to confirm
this prediction. Turns out that this is not a simple task because
the amount of disorder required to destroy the coplanarity is
not large and, thus, large samples are required. We circumvent

11Evidently, we cannot exclude other scenarios such as nonuniver-
sal disorder-dependent critical exponents since large system sizes
(unreachable for our current numerical resources) are required [40].
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FIG. 13. The T = 0 disorder average of the z component of the
SVDW order parameter (5) as a function of the system size L for
various disorder strength � (see text). The spin configuration is on
the xy plane in the weak disorder limit � � � ≈ 0.2 and the SVDW
order is finite. For stronger disorder � > �c, the spin configuration
is no longer coplanar and [mz

⊥] vanishes as L → ∞.

this obstacle by adding to the Hamiltonian (1) a positive bi-
quadratic term K

∑
〈i j〉(Si · S j )2 [10,20] with small K = 0.05.

We have considered J1-bond disorder such that J1,i j =
1 + �i j with �i j being either � or −� with equal probability.
Thus, � parametrizes the disorder strength. The next-nearest-
neighbor interaction is kept fixed at J2 = 0.55. In Fig. 13 we
plot the SVDW axial order parameter (5) projected onto the
(z) direction perpendicular to the (xy) coplanar spin config-
uration. Clearly, the SVDW order is finite for weak disorder
� � �c ≈ 0.2. On the other hand, the SVDW order vanishes
in the thermodynamic limit for � > �c. We have verified (not
shown) that the spin configuration is no longer coplanar in this
regime. It is plausible that the destruction of the SVDW order
coincides with the loss of coplanarity (and not before).

V. CONCLUSIONS AND OUTLOOK

In this section we summarize our results and discuss
their implications. Combining symmetry arguments, numer-
ical minimization, and large-scale Monte Carlo simulations,
we have revisited the square lattice J1-J2 classical Heisenberg
model and have shown that long-range order at any finite
temperature and in the frustrated order-by-disorder regime
2J2 > J1 is perturbatively unstable against any finite density
of generic bond and/or site disorder due to random-field
effects. At zero temperature and low density of impurities,
the state is a coplanar spin-vortex-crystal glass with finite
spin-vorticity–density-wave vestigial order.

A. Equivalence between site and bond disorder

It is well-known that a single bond defect and a site impu-
rity have quite different effects as they select different states
out of the ground-state manifold (stripe and spin-vortex crys-
tal, respectively). We have shown that two nearest-neighbor
site vacancies mimic a J1-bond defect and, likewise, two
site-sharing noncollinear J1-bond defects mimic a site va-
cancy. Thus, we have established the equivalence between
the effects of site and bond disorder when a finite density of
impurities is considered. They both can select one of the stripe
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states or the SVC state, and induce random dipolar SVC fields
and random nematic fields.

Interestingly, disorder on the J2 bonds has a quite different
effect. It does not lift the ground-state degeneracy and, thus,
cannot induce any sort of symmetry-breaking random term. It
can only induce random mass. Thus, long-range nematic order
is stable against weak J2-bond disorder.

We recall that in XY easy-plane pyrochlores, a related
order-by-disorder frustrated system, the effects of site and
bond disorder were numerically verified to be equivalent
[13]. Finally, our equivalence extends the results of Ref. [12]
(which states that generic noncollinear coplanar order is per-
turbatively unstable against bond disorder in d � 2) to site
disorder as well.

B. Random fields, random easy axes,
and transverse dipolar fields

In the ObD regime, both the perturbatively selected states
(the collinear nematic at finite temperatures and the anti-
collinear spin-vortex crystal at T = 0) break a real-space
symmetry. As a consequence, disorder generates random con-
jugate fields which have nonperturbative effects at d � 2. For
the discrete symmetry stripe and nematic order, the generation
of the random field is readily understood. Disorder locally
breaks the same symmetry lifting the degeneracy between
the equivalent ordered states. The order-parameter discrete
symmetry character ensures that the generated field is short
ranged, i.e., it is local. Notice that these arguments are not
tied to the ObD mechanism. They apply to any phase where a
real-space symmetry is spontaneously broken. An important
example is the destruction of the stripe phase in the J1-J2

frustrated Ising magnets [8].
Fundamentally, the random easy axes discussed in the Ap-

pendix and the nematic random fields have the same common
origin: impurities locally lifting the ground-state degeneracy.
In the latter case, the disorder completely lifts the Z2 order-
parameter degeneracy and, thus, can be recast as a random
field. In the former, the order-parameter Z3 ⊗ Z2 symmetry is
broken down to Z2 and, thus, has the effects of random easy
axes.

This symmetry-based strategy for determining the disorder
effects in discrete-symmetry orders is very appealing due to
its simplicity. However, it is not totally clear whether it is
relevant or useful to the case of inversion-symmetry-breaking
order since this symmetry is not broken by a single J1-bond
defect (or a pair of nearest-neighbor vacancies). Instead, it
locally releases frustration which acts as a local transverse
field. Goldstone modes then communicate this perturbation
as a slowly decaying dipolar field ∼r1−d . Complicating even
further this scenario, the effects on the associated spin-
vorticity–density-wave vestigial order is much milder since
the parent SVC “handness” is preserved (disorder acts as a
weak SVDW s-wave field which decays ∼r−2d ). While in
d � 2 SVC order is completely destroyed, the SVDW order
is perturbatively stable. Clearly, it is desirable to study the
disorder effects on other noncollinear ground states. We have
also verified that in the regime of strong disorder, the spin
configuration becomes noncoplanar. Describing and under-

standing how disorder destroys coplanarity is a task left for
future research.

Recently, it was noted that local correlations on the dis-
order variables can prevent random mass and, consequently,
Griffiths singularities on a phase transition [41]. More recently
[42], it was shown that local correlations on the disordered
variables can also prevent random stripe fields as well. This
is also possible in the model Hamiltonian (1) if, for instance,
two vacancies are forbidden to be nearest neighbors. Thus,
there will be no generation of local nematic fields and of
transverse dipolar fields. In sum, this class of local correlation
in the disorder variables can prevent the generation of random
fields ensuring the phase transition and the low-temperature
long-range nematic order.

In experiments, bond defects induced by chemical dop-
ing distorting the local lattice may induce similar vertical
and horizontal local bond defects. This can either prevent
or greatly diminish the amplitude of the random fields and,
therefore, the phase transition may either be preserved or
appear to be preserved.12 Finally, we mention the recently
synthesized Sr2CuTe1−xWxO6 compound which is a quasi-
two-dimensional spin- 1

2 magnet modeled by the Hamiltonian
(1) [44]. Disorder in this compound is of random-couplings
type [45]. Interestingly, the couplings appear equally disor-
dered in the plaquette. In other words, it realizes the correlated
disorder mechanism above mentioned. In agreement with our
results, the nematic phase is quite robust against weak dis-
order. It is worthy noting that our results also explain the
numerical findings of Ref. [46].

C. Quantum mechanical effects

We have established that the classical (finite-T )
paramagnet-nematic phase transition is precluded by generic
quenched disorder (i.e., disorder which includes random J1

bonds). Since quantum fluctuations are expected to play no
role on the critical behavior of this finite-T transition, it is
very plausible that our result directly applies to quantum
mechanical systems as well.

We have also shown that the resulting paramagnet is
polarized in the glassy nematic order for all temperatures,
i.e., the system is broken into domains of local nematic order.
How is this paramagnet changed by quantum fluctuations?
Deep in the frustrated regime J2 � J1 where the semiclassical
approach is expected to be valid, the naive expectation is
that the local nematic domains are not melted by quantum
fluctuations since they also select the stripe state via the order-
by-(quantum)disorder mechanism [10].13 We also expect a
weaker SVC and SVDW response at lower temperatures
because the size of the nematic domains will not vanish as
T → 0.

Our results are thus relevant for a wide range of materi-
als such as (K or Rb)MoOPO4Cl [47], Li2VO(Si or Ge)O4

[48,49], and abbVO(PO4)2 (with ab = BaCd, SrZn, BaZn,

12An analogous result was obtained for the case of random
mass [43].

13This is certainly valid even beyond the semiclassical approxi-
mation in a temperature window ranging from higher temperatures
down to slightly below the clean critical temperature.
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Pb2, PbZn) [50–53]. They are modeled by the Hamilto-
nian (1) and disorder effects can be introduced by chemical
substitution.

Around the antiferromagnetic-stripe quantum phase tran-
sition 0.4 � J2/J1 � 0.6, the system does not display long-
range order and its description lies beyond the reach of the
semiclassical approach [54–57]. The effects of disorder on
the phases appearing in that interval is an important question
which has received considerable attention recently [58–63].
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APPENDIX: RANDOM EASY AXES

Several recent works [12,13,42,64,65] have discussed spe-
cific examples of frustrated magnetic systems in which the
effects of interaction-symmetry-preserving disorder can be
understood in terms of effective random fields [8,9,66]. Here,
we show that effective random axes [33,67] are generated by
site and bond disorder in easy-plane pyrochlores providing a
clear physical interpretation of the numerical data. The impor-
tant issue is that these new terms have much more dramatic
effects such as precluding any phase transition at d � 2, or
even stabilizing a cluster-spin-glass phase at d � 3.

Our strategy is straightforward. As discussed in Secs. III A
and III E we simply analyze how a single impurity lifts the
ground-state degeneracy.

The easy-plane pyrochlores are XY frustrated magnets in-
teracting via diagonal and off-diagonal (spin-orbit-induced)
interactions which can be modeled by the system Hamiltonian
[68]

H = −
∑
〈 jk〉

[
Jxx

jk Sx
j S

x
k + Jyy

jk Sy
j S

y
k + Jxy

jk

(
Sx

j S
y
k + Sy

j S
x
k

)]
, (A1)

where the sum runs over pairs of nearest-neighbor sites on a
cubic pyrochlore lattice (see Fig. 14), the coupling constants
are

Jxx(yy)
jk = Jjk (1 ∓ α jkcosγ jk ), Jxy

jk = Jjkα jksinγ jk, (A2)

the classical spins S j = (cos θ j, sin θ j ) are two-component
unity vectors, Jjk parametrizes the local energy scale, and α jk

parametrizes the relative strength of the local spin-orbit cou-
pling. The direction-dependent angles are γ01 = γ23 = γ04 =
γ56 = 0, γ02 = γ13 = γ05 = γ46 = 2π/3, and γ03 = γ12 =
γ06 = γ45 = −2π/3.

FIG. 14. The sketch of the six nearest-neighbor sites in a py-
rochlore lattice. The local z axes are also shown as red arrows. For
clarity, the local x and y axes are not shown.

In the clean limit (Jjk = J and α jk = α) and for −2 < α <

2, the ground-state manifold is O(2) accidentally degenerate
being a ferromagnetic state (in the local reference frame)
with spins pointing along any direction θ j = θ in the XY
plane. The ground-state energy E0 = −3JN is α independent.
As can be expected, the order-by-(thermal/quantum-)disorder
mechanism lifts the O(2) ground-state degeneracy down to
Z6: for 0 < α < 2 (−2 < α < 0) the dubbed ψ2 (ψ3) state
is selected which corresponds to spins pointing along one
of the cos( π

3 n)x̂ + sin( π
3 n)ŷ [cos( π

3 n + π
6 )x̂ + sin( π

3 n + π
6 )ŷ

] directions, with n = 0, . . . , 5, in the local reference frame
[69,70].

The bare interaction symmetry is actually a simple Z2 one
(θ j → θ j + π ). This becomes evident when rewriting the lo-
cal interaction energy as

H jk = −Jjk[cos (θ j − θk ) − α jk cos (θ j + θk + γ jk )]. (A3)

The symmetry is enhanced to Z6 when there is a real-space
equivalence between the three axes connecting the site pairs
(0,1), (0,2), and (0,3), i.e., (θ j → θ j + π

3 and H01 → H02 →
H03 → H01). Not totally surprisingly, thermal and/or quan-
tum fluctuations lift the O(2) ground-state degeneracy down
to Z6 in the clean system. Likewise, quenched disorder lifts
down to a Z2 manifold as shown explicitly in the following.
Consider a single-bond defect between sites j and k such
that Jjk = J + δJjk and, for simplicity, α jk = α. Thus, the
ground-state degenerate energy E0 is changed by

δE = δJjk[α cos (2θ + γ jk ) − 1]. (A4)

Hence, a single-bond defect locally lifts the accidental O(2)
ground-state manifold down to a Z2 manifold, the same one
of the interactions. Consequently, the generated term in the
field theory is a random axis. For δJjkα negative (positive),
the preferred axis is in the direction − γ jk

2 ( π−γ jk

2 ) which is one
of the three axes of the ψ2 (ψ3) set of states.

A single-site defect, on the other hand, does not lift the de-
generacy between the three different axes and, therefore, does
not generate any easy-axis term. Two nearest-neighbor site
defects, on the other hand, do break this symmetry generating
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the random easy-axis term. Thus, the equivalence between
the effects of site and bond disorder is restored when a finite
density of impurities is considered.

What is the resulting state? In the absence of disorder and
in the ObD regime, the ψ2,3 fluctuations at low temperatures
can be modeled by a short-ranged Z6 planar clock model. In
the presence of weak disorder, this model must be furnished
with local random axes. The Imry-Ma criterion [5] directly
applies for this case of random axes. Thus, the lower critical
dimension is d−

c = 2. Since d = 3, then long-range ψ2,3 order
is stable against weak disorder. For strong disorder, the system
thus breaks into local domains. Very likely, the effective α

throughout the system has zero mean (or larger variance com-
pared to its mean value), and thus the domains of ψ2 and ψ3

types are equally (or almost equally) probable. In other words,
there are six equally probable random easy axes.

There is an important difference with respect to the ne-
matic case discussed in Sec. III D. Here, the domains have
two equally probable states favored by the local easy axis.
Thus, at sufficiently high temperatures, the local ψ2(3) order
is vanishing. In addition, there are an exponentially large
number of equivalent ground states.14 For these reasons, it is
plausible to expect a transition to a spin-cluster-glass phase

14Evidently, there is an exponentially weak effective coupling be-
tween these domains which are unimportant at finite temperatures.

at low temperatures. All these conclusions were confirmed
numerically in Refs. [13,71].

Finally, notice that the same disorder-induced random-axes
term appears in the two-dimensional analog of the model (A1)
on the triangular lattice with the three different γi j angles
being related to the interactions along the 0, ± 2π

3 directions.
In d = d−

c = 2, however, long-range order is precluded by
any amount of disorder. For zero-mean disorder [δJjk] = 0,
stripe domains on the six directions n π

3 (n = 0, 1, . . . , 5) are
expected.15 A glassy state, however, may be melted by thermal
fluctuations as the lower critical dimension of the problem
may be 5

2 [72]. Quantum fluctuations, on the other hand, may
not be sufficiently strong to destroy the glassy order (which is
compatible with the results of Ref. [64]). The understanding
of the disorder effects as inducing the formation of domains of
different stripe orders were previously reported in Ref. [65].

Although we have focused on easy-plane pyrochlores,
our arguments also apply other similar models interacting
via strong anisotropic interactions such as Heisenberg-Kitaev
model [73,74]. In those cases, the ground state exhibits Z6

degeneracy which is locally lifted by disorder.

15We find interesting to imagine that, if there was order-by-disorder
in this system selecting, say, the even-n domains, then, the odd-n
domains would be penalized. The symmetry would be restore only at
stronger disorder.
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