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Chiral polarization textures induced by the flexoelectric effect in ferroelectric nanocylinders
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Polar chiral structures have recently attracted much interest within the scientific community, as they pave
the way towards innovative device concepts similar to the developments achieved in nanomagnetism. Despite
the growing interest, many fundamental questions related to the mechanisms controlling the appearance and
stability of ferroelectric topological structures remain open. In this context, ferroelectric nanoparticles provide
a flexible playground for such investigations. Here, we present a theoretical study of ferroelectric polar textures
in a cylindrical core-shell nanoparticle. The calculations reveal a chiral polarization structure containing two
oppositely oriented diffuse axial domains located near the cylinder ends, separated by a region with a zero-axial
polarization. We name this polarization configuration “flexon” to underline the flexoelectric nature of its axial
polarization. Analytical calculations and numerical simulation results show that the flexon’s chirality can be
switched by reversing the sign of the flexoelectric coefficient. Furthermore, the anisotropy of the flexoelectric
coupling is found to critically influence the polarization texture and domain morphology. The flexon rounded
shape, combined with its distinct chiral properties and its localization near the surface, are reminiscent of chiral
bobber structures in magnetism. In the azimuthal plane, the flexon displays the polarization state of a vortex with
an axially polarized core region, i.e., a meron. The flexoelectric effect, which couples the electric polarization and
elastic strain gradients, plays a determining role in the stabilization of these chiral states. We discuss similarities
between this interaction and the recently predicted ferroelectric Dzyaloshinskii-Moriya interaction leading to
chiral polarization states.

DOI: 10.1103/PhysRevB.104.054118

I. INTRODUCTION

Research on ferroelectric materials has received growing
interest over the past years, driven in part by the potential
of these material systems for low-power technological appli-
cations in a broad spectrum of domains [1,2], ranging from
high-density data storage to optical nanodevices. A central
aspect of this field of research is the formation of ferroelectric
domain structures [3], and more generally the micro- and
nanoscale structure of the polarization field [4]. Tradition-
ally, research on ferroelectrics is centered on the study of
bulk materials and thin films [5–7], but recently ferroelectric
nanoparticles have also attracted increasing interest [8–14].
In ferroelectric thin films and nanoparticles, the polarization
structure is strongly affected by electrostatic (depolarizing)
fields [15–18], as well as by strain and strain gradients [19–22]
via the flexoelectric effect [23–26].

Although the foundations for the theoretical description of
ferroelectrics have been established decades ago [27], under-
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standing the complex physical properties of these material
systems remains a challenge for fundamental research. Re-
cent progress in this field, achieved to a large extent through
advanced imaging techniques [28] and by employing mod-
ern numerical simulations [29], includes the discovery of
highly complex polarization structures, such as flux closure
[5,30] and bubble domains [31], meandering [32,33] and/or
labyrinthine [11,34] structures, non-Ising type chiral domain
walls [35], polarization vortices in thin layers [36–38], nan-
odots [39] or nanopillars [40], or polar skyrmions [41,42].

While skyrmions and other chiral structures have domi-
nated the past decade of research in magnetism [43], these
topological states have received less attention by the ferroelec-
tric community. Only recently a strong interest has emerged
in chiral polarization structures, which can be attributed to the
observation of skyrmion states in ferroelectrics [41,42]. How-
ever, the theoretical understanding of these structures is not as
advanced as it is in the case of their magnetic counterparts,
and the mechanism that underpins the formation of skyrmions
in ferroelectrics is not fully understood. The fundamental in-
teraction stabilizing the magnetic version of these structures
in chiral ferromagnets [44,45] is the Dzyaloshinskii-Moriya
Interaction (DMI). The DMI favors the formation of heli-
cal structures with a well-defined handedness as they occur,
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e.g., along the radial direction of skyrmions. As scientists
working on ferroelectrics hope to replicate the success that
chiral structures have witnessed in magnetism, the possibility
of a “ferroelectric DMI” has recently been discussed [46].
However, Erb and Hlinka [47] showed that only very few
exotic ferroelectrics could theoretically sustain an intrinsic
DMI-type interaction since it requires particular symmetry
properties of the crystal lattice. Here we discuss the flexoelec-
tric coupling as an alternative mechanism that can generate
chiral polarization states in ferroelectrics.

The thermodynamic description of the flexoelectric effect
is given by a Lifshitz invariant in the free-energy expansion
[22]. It is known that, in magnetic materials, the occurrence
of similar Lifshitz invariants converts directly into an anti-
symmetric coupling known as the DMI [48,49], which favors
the formation of helicoidal structures with a specific chirality.
The existence of a ferroelectric counterpart of the DMI was
recently predicted by first-principles simulations [46]. The
ferroelectric analog of the DMI was discussed in the context
of Lifshitz invariants by Strukov and Levanyuk [50], and more
recently by Erb and Hlinka [47], who argued that a ferroelec-
tric DMI can exist. In addition to the remarkable similarity in
the mathematical form of the flexoelectric Lifshitz invariant
and DMI, the flexoelectric term appears to have a similar im-
pact as the DMI in terms of the formation of chiral structures.

By means of the finite-element modeling (FEM) based on
the Landau-Ginzburg-Devonshire (LGD) theory, this paper
shows that an anisotropic flexoelectric effect can give rise to a
previously unexplored type of polarization state with distinct
chiral properties. Remarkably, these homochiral properties
are not induced by a DMI term. This finding suggests that
the recently discussed DMI in ferroelectrics is not the only
possible mechanism for the formation of homochiral polar-
ization states, and that anisotropic flexoelectric effects offer an
alternative pathway to stabilize such structures in ferroelectric
nanostructures. We discuss common aspects of the DMI and
the flexoelectric effect, which are both derived from Lifshitz
invariants in the framework of the Landau theory of second-
order phase transitions [22].

II. CONSIDERED PROBLEM AND MATERIAL
PARAMETERS

Using a LGD phenomenological approach along with
electrostatic equations and elasticity theory, we model the
polarization, the internal electric field, and the elastic stresses
and strains in a core-shell nanoparticle using FEM, where
the ferroelectric core is made of BaTiO3 and has a cylin-
drical shape. The aspect ratio of the nanocylinder radius
R to its length h is significantly higher than unity. The z
axis is parallel to the cylinder axis (Fig. 1). The shell is
an elastically soft paraelectric or high-k semiconductor with
a thickness �R � R and screening length � � 1 nm. The
coverage can be artificial (e.g., a soft organic semiconductor
or vacancy-enriched SrTiO3) or natural, and in the latter case it
would originate from the polarization screening by surround-
ing media. The core-shell nanoparticle is placed in a very soft
elastic medium.

The LGD free-energy functional G of the nanoparticle
core includes a Landau-type energy—an expansion on pow-

FIG. 1. A cylindrical ferroelectric nanoparticle (core) of radius
R, covered with an elastically soft semiconducting shell with a thick-
ness �R � R and screening length � of 1 nm, placed in an isotropic
elastically soft effective medium. The direction of axial polarization
P3 is shown by the straight orange arrow, and lateral components P1,2

are shown by the curled red-blue arrow to highlight their vortex-type
structure.

ers of 2-4-6 of the polarization (Pi), GLandau; a polarization
gradient energy, Ggrad; an electrostatic energy, Gel ; an elastic,
electrostriction contribution Ges; a flexoelectric contribution,
Gflexo; and a surface energy, GS . It has the form [51]

G = GLandau + Ggrad + Gel + Gflexo + Gflexo + GS,

(1a)
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∫
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GS = 1
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d2ra(S)
i j PiPj . (1g)

Here VC is the core volume. The coefficient ai linearly de-
pends on temperature T , ai(T ) = αT [T − TC], where αT is the
inverse Curie-Weiss constant and TC is the ferroelectric Curie
temperature renormalized by surface tension/intrinsic surface
stresses [52–54] and surface bond contraction [55,56]. Tensor
components ai j are regarded as temperature independent. The
tensor ai j is positively defined if the ferroelectric material
undergoes a second-order transition to the paraelectric phase
and negative otherwise. The higher nonlinear tensor ai jk and
the gradient coefficients tensor gi jkl are positively defined and
regarded as temperature independent. In Eq. (1e), σi j is the
stress tensor, si jkl is the elastic compliances tensor, and Qi jkl is
the electrostriction tensor. In the Lifshitz invariant, [Eq. (1f)],
Fi jkl is the flexoelectric tensor.

Landau-Khalatnikov equations [57,58] obtained from a
variation of the free energy (1), mathematical formulation of
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FIG. 2. Distribution of the polarization component P3 (top row) inside a cylindrical nanoparticle and a magnified view on the flexon
structure (bottom row). The arrows show the orientation of polarization vector P. The images are calculated without electrostriction (Qi j =
0) and flexoelectric (Fi j = 0) couplings (a); with electrostriction coupling (Qi j �= 0) and negative (b), or zero (c), or positive (d) values of
flexoelectric coefficients Fi j . The values of Fi j and all other parameters are given in Table SI, T = 300 K. Note the different scales for P3

distributions in plots (a)–(d) in order to maintain a contrast between the different regions.

the electrostatic and elastic subproblem (see, e.g., Ref. [59]),
initial and boundary conditions (see, e.g., Refs. [60–62]), sen-
sitivity to the shape of the cylinder ends, polarization gradient
coefficients, shell dielectric permittivity and semiconducting
properties, and other details of FEM are given in Appendix A
of Supplemental Material. [63]. The ferroelectric, dielectric,
and elastic properties of the BaTiO3 core are collected from
Refs. [64–69] and given in Table SI.

III. RESULTS OF FINITE-ELEMENT MODELING

A. FEM results at room temperature

Images in Figs. 2(a) and 3(a) are calculated without elec-
trostriction (Qi j = 0) and flexoelectric (Fi j = 0) couplings
between the electric polarization and elastic stresses. In this
case, a very prolate dipolar kernel oriented along the z axis
appears inside the cylindrical core. The kernel has relatively
thin 180 ° domain walls, which are mostly uncharged because
they are parallel to the kernel axis and cylinder lateral surface.
The bound charges appear at the walls only in a small spatial
region near the kernel that is in contact with the cylinder
ends, where the 180 ° walls become counter head-to-head
walls. The axial polarization P3 inside the kernel is high,
P3 ∼ −(20−25) μC/cm2 (this is very close to the bulk polar-

ization of BaTiO3 ∼ 26 μC/cm2), and the surrounding core
has relatively small axial polarization of the opposite sign,
P3 ∼ (0−5) μC/cm2. The lateral components of polarization,
P1 and P2, form a two-dimensional vortex without a central
empty core, because a dipolar kernel evolves instead (Fig.
S4 [63]). The two symmetrical Bloch points with P = 0 are
located at the junction of the dipolar kernel with the cylinder
ends. The “up” or “down” orientation of polarization compo-
nent P3 inside the kernel is determined by random noise in the
initial conditions.

Images in Figs. 2(b)–2(d) and 3(b)–3(e) are calculated for
a nonzero electrostriction coupling (Qi j �= 0) and either nega-
tive, zero, or positive values of the flexoelectric coefficients
Fi j . In the presence of electrostriction coupling the dipolar
kernel disappears completely [Figs. 2(c) and 3(c)]. The flex-
oelectric effect induces an axial component of polarization
consisting of two oppositely oriented diffuse P3 domains lo-
cated near the cylinder ends and separated by a region with
P3 ≈ 0 [Figs. 2(b), 2(d) and 3(b), 3(d)].

The diffuseness of the P3-domain walls is dictated by
the need to decrease the depolarization field produced by
the bound charges of the head-to-head domain walls. The
P3 domains are located near the cylinder ends, and their
length (about 10 nm) and lateral size (about 5 nm) are al-
most independent on the cylinder length if h � 5 nm. The
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FIG. 3. Distribution of the polarization component P3 (top row) in the XZ cross section of the nanoparticle. Images are calculated without
electrostriction (Qi j = 0) and flexoelectric (Fi j = 0) coupling (a); with electrostriction coupling (Qi j �= 0) and negative (b), zero (c), positive
(d), or high-positive (e) values of flexoelectric coefficients Fi j . The bottom part (f) is the dependence of the maximal (red curve, Pmax) and
minimal (blue curve, Pmin) values of P3 on the relative amplitude of the flexoelectric coupling strength f . The green curve is the extremal
(maximal or minimal) value Pe in the center of the top axial P3 domain. Here Fi j = f F 0

i j ; the values of F 0
i j and all other parameters are given

in Table SI, T = 300 K. The Z profile of the polarization topological index n(z) is shown in the inset (g) for zero (black line), positive (red
curve), and negative (blue curve) Fi j . Note the different scales for P3 in the plots (a) and (b)–(e) in order to maintain a contrast between the
different regions.

component P3 is very small (|P3| � 0.4 μC/cm2), but it in-
creases up to 1.2 μC/cm2 with the flexoelectric coupling
increase [Figs. 3(e)] and then saturates [Fig. 3(f)]. The axial
P3 domains, which have opposite direction of polarization,
change their direction under the transformation Fi j → −Fi j

[compare the position of red and blue diffuse spots of the P3

distributions in Figs. 3(b) and 3(d)], while the distribution of
the lateral components P1,2 and the polarization magnitude P
are virtually independent of the Fi j sign and magnitude (Figs.
S4 and S5 [63]).

The maximal (Pmax) and minimal (Pmin) values of P3 are
shown by the red and blue curves in Fig. 3(f). The values
Pmax and Pmin are even functions of the flexoelectric coupling
strength f , where Fi j = f F 0

i j and the reference values of F 0
i j

are given in Table SI. The extremal (maximal or minimal)
value Pe in the center of the diffuse axial P3 domain is
an odd function of f , which is zero at Fi j = 0 [the green

curve in Fig. 3(f)]. Note that the Pe value frequently differs
from Pmax and Pmin values due to the presence of the small
16 P3 domains localized near the top and bottom junction
of the sidewall with the cylinder ends (bottom row in Fig.
S5 [63]).

For the remainder of the paper, we refer to the localized
polarization structure near the wire ends as a “flexon” for the
sake of brevity and to underline the flexoelectric nature of
its axial polarization. The main effect of a change of sign in
the flexoelectric coefficients is the reorientation of the flexon
axial polarization. The polarization structures at the wire ends
shown in Figs. 2(b)–2(d) and Figs. 3(b)–2(d) display localized
chiral structures with different chirality on opposite ends of
the wire, and their chirality changes upon reversal of the sign
of the flexoelectric coupling constant.

To understand the chirality change, we derived in Ap-
pendix E [63] an approximate analytical expression for the
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polarization distribution inside the flexon:

P1(ρ, ϕ, z) ≈ p(ρ, z)sinϕ, P2(ρ, ϕ, z) ≈ −p(ρ, z)cosϕ (2a)

P3(ρ, ϕ, z) ≈
Q44
s44

p(ρ, z)[u13(ρ, ϕ, z)sinϕ − u23(ρ, ϕ, z)cosϕ] − F11−F44−F12
s11−s12

∂
∂z u33(ρ, ϕ, z)

2
[
a1 − Q11+2Q12

s11+2s12
p2(ρ, z) − Q11−Q12

s11−s12
u33 + [

g11 + (F11 − F44 − F12) F11−F12
s11−s12

]
Lz

C + g44Lx
C

] , (2b)

where {ρ, ϕ, z} are cylindrical coordinates, the function
p(ρ, z) ∼ tanh( ρ

Lx
C

), Lx
C and Lz

C are lateral and axial correla-
tion lengths. The functions ui j (ρ, ϕ, z) are elastic strains, si j

are elastic compliances; Qi j are electrostriction tensor com-
ponents, gi j are polarization gradient coefficients written in
Voigt notations. The first term in Eq. (2b) is induced by the
electrostriction coupling, and the second term, proportional to
F11−F44−F12

s11−s12

∂
∂z u33(ρ, ϕ, z), is the flexon.

In order to quantify the chirality of the polarization
structure and its variation along the cylinder axis, in
Appendix F [63] we calculate the topological index =

1
4π

∫
S �p[ ∂ �p

∂x × ∂ �p
∂y ]dxdy [70] of the unit polarization orientation

�p = �P
P for the integration over the cylinder cross section {x, y}.

For the case of P3(ρ = R, z) → 0, the z dependence of the
topological index is

n(z) = −P3(ρ = 0, z)

2P(ρ = 0, z)
∼= − sign[ f ]z

2
√

1 + (z2/B)
. (3)

Here sign[ f ] is the sign of the flexoelectric coefficients Fi j ,
B is a positive constant, which depends on the absolute value
of |Fi j |. n(z) is a normalized profile of P3(ρ = 0, z), and so
n(z) = 0 for Fi j = 0, and its sign is defined by the sign of Fi j .
The dependence n(z) is shown in Fig. 3(g) and Fig. S10(a)
for zero, positive, and negative Fi j . Since the value P(0, z) is
very close to the P3(0, z) near the cylinder ends [Figs. S10(a)
and S10(b)], and P3(0, z) vanishes in the central part of a
nanoparticle, the topological index continuously changes from
−1/2 to +1/2 with a z-coordinate change from one cylinder
end to the other. The result clearly shows the localization of
the chiral structures—the flexons—at the ends of the wires.
The topological index, which can be interpreted as the degree
to which a structure is chiral, changes sign from one end to
the other, and changes sign upon reversal of the sign of Fi j . It
also increases in magnitude with increasing absolute value of
|Fi j |. These properties are evidence of an obvious correlation
between the flexoelectric effect and the formation of chiral
polarization structures.

The revealed type of isolated chiral polarization struc-
tures, i.e., flexons, display topological features of a three-
dimensional meron. In this sense, the polarization vortex in
the XY plane can be interpreted as the Bloch-like transition
region of a meron connecting polarization directions of op-
posite P3 sign in the core region and in the outer cylindrical
shell (Fig. 2). The flexon polarization �P develops a charac-
teristic drop shape with a chiral structure localized near the
surfaces of the cylinder that is reminiscent of the chiral-bobber
state found in noncentrosymmetric magnetic films [71] and
nanoparticles [72]. It is worth noting that similar, skyrmion-
like configurations at the ends of cylindrical nanowires have

also been predicted analytically [73] and numerically [74] in
the case of nonchiral ferromagnetic materials, but only in the
form of transient configurations appearing during the dynamic
magnetization reversal process. Here, the skyrmionlike polar-
ization structures appear as stable states in the ferroelectrics,
owing to a chiral symmetry-breaking effect of the flexoelectric
coupling. In contrast to previous findings [75–77], the flexon
structure is chiral [78] and almost uncharged because div �P ∼=
0 (Fig. S9(b) [63]).

As a rule, the flexoelectric tensor component F44 is ei-
ther poorly known from experiments or ill-defined from ab
initio calculations; therefore, we can vary it over a wide
range to determine the degree by which the flexoelectric
coupling anisotropy influences the morphology of the polar-
ization state. Corresponding FEM results are shown in Fig. 4.
The top and middle rows illustrate that the P3 distribution
changes very strongly when F44 varies from high negative
to high positive values, while the other components of the
flexoelectric tensor are fixed and equal to the tabulated values
F11 = 2.4 × 10−11m3/C and F12 = 0.5 × 10−11m3/C.

The flexon contains two pronounced axial domains located
near the cylinder ends, which have thick diffuse domain walls
and opposite polarization directions, and exist at high negative
[Fig. 4(a)] and high positive [Figs. 4(b) and 4(e)] F44 values.
The P3 domains become smaller and more diffuse with a de-
crease of |F44|, but they are still visible and practically do not
change their shape, size, or polarization distribution for small
|F44| values over the range |F44| � 0.06 [Fig. 4(b)]. The flexon
becomes faint and almost disappears when F44 approaches the
value F44 = F11 − F12 = 1.9 × 10−11 m3/C corresponding to
the isotropic symmetry of Fi j [Fig. 4(c)]. The value will be
referred to as “isotropic” below.

The dependence of the maximal (red curve, Pmax) and
minimal (blue curve, Pmin) values of the polarization com-
ponent P3 on the relative amplitude f of the flexoelectric
coefficient F44 is shown in Fig. 4(f), where F44 = f F 0

44 and
F 0

44 = 0.06 × 10−11 m3/C. The values Pmax and Pmin reach
a very diffuse plateaulike minimum and maximum, respec-
tively, at the isotropic value F44 = F11 − F12. The green curve
in Fig. 4(f) is the extremal value Pe in the center of the bottom
axial P3 domain. The extremal value Pa in the center of the
diffuse P3 domain changes its sign in the immediate vicinity
of the isotropic value F44 = F11 − F12. The values Pmax, Pmin,
and Pe have no definite parity, because they are neither odd nor
even functions of the flexoelectric coefficient F44 amplitude
f . From Fig. 4(f) we can conclude that the anisotropy of the
flexoelectric coupling critically influences the morphology of
the flexon, where the axial part of the flexon polarization is
proportional to −F11−F44−F12

s11−s12

∂u33
∂z [Eq. (2b)]; this proportion-

ality along with Fig. S9 qualitatively describes the curves’
behavior in Fig. 4(f).
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FIG. 4. Distribution of the polarization component P3 in the XZ cross section of cylindrical core (top row). Images are calculated for the
fixed values F11 = 2.4 × 10−11 m3/C and F12 = 0.5 × 10−11 m3/C, while the value of F44 varies from −6 to 6 (in 10−11m3/C) as indicated in
the legends. The bottom part (f) is the dependence of the maximal (red curve, Pmax) and minimal (blue curve, Pmin) values of P3 on the relative
amplitude f of the flexoelectric coefficient F44 in the core. The green curve is the extremal (maximal or minimal) value Pe in the center of the
bottom axial P3 domain. Here F44 = f F 0

44 and F 0
44 = 0.06 × 10−11 m3/C. The electrostriction coupling coefficients Qi j and all other parameters

are listed in Table SI, T = 300 K. Note the different scales for P3 in the plots (a)–(e) in order to maintain a contrast between the different
regions.

B. Temperature behavior of the flexon-type polarization
distribution

To define the temperature interval in which flexons exist as
stable or metastable states, we performed FEM in the tempera-
ture range from 50 to 400 K using different initial distribution
of polarization in a cylindrical core. Typical FEM results are
shown in Fig. 5, where the columns (a)–(e) correspond to the
temperature increase from 240 to 370 K; the structure of the
azimuthal components of the polarization vector, P1 and P2, is
vortexlike and shows weak variations when approaching the
surface over the same temperature range (see the direction of
arrows at the bottom image of Fig. S7 [63]).

A bidomain configuration of P3 is stable at temperatures
lower than 250 K [Fig. 5(a)]. The bidomain structure has a
relatively thin uncharged 180 ° domain wall inside the cylin-
der, which transforms into a flux-closure domain near the
electrically open cylinder ends. An initial four-domain polar-
ization distribution relaxes to a flexonlike domain structure in
the temperature range 260 K < T < 360 K [Figs. 5(b)–5(d)].
The flexon gradually disappears at T > 370 K [the middle

image in Fig. 5(e)]. The ferroelectric polarization inside the
core significantly decreases at T > 370 K and completely
disappears at T ∼ 400 K [the top image in Fig. 5(e)]. The
structure becomes faint with a temperature increase above
370 K [Fig. 5(e)]; hence, the flexon-type polarization distri-
bution exists in a relatively wide temperature range 260 K <

T < 360 K. The axial counterdomains inherent to flexons are
the most pronounced feature over the narrower range 290 K <

T < 340 K.

IV. DISCUSSION

Any deviation from a four-quadrants domain configura-
tion in the flexon-type polarization distribution is found to
be metastable. This is because the antiparallel bidomain-type
polarization distribution (starting from a random noise) has
a lower free energy in a BaTiO3 cylindrical nanoparticle.
The derived energy values at room temperature are G f l =
−3.6 × 10−18 J and Gbd = −4.0 × 10−18 J in the flexon and
the bidomain structure, respectively. The energy difference
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FIG. 5. Distribution of polarization component P3 in XZ cross sections of the nanoparticle core. Different columns are calculated for the
temperatures T = 240, 270, 300, 340, and 370 K: (a), (b), (c), (d), and (e), respectively. All other parameters are listed in Table SI. Note the
different scales for P3 in the plots (a) and (b)–(e) in order to maintain a contrast between the different regions.

between these states, �G = 4 × 10−19 J is much higher
(about 100 kBT ) than the thermal energy barrier kBT at room
temperature. However, the ratio �G

kBT strongly decreases as the
temperature increases. The linear relative dielectric permit-
tivity in both states is about 110 at room temperature and it
strongly increases with temperature. Furthermore, our numer-
ical simulations show that a spontaneous off-field transition
from the flexon to the bidomain polarization state does not oc-
cur, whereas the in-field transition is possible (corresponding
hysteresis loops are shown in Appendix D in Supplemental
Material [63]). Thus, the bidomain and flexon states of a
prolate core-shell ferroelectric nanoparticle can be considered
as the excited and ground state of a two-level system suitable
for information recording. The two-level system can imitate
qubits operating in the temperature range where 1 < �G

kBT <

5. Furthermore, the bidomain polarization state corresponds
to an antiferroelectriclike state of the nanoparticle polariza-
tion, which can be represented as two antiparallel nanoscopic
dipoles. The flexon is a much more complex achiral vortex-
like configuration containing two counterdipole nanodomains
with diffuse relaxorlike polar properties. Thus, an ensemble
of prolate core-shell ferroelectric nanoparticles, where a given
nanoparticle is either in a flexon or a bidomain state, can be an
alternative media for information processing. The media may
exhibit unusual properties including antiferroelectric and/or
relaxorlike polarization states, which can lead to additional
functionalities. Note that the appearance of the antiferroelec-
tric and relaxorlike glass states, as well as a newly discovered
liquid glass state [79] with additional (anti)ferroelectric order-
ing and other cross-talk effects, are possible in a suspension of
the prolate core-shell ferroelectric nanoparticles.

The relatively wide temperature range (about 100 K) cor-
responding to the stability or metastability of the flexon-type
polarization distribution gives us the hope that the domain

morphology can be observed experimentally. Specifically, the
measurements of local vertical displacement by piezoresponse
force microscopy (PFM) visualize the distribution of P3(�r) at
distances ∼10 nm from the ends of a nanoparticle, but the
resolution procedure for the local piezoresponse of diffuse do-
mains under the surface is so far not straightforward [80,81].
This is because PFM is a near-field method. A complementary
tool to probe chiral polar textures is far-field nonlinear opti-
cal microscopy [82], which has a comparatively much lower
resolution than PFM, yet optimum focusing methods and the
experimental geometry allow for overcoming the diffraction
limit. For example, second-harmonic generation microscopy
was successfully used by the community to precisely study
semiconductor nanowires [83]. This method should also be
capable of providing complementary information on the 3D
ferroelectric domain structure (being sensitive to P1,2 and P3)
by using polarimetry analysis (see, e.g., Ref. [84]). Another
promising method is resonant elastic soft x-ray scattering, a
synchrotron-based method sensitive to chiral polar arrange-
ments through dichroism effects [85,86]. This method was
successfully applied to detect different topological structures,
including vortices [36], skyrmions [41], and chiral domain
walls [87].

Note that Liu et al. [39] revealed that an axial polarization
component of the vortex can appear in ferroelectric PbTiO3

nanodots due to the flexoelectric effect. Thus, Ref. [39] and
this work predict different flexosensitive vortexlike states with
an axial polarization in ferroelectrics nanoparticles of various
geometry. This work reveals the critical influence of the flex-
oelectric coefficients sign and anisotropy on the appearance
and properties of the axial polarization, and, most important,
on the chirality of a ferroelectric vortex. Qualitatively, both
works, Ref. [39] and this one, illustrate that flexoelectricity
can change the chiral state of a polarization texture, and this
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work studies the behavior of a topological index (in fact a
skyrmion number) that quantifies the change [see Fig. 3(g)].

The main features characterizing polarization structures
stabilized by DMI-type interactions are their breaking of chi-
ral symmetry and their incommensurability, i.e., a long-period
modulation in space that is unrelated to the crystalline lattice
parameter. The appearance of such chiral incommensurate
phases can generally be attributed to specific energy terms in
the Landau-Ginzburg potential, known as Lifshitz invariants
[49,88]. Only a few ferroelectrics have crystalline structures
whose symmetry allows such Lifshitz invariants; therefore,
an interaction directly analogous to the magnetic DMI is
generally not found in ferroelectrics. However, although not
identical in its mathematical form, the energy density due
to the flexoelectric coupling [23] is similar to a DMI-type
energy term related to a linear Lifshitz invariant. Accordingly,
we argue that the flexoelectric coupling can lead to polar-
ization states with properties similar to those generated by a
DMI-type interaction. Such a connection between flexoelec-
tric coupling, Lifshitz invariants, and DMI has been discussed
before in the case of liquid crystals [89]. It was found that
flexoelectricity in liquid crystals can play a central role in
the development of modulated phases that are analogous to
those known from chiral ferromagnets [90]. Our study shows
that—similar to liquid crystals, where elastic strain fields cou-
ple to electric fields—the flexoelectric effect through which
strain fields couple to the electric polarization field can lead
to comparable modulated phases with chiral properties in a
ferroelectric nanoparticle.

V. SUMMARY AND CONCLUSIONS

Using FEM simulations based on the phenomenological
LGD approach alongside electrostatic equations and elastic-
ity theory, we identify a characteristic polarization structure
developing between two oppositely oriented axial domains
located near the cylinder ends. This polar structure, which we
named flexon, displays chiral features that are connected to
the flexoelectric coupling. In the azimuthal plane, the flexon
polarization forms a localized chiral structure resembling a
meron, or a vortex with a central kernel. Analytical calcula-
tions and FEM prove that the flexon axial polarization, and
thus its chirality, switches upon a change of the sign of the
flexoelectric coefficients. We also observe that the anisotropy
of the flexoelectric coupling critically influences the flexon
formation and the related domain morphology. This observa-
tion corroborates the link between chirality and flexocoupling,
and it identifies the flexoelectric effect as the driving force
stabilizing these structures.

While in magnetic systems with strong DMI, similar
localized chiral structures have been reported [71], the polar-
ization state discussed here is formed without any ferroelectric
counterpart of the DMI [46]. We recall that, like the DMI,
the flexoelectric coupling is derived as a Lifshitz invariant
[Eq. (1f)] in the context of the Landau theory of phase
transitions [22], and that such linear Lifshitz invariants gen-
erally play a key role in the formation of helical structures
[49,88]. The fact that both the DMI and the flexoelectric
stabilize structures with a specific chirality demonstrates an
analogy between these two interactions which appears to
have been overlooked in the literature of ferroelectric solids.
An important difference compared to the classical DMI is
that the flexoelectric coupling is ubiquitous in ferroelectrics,
whereas the ferroelectric DMI is forbidden by symmetry in
most material types. Therefore, a chiral interaction mediated
by the flexoelectric effect can potentially be found in all
ferroelectrics. The coupling of the electric polarization and
elastic strain gradients could thus be a much more commonly
accessible alternative interaction for the formation of chiral
and achiral structures [75,76]. This coupling could also open
the possibility of generating and dissolving chiral polarization
states through strain engineering [91].

We predict that the pronounced flexon-type polarization
distribution with two axial counterdomains exists in the
temperature range 290 K < T < 340 K. The relatively wide
temperature range (about 50 K) corresponding to the stability
or metastability of the flexon-type polarization distribution
gives us the hope that the flexons can be observed experi-
mentally. However, the analysis of the hysteresis loops leads
to the conclusion that flexons and other domain configura-
tions cannot be resolved from macroscopic measurements of
the average polarization in a homogeneous electric field. We
anticipate that flexons can be reliably observed, e.g., by the
local methods using a strong gradient of electric field, such as
PFM, which gives us the information about the distribution of
polarization with a nanoscale resolution.
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