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Oxygen vacancies have been identified to play an important role in accelerating grain growth in polycrystalline
perovskite-oxide ceramics. To advance the fundamental understanding of growth mechanisms at the atomic
scale, classical atomistic simulations were carried out to investigate the atomistic structures and oxygen vacancy
formation energies at grain boundaries in the prototypical perovskite-oxide material SrTiO3. In this paper, we
focus on two symmetric tilt grain boundaries, namely, �5 (310)[001] and �5 (210)[001]. A one-dimensional
continuum model is adapted to determine the electrostatic potential induced by charged lattice planes in atomistic
structure models containing grain boundaries and point defects. By means of this model, electrostatic artifacts,
which are inherent to supercell models with periodic or open boundary conditions, can be considered and
corrected properly. We report calculated formation energies of oxygen vacancies on all the oxygen sites across
boundaries between two misoriented grains, and we analyze and discuss the formation-energy values with respect
to local charge densities at the vacant sites.
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I. INTRODUCTION

Both atomic point defects and extended crystallographic
defects play significant roles for the physical properties of
ceramic materials. For example, various kinds of grain bound-
aries (GBs) in perovskite-type oxide compounds have been
extensively investigated by experiments [1–3] since they are
assumed to be responsible for the electrical behavior of the
ceramics, as, e.g., the dielectric response [4] or thermoelectric
resistance [5,6]. Atomistic structures as well as formation
energies of symmetric tilt GBs (STGBs) in perovskite oxides
have been investigated by means of atomistic simulations
[7–9]. Recent experimental studies [10,11] report that point
defects—especially oxygen vacancies—play a significant role
for the grain growth behavior in polycrystalline perovskite
ceramics of strontium titanate, SrTiO3 (STO), subject to ap-
plied electric fields. However, the underlying mechanisms,
especially those controlling the redistribution of oxygen va-
cancies along and across GBs, are not yet fully understood.
To get a deeper insight into the relationship between grain
growth and the presence of oxygen vacancies, classical atom-
istic calculations of oxygen vacancy formation energies were
performed in this paper, focusing on the qualitative differ-
ence between formation energies at GBs and in bulk regions.
With the formation energies, the defect concentrations can
be obtained from thermodynamic principles by considering
the vibrational and configurational entropy of the defect for-
mation [12–14]. However, in the vicinity of GBs, this is a
subject of further research which can build on the work of
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this paper. Oxygen vacancy formation energies can be used as
inputs for a mesoscopic space-charge model [15–18] dealing
with grain growth under applied electric fields. We selected
the two STGBs �5 (310)[001] and �5 (210)[001] because
they have been previously investigated by experimental [2,3]
and computational studies [7–9], providing a solid foundation
for further studies. In the following, they are denoted as �5
(310) and �5 (210) for simplicity.

In this paper, we use a rigid-ion model to describe the
interatomic interactions and to obtain oxygen vacancy for-
mation energies. Since oxygen ions are negatively charged,
a created vacancy produces a positive charge in an initially
neutral simulation cell. In atomistic structure models contain-
ing charged layers of ions oriented parallel to GB planes,
there is an electric interface dipole moment [19] in the case
of GB structures with broken mirror symmetry. Such a dipole
moment produces an internal electrostatic potential within
the simulation cell, which interacts with the charged vacancy
and thereby strongly influences the vacancy formation energy.
However, with respect to electrostatics, the supercell approach
does not correctly describe the scenario of a macroscopically
large crystal, inside which the internal electric field vanishes
due to charge compensation effects by various types of point
defects in space-charge zones. Finite internal electrostatic po-
tentials in simulation cells have been observed and analyzed
in previous studies [20,21] dealing with charged surfaces of
two-dimensional atomistic slab-model systems with periodic
boundary conditions. The prototypical scenarios of the charge
compensation for charged surfaces were discussed in detail
in Ref. [21], and the appropriate electrical boundary condi-
tion inside the slab is a vanishing electric field as illustrated
in Ref. [20]. Thus, correction methods were formulated to
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deal with the internal electrostatic potential, which apply an
external dipole layer in the vacuum region of a slab-model
supercell [20] or which employ an electrostatic surrogate
model [21]. However, these approaches were constructed for
supercells containing free surfaces and did not take internal in-
terfaces like GBs into consideration. In this paper, we develop
a correction scheme via a one-dimensional (1D) continuum
model based on the surrogate model reported in Ref. [21] to
effectively remove artificial electrostatic effects in atomistic
simulations of GBs. We apply the developed scheme to both
the �5 (310) and �5 (210) STGBs. Note that such electro-
static artifacts are not expected to exist in more symmetric GB
structures which have either a glide-mirror or a screw-rotation
symmetry (nonbroken mirror symmetries) [22,23], as, e.g.,
those investigated by Genreith-Schriever et al. [24]. However,
even though one would expect them to be present, internal
electric potentials in simulation cells were not addressed in
previous classical atomistic-simulation studies like this paper,
which deal with GBs without the aforementioned symmetric
properties [8,25]. We give a possible explanation in our dis-
cussion section.

The paper is organized as follows. In Sec. II, we de-
scribe the details of the calculation method and the simulation
model. First, the energetically most favorable configurations
of the two considered STGBs in STO are given (Sec. II A).
In Sec. II B, we specify the formalism for calculating oxy-
gen vacancy formation energies in the bulk and at a STGB.
In Sec. II C, the origin of the electrostatic potentials in the
STGB supercell models is described, and the details of the
continuum model for correcting for it are specified. We distin-
guish open boundary conditions in the GB normal direction
(Sec. II C 1) and periodic boundary conditions (Sec. II C 2).
The formula for the corrected vacancy formation energy is
given in Sec. II C 3. In Sec. III A, we apply the correction
scheme to the two considered STGBs and demonstrate its
validity for both types of boundary conditions. In Sec. III B,
we report the resulting profiles of corrected oxygen vacancy
formation energies across the boundaries between the two
misoriented grains. In the discussion (Sec. IV), we first com-
pare the application of the correction model for unrelaxed
and relaxed GB structures (Sec. IV A). Then the obtained
vacancy formation energies are analyzed with respect to the
local charge densities, and the differences between the two
considered STGBs are discussed (Sec. IV B). The electrostatic
artifacts in both high- and low-angle tilt GBs are illustrated
and discussed from a general perspective in Sec. IV C. In
Sec. V, we give a summary and make concluding remarks.

II. METHODS AND MODEL

A. Atomistic GB structures

This paper deals with atomistic supercell models of GBs
and point defects in STO. We confine our study to classical
molecular-statics (MS) simulations, i.e., to pure structural re-
laxations, to find the equilibrium states of the GBs [26]. For
this purpose, we used the General Utility Lattice Program
(GULP) [27]. Following Thomas et al. [28], we describe the
interaction energy between ionic pairs by a rigid-ion model,

TABLE I. Parameters of the Thomas potential for the short-range
interaction between partial charged ions [28].

Ion pair A (eV) ρ (Å)

Sr1.84+ − O1.40− 1769.51 0.319894
Ti2.36+ − O1.40− 14 567.4 0.197584
O1.40− − O1.40− 6249.17 0.231472

expressed by a Coulomb-Buckingham potential:

Ui j = Ai j exp

(
− ri j

ρi j

)
+ 1

4πε0

qiq j

ri j
. (1)

Here, Ai j and ρi j are parameters for a pair of ions of types i and
j, and ri j is the distance between them. Also, ε0 is the vacuum
permittivity. The first term describes the short-range repulsive
interaction. The second term is the Coulomb interaction be-
tween differently charged ions. Partial charges of each ion
and parameters of the short-range potential of the considered
ion pairs are listed in Table I. The short-range potential is
truncated at a radius of 20 Å [29]. In the following, Eq. (1)
together with these parameters is referred to as the Thomas
potential.

This potential was fitted to reproduce the experimental
value aSTO = 3.905 Å [30,31] of the lattice parameter of STO
in the cubic perovskite structure at room temperature. It also
is close to the values obtained by density functional theory
(DFT) calculations, namely, 3.845 Å obtained by using the
local density approximation (LDA) functional [32,33] and
3.942 Å by applying the generalized gradient approximation
(GGA) functional [7,9]. Note, however, that the DFT values
correspond to zero temperature, whereas the values from ex-
periments and the pair potential refer to room temperature.
In addition to reproducing bulk properties, the Thomas po-
tential was verified to be well suitable for describing GBs
in STO [29,34] by comparing the atomic structures of some
fundamental GBs in this material to results obtained by DFT
calculations and transmission electron microscopy experi-
ments. Dislocations [35] and ordered defect configurations
[28,36] in STO were also studied with the Thomas potential
in the past, demonstrating that it can be applied to different
types of bonding environments of the rigid ions. A vacancy
also leads to a different neighbor structure of the surrounding
ions, and the crystal structures containing a vacancy in the
bulk or at the GBs were shown to remain stable upon relax-
ation. We therefore apply the Thomas potential to describe
oxygen vacancies in the bulk and at the GB as well, as it
was done previously by Schie et al. [37], who studied oxygen
vacancy diffusion in STO by molecular dynamics simula-
tions. However, absolute defect energies are not necessarily
in good agreement with DFT or experimental values, which
was shown for GB energies in STO derived by the Thomas
potential by Benedek et al. [29]. However, the potential was
also shown there to reproduce the hierarchy of energies of
different GBs correctly. As will be described in Sec. II B, we
are not interested in absolute defect energies in this paper
but rather in qualitative energy differences of vacancies in
bulk and GB environments, which in our opinion can be well
described by the Thomas potential.
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FIG. 1. The relaxed configurations viewed from the [001] direction: (a) symmetric tilt grain boundary (STGB) �5 (310) and (b) STGB
�5 (210). The cell parameters acell and bcell denote the supercell dimensions in x and y directions, respectively. The third cell parameter ccell,
denoting the cell length in the z direction, is not shown. The xz planes of each configuration are either positively or negatively charged. The
ionic compositions leading to those charges are exemplarily shown for the GB planes at the two ends of the supercells and marked by dashed
(positive charge) and solid lines (negative charge) in the structure models.

Applying the method developed in Refs. [7,9], we gen-
erated supercells of STO containing the STGBs �5 (310)
and �5 (210). Here and in the following, we will choose the
orientation of our model structures such that the y axis (lattice
parameter b) is perpendicular to the GB plane. Considering
the coincidence site lattice (CSL) [38], the cell parameters in
the GB plane acell and ccell are each set to one CSL elementary-
cell length [acell = √

10aSTO for �5 (310) and acell = √
5aSTO

for �5 (210)] and to one lattice constant of STO (ccell = aSTO

for both GBs). The cell parameters in the GB normal direction
(bcell) are taken initially as four times the CSL elementary-cell
lengths, and after structural optimization, they are ∼52 Å for
the STGBs �5 (310) and 36 Å for �5 (210). This choice
of cell lengths ensures that the bulk regions are sufficiently
large to minimize finite size errors, which was confirmed by
preliminary convergence tests with respect to the GB energy γ

(as defined in Ref. [29]). In total, the STGB supercells contain
200 atoms for �5 (310) and 100 atoms for �5 (210). Since pe-
riodic boundary conditions were applied in the generation and
optimization procedure of the GB structures, each supercell
contains two identical GBs.

To identify the stable, i.e., energetically most favorable
GB configurations, rigid-body translations (RBTs) and struc-
tural relaxations were carried out. Following the methodology
outlined in Refs. [8,9], we performed stepwise RBTs of one
grain with respect to the other in all three directions. We
determined the most stable GB configurations by comparing
the GB energies γ after structural relaxation at each RBT step.

The optimized atomic structures are displayed in Fig. 1,
for which we obtained γ = 1.81 J/m2 for STGB �5 (310)
and γ = 1.54 J/m2 for �5 (210). In terms of structural units,
these structures are in good agreement to those obtained by
DFT-GGA studies in Ref. [7] [Fig. 5(c), γ = 1.02 J/m2] and
Ref. [9] [Fig. 4(b), γ = 0.98 J/m2], for STGB �5 (310) and
�5 (210), respectively. In the following, we denote our two
optimized structures as relaxed configurations to distinguish
them from their corresponding initial structures before struc-
tural relaxation, which are named unrelaxed configurations.

Considering the xz planes in the supercells, the unrelaxed
structures are composed of repeated units of two types of
atomic layers: a unit containing a Sr-Ti-O and an O-O plane
in the case of �5 (310), and a unit containing a Sr-O and a
Ti-O-O plane in the case of �5 (210). The configurations of
these units largely remain after structural relaxation; merely
the ions close to the GBs deviate slightly from their positions
at the lattice planes of the unrelaxed structures. This can be
seen in Fig. 1, where we also display the different layers in
the xz plane at the two ends of the supercells. Considering
the partial charges of the ionic species used in the Thomas
potential (see Table I), the Sr-Ti-O and O-O planes in the �5
(310) cell are positively and negatively charged with 2.80 e,
respectively. In the �5 (210) cell, the Sr-O and Ti-O-O planes
are positively and negatively charged by 0.44 e, respectively.
Hence, the obtained configurations of both considered GB
structures can be represented by periodically repeated units
consisting of two oppositely charged planes. Note, however,
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that, in the case of �5 (210), the planes would be charge
neutral if the formal ionic charges of Sr, Ti, and O (+2, +4,
and −2 e) were taken instead of the Thomas charges (cf.
Sec. IV C).

B. Oxygen vacancy formation energy

Oxygen ions in the supercell were separately removed, and
the respective vacancy formation energy was calculated. The
formation energy E f of a vacancy in the rigid-ion model can
be expressed as [8]

E f = Etot − E (0)
tot + E∞ + Ecorr, (2)

where Etot is the total lattice energy of the supercell containing
the defect. If the vacancy is charged, Etot can be calculated by
introducing a neutralizing uniform background charge density
[27]. Here, E (0)

tot denotes the total lattice energy of the supercell
without defect. Also, E∞ is the energy of the removed neutral
atom or charged ion being placed isolated at infinite separa-
tion from the lattice. In DFT calculations of charged point
defects, one needs to consider a correction term Ecorr, which
generally includes a periodic image charge correction and a
potential alignment [39]. In the classical MS calculations of
this paper, we denote by Ecorr the correction of the energy
from the interaction of the charged oxygen vacancy defect
with the electrostatic potential stemming from the charged
lattice planes in the supercells containing GBs. This will be
explained in detail in the following section. In addition, the
interaction of an oxygen vacancy with its own periodic images
needs to be corrected. We confirmed by preliminary calcula-
tions that the Coulomb interaction energy between periodic
images of the oxygen vacancy can be decreased to <0.1 eV by
extending the cell dimension in the z direction to three units
(ccell = 3aSTO) for both STGBs.

The central two terms on the right-hand side of Eq. (2)
are independent of the position of the oxygen vacancy in the
supercell. Because we are primarily interested in the influence
of GBs on oxygen vacancies, we introduce the formation
energy difference �E f (y) of an oxygen vacancy at a position
y in the cell with respect to the formation energy of an oxygen
vacancy located at a reference point yref.

B inside one of the two
adjacent grains:

�E f (y) = E f (y) − E f
(
yref.

B

)
. (3)

By inserting Eq. (2), we can reformulate this expression:

�E f (y) = Etot (y) − Etot
(
yref.

B

) + Ecorr (y) − Ecorr
(
yref.

B

)
. (4)

C. Continuum model for correcting electrostatic artifacts

As described in Sec. II A, the structural configurations of
both considered STGBs cells consist of periodically repeated
units of two oppositely charged planes parallel to the GB
(xz) plane. Such a repeated-units structure is schematically
sketched in Fig. 2, containing the two bulk regions of the
grains, which are separated by a GB region. Note that the GB
separation is generally larger than the distances between the
planes in the bulk regions after GB relaxation because of a
positive GB excess volume.

Here, vertical solid lines denote negatively charged planes,
while vertical dashed lines indicate positively charged planes

FIG. 2. A sketch of a general symmetric tilt grain boundary
(STGB) supercell. Both open and periodic boundary conditions can
be applied in the direction perpendicular to the GB plane (the y
direction). Differently colored regions mark the generally differently
oriented grains. As introduced in Fig. 1, the vertical dashed and solid
lines indicate positively and negatively charged planes, respectively.

(cf. Fig. 1). Using open boundary conditions in the y direc-
tion, such a stacking sequence of alternatingly charged planes
produces a dipole moment perpendicular to the surface, as it is
qualitatively described in Ref. [19]. This dipole moment pro-
duces an internal electrostatic potential, which interacts with
charged species such as positively charged oxygen vacancies,
and thereby strongly influences the vacancy formation energy.
Such electrostatic effects have been encountered and analyzed
in previous studies [20,21] dealing with charged surfaces in
two-dimensional surface-slab systems. They are reported as
simulation artifacts of the approach because, according to
classical electrostatics, as explained in Refs. [20,21], the in-
ternal electric field in a defect-free region of a crystal is zero.

Thus, correction methods were proposed to remove the
internal potential, such as applying an external dipole layer
or using an electrostatic surrogate model [20,21]. However,
these approaches were constructed for systems containing free
surfaces only and did not take internal GBs into consider-
ation. For GBs with broken mirror symmetry, such as the
STGBs �5 (210) and of �5 (310) treated in this paper, an
additional dipole moment from the internal interface needs to
be considered. Such a dipole moment does not appear in GB
supercells with mirror symmetry because, there, the dipole
moments from the two mirror symmetric grains cancel each
other out. To effectively remove the simulation artifact of an
internal electrostatic potential in this paper, we first investigate
the supercell with open boundary conditions in the direction
perpendicular to the GB plane (the y direction). Using such
boundary conditions, the complications arising by periodic
images of the GB planes due to periodic boundary conditions
in the GB normal direction can be avoided at first. The elec-
trostatic potential for open boundary conditions is derived via
a 1D continuum model. Based on this model, the electrostatic
potential in a supercell with periodic boundary conditions is
derived in the next step.

For ease of readability, we distinguish the two terms sur-
face and interface in the following discussions. We use surface
when we refer to an interface between a bulk material on
one side and vacuum on the other side, whereas an interface
implies bulk materials on both sides, as in the region of a GB.

1. The electrostatic potential for open boundary conditions

To derive the electrostatic potential inside of a supercell
containing a GB, we first consider the electrostatic potential
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arising from an isolated, homogeneously charged plane with
an area A and total charge q, corresponding to a charge density
q/A. The normal of the plane is oriented in the y direction, and
if A becomes infinitely large, we can interpret the problem as
a 1D scenario. Supposing the plane is located at y = yq, the
electrostatic potential Vq obeys the 1D Poisson equation:

d2Vq

dy2
= − q

Aε0
δ(y − yq), (5)

with δ representing the Dirac delta function. The general
solution can be found as

Vq(y) = − q

2Aε0
(y − yq)[H (y−yq )−H (yq − y)] + C1y + C2,

(6)
where H denotes the Heaviside step function, and C1 and
C2 are constants of integration, which need to be determined
based on the boundary conditions. Taking the negative deriva-
tive yields an electric field E in the following form [19]:

E =
{− q

2Aε0
− C1, y < yq

q
2Aε0

− C1, y > yq
, (7)

so C1 represents an additional, constant electric field.
Next, we consider a general interface supercell like the one

sketched in Fig. 2, with open boundary conditions in the y
direction. The total electrostatic potential V tot (y) can be cal-
culated by summing over the contributions from all charged
planes [cf. Eq. (6)]:

V tot (y) = −
∑

i

qi

2Aε0
(y − yi )[H (y − yi ) − H (yi − y)]

+ C1y + C2. (8)

In the case of open boundary conditions without an addi-
tional external electric field, we can set C1 = 0. A particular
case is sketched in Fig. 3(a) with equidistant, alternatingly
charged planes (with planar averaged charge densities ±q/A).
An electric field of the same magnitude alternatingly appears
or vanishes in the regions between the planes. In the evenly
numbered regions [e.g., the region labeled 2 in Fig. 3(a)], there
is no electric field because of the same number of negatively
and positively charged planes on the left side and on the right
side, respectively. In each of the oddly numbered regions, an
electric field originating from the two outermost, unpaired sur-
face planes is left in any neutral supercell. The corresponding
electrostatic potential V tot (y) is schematically sketched by the
red stagelike curve in Fig. 3(b).

We now define the potential at each charged plane as the
averaged potential between the two adjacent planes. As shown
in the inset of Fig. 3(b), the averaged potential (indicated by
the black point) is determined such that the area under red
lines is of the same size as the shadowed blue region. This
concept was introduced by Harrison et al. [40] to understand
the electrostatics at interfaces in polar semiconductors con-
taining alternatingly charged planes.

Since the planes are regularly spaced, the average potential
inside the bulk regions (straight blue line) corresponds to
an average electric field of half the strength than the one
within the oddly numbered regions. Extrapolating it to the
two surface planes with charge densities −q/A and +q/A,
the averaged potential can be macroscopically modeled by a

FIG. 3. (a) A sketch of a general supercell with open boundary
conditions in the y direction and equidistant, alternatingly charged
planes. (b) The resulting schematic electrostatic potential (red line).
The inset shows the method of determining the averaged potential at
the position of a plane (details in the text). The averaged potential at
each plane is marked with a black point, and the connection of the
black points leads to the blue line, representing a linear function of y.
A reference point yref.

B in the bulk region of a grain is selected, with
the potential at this point V ref.

B . Such an averaged potential (blue line)
can be modeled by two oppositely charged point charges ±Q located
at the outermost positions of the supercell in the y direction, as shown
by the blue dots.

dipole with two point charges ±Q = ±q/A located at the two
charged surfaces, as shown by the blue dots in Fig. 3(b).

Considering the factor 1
2 according to this procedure, the

averaged electrostatic potential within the supercell can be
derived by applying Eq. (6) to a system with two oppositely
charged planes:

Vave.(y) = V ref.
B + q

2Aε0

(
y − yref.

B

)
. (9)

Here, we introduced the reference point yref.
B lying in the bulk

region (B) of a grain, with the potential at this point being
V ref.

B .
Finally, the model can be applied to a cell containing

a STGB, as sketched in Fig. 4. As the central GB region
separates the supercell into two differently oriented regions,
four point charges Qi (i = 1, 2, 3, 4) (indicated by the black
dots) are introduced representing the averaged surface charges
±q/A. Each point charge is placed at a position yi, which is the
position of the respective charged plane.

Again, we average the stagelike potential (red curve) origi-
nating from all charged planes at the positions of these planes
(black points), which yields the blue line. Choosing the ref-
erence point arbitrarily somewhere in region I, the averaged
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FIG. 4. Schematic sketch of the electrostatic potential in the
general one-dimensional (1D) continuum model of a supercell con-
taining a symmetric tilt grain boundary (STGB) with differently
charged termination planes. An arbitrarily chosen reference point
yref.

B within grain I (here: the midpoint with respect to y) is selected, at
which the averaged potential is defined as V ref.

B . Lattice planes in bulk
regions are equally spaced with a distance d , and the GB separation
δGB is usually larger than d . Extrapolating the straight blue lines of
the average potentials within both bulk regions, they intercept with
the red stagelike curve at positions ỹ2 and ỹ3, which deviate from
y2 and y3 by ±�y. Such an averaged potential can be modeled by
considering four point charges Q1 to Q4 along the y axis, placed at
the positions of the outer layers of each grain (large black dots). Here,
Q1 = Q3 = − q

A and Q2 = Q4 = + q
A , where q represents the charge

of the surface plane with area of A.

potential VI(y) in this region is given by Eq. (9). The cor-
responding averaged potential VII(y) in grain II must have
the same slope, but since the grain boundary excess sepa-
ration (δGB) is different (usually larger) than the separation
of lattice planes in the grains (d), there is an offset between
the lines representing VI(y) and VII(y). To match them, VI(y)
is extrapolated to ỹ2 = y2 + �y and VII(y) to ỹ3 = y3 − �y,
such that the potential is constant between these points, i.e.,
VI(ỹ2) = VII(ỹ3) (see Fig. 4). A constant potential in this inter-
mediate region is reasonable since the two neighboring grains
are charge neutral. This corresponds to the solution of the
Poisson equation [Eq. (6)] for a system of four point charges.
Thus, the averaged potential reads

Vave.(y) = V ref.
B + q

2Aε0

(
y − yref.

B

)
for y1 � y � ỹ2, (10a)

Vave.(y) = V ref.
B + q

2Aε0

(
ỹ2 − yref.

B

)
for ỹ2 < y < ỹ3, (10b)

Vave.(y) = V ref.
B + q

2Aε0
(2�y − δGB) + q

2Aε0

(
y − yref.

B

)
for ỹ3 � y � y4. (10c)

The GB excess separation is given by δGB = y3 − y2. The
value of the parameter �y will be discussed below when the
model is applied to an actual GB scenario.

FIG. 5. Derivation of the electrostatic potential in a supercell
with periodic boundary conditions. The potential for open boundary
conditions in the y direction is given by the blue line. The red dashed
line, connecting the reference point in region I with the identical
point in region II (here, e.g., the two midpoints of the bulks regions)
represents the electrostatic potential of the surface dipole. The differ-
ence between the blue and the red potential lines is given in green,
with amplified slopes (by a factor of 2) for a better visualization. The
potentials in grain I (grain II) are extrapolated to the points ỹ1 and ỹ2

(ỹ3 and ỹ4) inside of the grain boundary (GB) regions. L denotes the
length of each of the two bulk grain regions.

2. The electrostatic potential for periodic boundary conditions

In the previous section, we have obtained the formula for
the internal electrostatic potential induced by charged lattice
planes when open boundary conditions are applied to a STGB
supercell as the one sketched in Fig. 2. The electrostatic poten-
tial monotonically increases along the whole length of the cell
in the y direction. However, in the case of periodic boundary
conditions in this direction, the potential must be periodic, too.
From the viewpoint of electrostatics, both bulk grain regions
I and II are identical since they have equivalent environments
of charged GB termination planes. Therefore, the potential at
equivalent positions in the two bulk regions must be identical.
Such a potential can be obtained by subtracting a linear func-
tion, which connects the potentials at two equivalent positions
in the two regions, from the nonperiodic potential for open
boundary conditions [Eq. (10)], as visualized in Fig. 5. This
procedure corresponds to the dipole correction [41], which
has been widely used to treat the internal electric field in-
duced by a surface dipole in surface geometries. The total
internal electric field in the direction perpendicular to the GB
for the open boundary conditions in this paper contains both
influences from the outer surfaces and the central interface.
After removing the surface contribution by subtracting a linear
potential,

Vsurf (y) = V ref.
B + q

2Aε0

L + 2�y

L + δGB

(
y−yref.

B

)
for y1 � y�y4,

(11)
only the potential caused by the interface remains. As de-
scribed in Sec. II C 1 [Eq. (6)], subtracting a linear potential
(C1y) still satisfies the Poisson equation, which must be done
here to fulfill the periodic boundary conditions. In Eq. (11),
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L = y4 − y3 = y2 − y1 denotes the length of each of the two
grain regions, and δGB = y3 − y2 as defined above. Note that,
in the case of periodic boundary conditions, the cell length
in the y direction is given by bcell = 2L + 2δGB. Subtracting
Eq. (11) from Eq. (10), the remaining averaged potential reads

Vave.(y) = q

2Aε0

δGB − 2�y

L + δGB

(
y − yref.

B

)
for ỹ1 � y � ỹ2,

(12a)
and

Vave.(y) = q

2Aε0

δGB − 2�y

L + δGB

(
y − yref.

B

) + q

2Aε0
(2�y − δGB)

for ỹ3 � y � ỹ4. (12b)

Note that, due to the periodic boundary conditions, we
must introduce ỹ1 = y1 − �y and ỹ4 = y4 + �y in the same
way as explained in Sec. II C 1 for ỹ2 and ỹ3. Between ỹ2

and ỹ3 as well as between ỹ4 and ỹ1, the potential linearly
decreases, leading to a sawtooth profile, as sketched in Fig. 5.
Since the potential profile in the interface regions ỹ2 � y � ỹ3

and ỹ1 � y � ỹ4 is not relevant for the following defect cal-
culations (there is no oxygen site), the potential function is not
explicitly given here but can easily be derived.

3. The correction energy

After having derived the formulae of the averaged elec-
trostatic potentials Vave.(y) for supercells with both open and
periodic boundary conditions along the y direction perpendic-
ular to the interface, the correction energy of a defect with
charge qd at a position y in the supercell Ecorr (y) is given by

Ecorr (y) = −qdVave.(y). (13)

The minus sign indicates the removal of the electrostatic ef-
fects by subtracting the corresponding energy. Note that, in
general, the accurate electrostatic potential should be the po-
tential generated by all the ions excluding the removed O ion
at position y [42]. The term electrostatic potential used in all
the above derivations, however, refers to the total electrostatic
potential from summing over all ions in the investigated su-
percells. The electrostatic self-energy of an ion is independent
of its position and would therefore be cancelled if Eq. (13)
is inserted into Eq. (4). Hence, we obtain the formula for
the corrected defect formation energy difference between an
arbitrary point y in the supercell and the reference point yref.

B
in the bulk as

�E f = Etot (y) − Etot
(
yref.

B

) − qd[Vave.(y) − V ref.
B

]
. (14)

Note that, if the same reference point yref.
B is chosen for

Eq. (14) and for the potentials Vave.(y) [Eqs. (10) and (12)], the
term V ref.

B cancels out of Eq. (14). In the continuum model de-
veloped so far, there are still two parameters to be determined:
the surface charge density q/A and the position deviation �y.
This determination will be done in Sec. III A for the cases
of oxygen vacancies in supercells containing the two grain
boundaries �5 (310) and �5 (210).

FIG. 6. The relative formation energy of oxygen vacancies
(�Ef ) for the unrelaxed configuration of a supercell containing a
symmetric tilt grain boundary (STGB) �5 (310) with open bound-
ary condition in the GB normal (y) direction. The positions of the
charged planes (yi) are labeled on the top of the graph. Potentials
are referenced to the value at the position yref.

B . The simulation data
calculated with GULP [Etot (y) − Etot (yref.

B )], indicated by red circles
(left y axis), match the line of the potential model, marked by the
black line. The values corrected for the internal electrostatic potential
(purple points) are plotted with respect to the rescaled right y axis for
a better visibility.

III. RESULTS

A. Correction of the electrostatic artifacts

At the example of a supercell containing the STGB �5
(310), the correction methodology is demonstrated for the cal-
culation of formation energies of positively charged oxygen
vacancies (V +1.4

O ). For both open (Sec. III A 1) and periodic
boundary conditions (Sec. III A 2), unrelaxed GB supercells
are analyzed first, and then the effect of structural relaxation
is considered for the case of periodic boundary conditions.
Note that, for each of these cases, the STGB structures were
not relaxed any more after an oxygen ion was removed. It
is shown at the end of Sec. III A 2 that a relaxation of the
system with vacancy leads to a considerable decrease of the
total energy of the system, but it has no influence on the
electrostatic potential and the application of the correction
scheme.

1. The correction for open boundary conditions

To calculate the oxygen vacancy formation energies as
described in Sec. II B, vacancies were first generated sepa-
rately on all possible oxygen sites of an unrelaxed supercell
containing a STGB �5 (310). Open boundary conditions
were applied in the direction perpendicular to the GB and
periodic boundary conditions in the directions parallel to the
GB. The formation energies were calculated and referenced to
the formation energy of a defect located at a position yref.

B in
the bulk grain region. The values obtained without applying
the electrostatic correction are shown in Fig. 6 (labeled as
“simulation data”). The effect of the electrostatic potential is
clearly visible by the strong increase of the values by ∼350 eV
across the supercell.

To correct this apparent artifact, we use Eq. (14) and the
potential function given by Eq. (10). We use the same refer-
ence point yref.

B for the formation energy and for the potential.
The defect charge is the charge of the oxygen vacancy (qVO =
+1.40 e).
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FIG. 7. The relative formation energy of oxygen vacancies
(�Ef ) for the unrelaxed configuration of a cell containing a sym-
metric tilt grain boundary (STGB) �5 (310), with periodic boundary
condition in the direction perpendicular to the GB (y), before (red
circles, “simulation data”), and after (purple points) applying the cor-
rection with the electrostatic model (black line). The dashed vertical
lines indicate the GB regions.

As explained in Sec. II A, the unrelaxed supercell is
composed of positively charged Sr-Ti-O planes (+q) and
negatively charged O-O planes (−q). Considering the partial
charges of the ionic species in the Thomas potential, the
value of q is equal to 2.80 e on one lattice plane of area
A = 48.22 Å2. The positions yi of the four point charges in
the 1D model are specified by the positions of the charged
surface (y1, y4) and interface planes (y2, y3). Hence, the GB
separation is δGB = y3 − y2. In the unrelaxed configurations,
the lattice planes in the two bulk regions are equally spaced by
a distance d = 0.618 Å, which leads to a deviation parameter
�y = d/2.

Using these parameters, a successful correction was
achieved using the 1D continuum model, as shown in Fig. 6.
In the bulk regions, the uncorrected simulation data points de-
viate from those of the model function on the order of 0.01 eV,
which confirms the validity of our correction approach.

2. The correction for periodic boundary conditions

In the case of periodic boundary conditions in the direction
perpendicular to the GB, the model function to correct for the
electrostatic potential in the bulk regions of the unrelaxed �5
(310) supercell is obtained by combining Eqs. (12) and (14).
Here, the bulk grain length L = y4 − y3 = y2 − y1 = 24.08 Å
is needed as an additional parameter. The values of the other
parameters are the same as those used in Sec. III A 1.

As shown in Fig. 7, the “simulation” data points of the
uncorrected formation energy follow the sawtooth model
function. The data points in the bulk grain regions deviate
from the model on the order of 0.01 eV, indicating the valid-
ity of our correction model also for supercells with periodic
boundary conditions.

When the supercell containing the GB undergoes structural
relaxation, the ions were observed to deviate by ∼0.1 Å in
the GB normal direction from the center of mass of their
respective plane. This makes it difficult to specify the two
parameters q and �y in Eq. (12). The potential slope depends
on an averaged charge q of the interface planes, and the offset
between the potential lines depends on q and on the position
deviation �y. The values of both parameters can be deter-
mined by fitting the model function to the simulation results of

FIG. 8. The energy difference Etot − E (0)
tot without electrostatic

correction in the relaxed configuration of a cell containing a symmet-
ric tilt grain boundary (STGB) �5 (310), calculated with and without
structural relaxation after forming the vacancies.

[Etot (y) − Etot (yref.
B )] in the bulk regions. Using Eq. (12), the

fitting was carried out by minimizing the root mean square
deviation between the model data and the simulation data for
data points in the bulk regions, where the relative formation
energies of oxygen vacancies show a linear behavior. The
surface area (A) and the position of the reference point (yref.

B )
remain the same as used for the unrelaxed configuration. The
positions of the charged termination planes (yi) are chosen as
the positions of the outermost ions in each bulk region, and
the parameter δGB was determined accordingly.

The fitting yields q = 2.62 e and �y = 0.63 Å, leading
to a deviation of the simulation data points from the model
function on the order of 0.01 eV in the bulk regions. In
Sec. IV A, we discuss the meaning of the key parameter q and
how its deviation from the value of the unrelaxed supercell
can be understood.

Applying this fitting procedure to the relaxed configura-
tion of the cell containing the STGB �5 (210) (surface area
A = 34.10 Å2), a charge q = 0.42 e and a position deviation
�y = 0.54 Å were obtained. The value of q only slightly
deviates from 0.44 e, the theoretical value of the unrelaxed
configuration. Note that, for this GB, the slope of the electro-
static potential, i.e., the strength of the internal electric field,
is only ∼12% of the value for the STGB �5 (310). A detailed
discussion is given in Sec. IV C.

As noted above, we so far did not consider structural relax-
ation after the oxygen ion was removed from the cell to create
the vacancy. The influence of such a relaxation on the energy
of the supercell is exemplified using the relaxed configuration
of the cell containing the GB �5 (310). In Fig. 8, we plot
the difference Etot − E (0)

tot as a function of the y direction for
both the relaxed and the unrelaxed supercell after creating the
vacancy. Note that the position of a vacancy can no longer be
defined uniquely after such a relaxation. We therefore took the
original coordinate of the removed ion as the position of the
oxygen vacancy.

As shown in Fig. 8, the data points after relaxation of the
system with an oxygen vacancy (blue squares) are system-
atically lower (by ∼8.3 eV in the bulk regions) than those
obtained without this relaxation (red circles). Some oxygen
sites in the GB region are found to have a larger energy
decrease (∼8.6 eV) due to larger distortions of the nearest
neighboring ions, which are less strongly bound at the GBs
than in the bulk regions. However, relaxation does not affect
the qualitative profile stemming from the electrostatic artifact.
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FIG. 9. Corrected relative formation energies of oxygen va-
cancies (�Ef ) with respect to the coordinate y in the relaxed
configuration of cells containing (a) the symmetric tilt grain bound-
ary (STGB) �5 (310) and (b) the STGB �5 (210). The GB regions
are shaded in gray. Dashed red lines mark the averaged relative
formation energies in the bulk regions of the grains, which are ap-
proximately zero by construction.

The value of the energy slope only changes on the order of
10−3 eV/Å when relaxation is done. According to Eq. (12),
the corresponding energy steps between the lines in the two
bulk parts are then approximately equal within the same order
of magnitude, too. This indicates that the strength of the inter-
face dipole is only negligibly affected by the relaxation of the
supercell containing the oxygen vacancy. This is valid for the
width of the GB region, too, which we sketched by the dashed
vertical lines in Fig. 8. The width of the GB can be defined
by the region, where the formation energy values differ from
the linear behavior with respect to the y coordinate. There, the
local atomic environment of an oxygen site changes compared
with its surroundings within the grains.

As we are primarily interested in the qualitative difference
between formation energies at GBs and in bulk regions, to
transfer such information to mesoscopic space-charge models
[15–18] in the continuing studies, it is sufficient to analyze
data points obtained without structural relaxation of the va-
cancy for this purpose in this paper.

B. Corrected oxygen vacancy formation energies

The relative formation energies of positively charged
oxygen vacancies at all oxygen sites after applying the elec-
trostatic correction are plotted with respect to the y coordinate
in Figs. 9(a) and 9(b) for cells containing the STGB �5 (310)
and the STGB �5 (210), respectively. Note that, in both cases,
the ionic positions were relaxed only before the vacancy was
created. In case of the GB �5 (310), points in the vicinity of
the GB fluctuate from −2 to 1 eV, while they fluctuate in the
range −2 to 3 eV in the vicinity of the GB �5 (210).

IV. DISCUSSION

A. Comparison between unrelaxed and relaxed configurations

The surface charge density of the termination planes in
the relaxed configurations, which can be obtained from fit-
ting the model functions of the internal electrostatic potential

FIG. 10. The electrostatic potentials of a repeated unit within a
cell containing a symmetric tilt grain boundary (STGB) �5 (310)
for (a) the unrelaxed configuration and (b) the relaxed configuration.
Positions of the O-O and Sr-Ti-O planes in the unrelaxed configu-
ration are indicated by dashed red vertical lines. They lead to the
electrostatic potential sketched by the solid red line. The positions
of the ions in the relaxed configuration deviate from these planes, as
shown by dashed blue vertical lines. The deviations are exaggerated
here for clarity. The second O ion in the sequence is located at the
same position as the O-O plane in the repeated unit of the unrelaxed
configuration, as shown by the dashed black vertical line. The cor-
responding potential is given by the solid blue line. Its macroscopic
average is indicated by the solid green line.

to the simulation data (cf. Sec. III A 2), can be deduced by
comparing the repeated units of relaxed and unrelaxed bulk
configurations. This is explained for the example of the cell
containing a STGB �5 (310). As described in Sec. II A, the
corresponding unrelaxed configuration consists of repeated
pairs of the negatively charged O-O plane (−q) and the pos-
itively charged Sr-Ti-O plane (q), with surface charges of
−2.80 and 2.80 e, respectively. The planes in the bulk regions
are equally spaced by a distance d = 0.618 Å. Such a repeated
unit is sketched in Fig. 10(a) (dashed vertical lines). The
corresponding electrostatic potential is indicated by red solid
lines [cf. Fig. 3(b)].

However, the relaxed ionic positions in the repeated unit
deviate from the corresponding unrelaxed ionic positions, as
marked by the dashed blue vertical lines in Fig. 10(b). Ions
within the repeated unit of the relaxed configuration are ob-
served to preserve the same sequence everywhere in the bulk
regions: O-O-Sr-Ti-O-(O). The second O ion in this sequence
is located at the same position as the O-O plane in the repeated
unit of the unrelaxed configuration (the correspondence is
shown with the black dashed vertical line in Fig. 10). This
position is set as the reference point. The third O ion in the
sequence is then located almost at the same position as the Sr-
Ti-O plane in the repeated unit of the unrelaxed configuration.
The last O in the sequence (in parenthesis) represents again
the first O ion in the sequence of the following unit. Using the
averaged ionic distances, the ions are located in the GB nor-
mal direction (y direction) with respect to the reference point
at −0.012, 0, 0.575, 0.597, 0.614, and 1.266 Å. The induced
electrostatic profile (solid blue line) can be calculated by
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summing up the electrostatic potentials from each ion (lattice
plane) according to Eq. (8). Using a dipole to macroscopically
describe this electrostatic profile [green line in Fig. 10(b)],
the resulting effective dipole charge is calculated as 2.62 e
from Eq. (9), which is exactly the value of the surface charge
q obtained from the fitting of the electrostatic model to the
simulation data in Sec. III A 2 (Fig. 7).

The same conclusion holds for the repeated units within
the cells containing the STGB �5 (210), where the sequence
of ions in the bulk regions is O-Ti-O-Sr-O-(O). Using the
averaged ionic distances and referencing again to the second
ion in the sequence (Ti ion), they are located in the y direction
at −0.121, 0, 0.059, 0.817, 0.867, and 1.647 Å. Averaging
the electrostatic profile introduced by this sequence yields the
effective dipole charge of 0.42 e in perfect agreement with the
fitting result (cf. Sec. III A 2).

B. Analysis of the oxygen vacancy formation energies

The formation energies of oxygen vacancies in the cells
containing the two considered STGBs show similarities, as
displayed in Fig. 9: oxygen sites with positive and negative
E f values relative to the values in the bulk region of the grains
accumulate in the vicinity of the grain boundaries. Some sites
are beneficial by ∼−1 to −2 eV, indicating that oxygen va-
cancies prefer these specific sites near the charged interface
planes.

Oxygen vacancy formation energies are further analyzed
with respect to the local atomic environments of their respec-
tive sites. A descriptor of the local environment should include
factors like the coordination number, neighbor species, and
atomic distances in a defined range, and thereby it should
reflect the site energy. To quantify these three factors in a
compact form, we define a local charge density ρ as follows:

ρ =
N∑
i

qi(
4
3

)
πr3

i

, (15)

where N is the number of neighbor atoms in the local environ-
ment, qi is the charge of the neighboring atom i, and ri is its
distance to the selected oxygen site.

The range of the local environment was first evaluated
applying a cutoff radius r0 = 2.76 Å, which is the interionic
distance of an oxygen site to its nearest-neighbor oxygen
site in the perfect STO structure. However, neighboring ions
slightly beyond this cutoff radius were observed to influence
the charge density considerably. For example, for the oxygen
sites at the STGB �5 (310) in the relaxed configuration, one
neighboring ion at a distance of ∼0.1 Å above the cutoff
radius changes the charge-density value by ∼10%. To obtain
more reliable values, we extended the cutoff radius by a factor
of 1.3 and additionally softened it by applying a linear inter-
polation function f (r) for a fractional counting [43] in the
extended range:

f (r) = 1.3r0 − r

1.3r0 − r0
, r0 � r � 1.3r0. (16)

From Eqs. (15) and (16), the local charge density was cal-
culated for each oxygen site and used to analyze the relative

FIG. 11. Relative formation energy of oxygen vacancies (�Ef )
plotted with respect to the local charge density for the relaxed con-
figurations of cells containing (a) a symmetric tilt grain boundary
(STGB) �5 (310) and (b) a STGB �5 (210). The intersection of
the dashed pink lines labels the reference point calculated for an
oxygen site within the bulk of a perfect, i.e., defect-free STO crystal.
Data points shown by blue diamonds represent bulklike oxygen sites,
while red circles mark the oxygen sites near the GBs.

formation energies with respect to their local environments, as
displayed in Fig. 11.

Here, oxygen sites in bulk and GB regions are distin-
guished by blue diamonds and red circles, respectively. A
reference data point, calculated for an oxygen site in a perfect
STO crystal with charge density ρ0 = 0.108 e/Å3, is labeled
by the intersection of the dashed pink lines. Data points of
bulklike sites are located close to this reference point. Data
points for GB-like sites can be distributed in two regions:
the blue-shaded region contains data of oxygen vacancies
with negative relative formation energy and a smaller charge
density at the respective site (ρ < ρ0) than in the bulk. The
green-shaded region contains data of oxygen vacancies with
positive relative formation energy and larger charge density
at the respective site (ρ > ρ0) than in the bulk. These results
indicate that oxygen vacancies tend to be trapped at specific
sites in the vicinity of the GBs, where the local charge densi-
ties have lower values than in the bulk.

C. The electrostatic artifacts in low-angle (i10) tilt grain
boundaries

So far, we studied the electrostatic artifacts in cells con-
taining the two STGBs �5 (310) and �5 (210), which
are characterized by the tilt angles θ = 18.4◦ and 26.6◦,
respectively. However, internal electric fields are not only
present in cells containing these two high-angle tilt grain
boundaries but are expected to appear in low-angle tilt grain
boundaries as well. To illustrate this, we investigate low-
angle tilt grain boundaries with orientations (i10) for i =
6, 7, 8, 9, 12, 13, 20, 21, 40, 41.

According to Eqs. (10) and (12), the slope of the electro-
static potential in the bulk regions of supercells containing
STGBs, and hence the strength of the internal electric field,
is proportional to q

2A , where q denotes the charge of a lattice
plane, which can be obtained by summing up the charges of
all ions on this plane (cf. Fig. 1). The composition of planes in
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TABLE II. Formal and Thomas charges of lattice planes for (i10)
oriented GBs for odd and even integer values of i.

q (e) i odd i even

Thomas 2.80 0.44
Formal 4.00 0

STO has been discussed in the appendix A of Ref. [34]: Planes
of the form (i10), where i is an odd integer, are composed
of Sr-Ti-O or O-O. If i is an even integer, the planes have
the composition Sr-O or Ti-O-O. Note that, in the following
discussions, the values of q refer to their absolutes, which are
listed in Table II. We analyzed q values for both the effective
charges of the species used in the Thomas potential and the
formal charges.

The interface area A of one repeated unit can be derived
as a2

STO

√
i2 + 1. With the substitution tan θ = 1/i, we obtain

A = a2
STO/ sin θ . For low angles θ , the sine function can be ap-

proximated sin θ ≈ θ . It follows for the proportionality factor
of the strength of the internal electric field

q

2A
≈ q

2a2
STO

θ. (17)

Hence, the strength of the internal electric field is pro-
portional to the tilt angle in the low-angle (i10) tilt grain
boundaries. This is further confirmed by plotting q

2A with
respect to the tilt angle θ as shown in Fig. 12. Five ori-
entations with oddly numbered i(7, 9, 13, 21, 41) and five
with evenly numbered i(6, 8, 12, 20, 40) were randomly
selected. They are represented by solid and hollow symbols,
respectively. Additionally, for each orientation, the value of
q

2A evaluated from Thomas charges and formal charges are
distinguished, leading altogether to four lines corresponding
to the four plane charges listed in Table II.

FIG. 12. The values of q
2A for (i10)-oriented low-angle grain

boundaries (with odd i = 7, 9, 13, 21, 41 and even i =
6, 8, 12, 20, 40) plotted with respect to the tilt angle. Data points
represented by red circles are calculated with the Thomas charges,
and those represented by blue diamonds with formal charges. The
lower two data points and the higher two data points marked at the
right y axis correspond to the (210)- and to the (310)-oriented grain
boundaries, respectively, which we studied in this paper.

For comparison, data points for systems containing (210)-
and (310)-oriented grain boundaries are included accordingly
at the right y axis. The calculated values of q

2A are rela-
tively small in the small angle region, which means that the
corresponding artificial fields are likely small enough to be
neglected in atomistic GB simulations. This analysis can be
transferred to other tilt grain boundaries, e.g., those with in-
dices (i20), (i30), and so on, to which different plane charges
can be assigned. However, the linear approximation given in
Eq. (17) always holds for a small θ .

As can be seen in Fig. 12, the existence of an internal field
is sensitive to the set of charges used for rigid ions in atomistic
GB simulations. When formal charges are applied to the cases
of evenly numbered i for the (i10)-oriented GBs, the planes
are charge neutral, and therefore, no electrostatic potential
appears in the supercell [34].

No internal electrostatic fields were reported by Ramadan
and De Souza [25], who calculated oxygen vacancy formation
energies at 13 different low-angle [100] (01i) tilt grain bound-
aries with odd and even i in STO. They also applied a rigid-ion
model for STO, adopting ionic charges which were originally
derived for binary oxides by Pedone et al. [44], namely +1.2e,
+2.4e and −1.2e for Sr, Ti, and O, respectively. These values
are different from the formal charges, but also add up to zero
on lattice planes corresponding to grain boundaries with even
i, which makes it obvious from Fig. 12, that no internal fields
were detected in these cases. However, on grain boundary
planes with odd i, the charges used by Ramadan and de Souza
[25] add up to 2.4e, in which case an electric field must have
been present in the cells. However, firstly, low-angle grain
boundaries were studied there, with (following our defini-
tion) a maximum tilt angle of 11.3 ° (i = 5). Secondly, those
were set up in cells with lengths perpendicular to the grain
boundaries of about three times as long as the length of the
STGB �5 (310) cell we considered in this paper. Since this
cell dimension enters the formula for the magnitude of the
potential slope [Eq. (12)] in the denominator, both aspects
together lead to internal field strengths of about one order
of magnitude lower than the field values we obtained for the
STGB �5 (310). If they detected it at all by their analysis,
such small fields might have been considered negligible by
Ramadan and de Souza [25].

Oyama et al. [8] studied oxygen vacancy formation ener-
gies across STO supercells for both, the STGBs �5 (310) and
�5 (210), applying the Thomas potential with formal charges.
They did not mention internal electric fields in their cells.
While in the case of STGB �5 (210), this is in agreement with
our analysis (cf. Fig. 12), there should have been a noticeably
large field in the supercells of Oyama et al. [8] containing
the STGB �5 (310), even though the cell size perpendicular
to the grain boundary was about twice as long as the one we
considered in this paper.

V. SUMMARY AND CONCLUSIONS

In this paper, we investigated formation energies of oxygen
vacancies in supercells containing STGBs of the form �5
(310) and �5 (210) in STO by performing atomistic MS sim-
ulations with a rigid-ion potential. The following conclusions
can be drawn:
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(1) In the ionic model, an internal electric field is present
inside the supercells containing a GB with broken mirror
symmetry when the lattice planes are charged. This effect is
considered as an electrostatic artifact and should be corrected
in energy calculations, such as the determination of the forma-
tion energy of an oxygen vacancy in this paper. Especially for
GBs with large tilt angles, strong fields can be present within
the simulation cells.

(2) A continuum model was proposed for the defect calcu-
lations to correct the electrostatic effects in supercells for both
open and periodic boundary conditions. This model requires
only two free parameters, namely, the surface charge q and
a position deviation �y. These values can directly be given
in the case of ideal, i.e., symmetrically set up and unrelaxed
supercells. Structural relaxation leads to an internal polariza-
tion, in which case q and �y can be obtained by a fitting of
the derived model functions to the simulation data.

(3) The corrected formation energies indicate the effect of
GBs to attract oxygen vacancies in polycrystalline STO. We
found a relationship between the local charge density around
an oxygen site and its formation energy. Oxygen vacancies are
trapped at specific sites in the vicinity of the GBs, where the
local charge densities have lower values than in the bulk.

This paper did not consider any charge compensation
effects for the charged GBs, e.g., by various types of point de-
fects in space-charge zones. This requires continuing studies
to transfer information obtained in this atomic-scale study to
mesoscopic space-charge models. The developed correction
method has the potential to be extended to more complicated

interfaces such as asymmetric tilt grain boundaries (ATGBs).
Experimentally, ATGBs are more frequently observed than
STGBs in ceramic STO microstructures [3,45]. However,
atomistic structures of ATGBs have only been occasionally
studied [46]. The correction method presented here offers
the potential of extending atomistic simulations of charged
point defects to more general interfaces in ceramics. Even
though developed for a rigid-ion potential in this paper, the
method can be applied to systems treated by DFT as well. It
extends the model developed by means of DFT calculations of
charged surfaces in slabs [21] to supercells with interfaces and
interface dipoles. The existence and consequences of interface
dipoles have been extensively studied by DFT methods in
the past, going back to the work of Louie and Cohen [47],
followed by many publications ever since [48,49].
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