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Quantum effects in the structural and elastic properties of graphite: Path-integral simulations
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Graphite, as a well-known carbon-based solid, is a paradigmatic example of the so-called van der Waals
layered materials, which display a large anisotropy in their physical properties. Here we study quantum effects
in structural and elastic properties of graphite by using path-integral molecular dynamics simulations in the
temperature range from 50 to 1500 K. This method takes into account quantization and anharmonicity of
vibrational modes in the material. Our results are compared with those found by using classical molecular
dynamics simulations. We analyze the volume and in-plane area as functions of temperature and external
stress. The quantum motion is essential to correctly describe the in-plane and out-of-plane thermal expansion.
Quantum effects cause also changes in the elastic properties of graphite with respect to a classical model. At
low temperature we find an appreciable decrease in the linear elastic constants, mainly in C12 and C44. Quantum
corrections in stiffness constants can be in some cases even larger than 20%. The bulk modulus and Poisson’s
ratio are reduced by 4% and 19%, respectively, due to zero-point motion of the C atoms. These quantum effects
in structural and elastic properties of graphite are non-negligible up to temperatures higher than 300 K.
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I. INTRODUCTION

Over the last few decades, we have witnessed much
progress in the knowledge of carbon-based materials with sp2

orbital hybridization, such as fullerenes, carbon nanotubes,
and graphene [1–4], which has progressively broadened
the scope of this research field further than the tradition-
ally known graphite. This classical material has in turn
become a paradigmatic case of the nowadays called van
der Waals materials, characterized by a layered structure,
where the interactions between sheets are much weaker than
those between atoms in each sheet [5]. Among these ma-
terials one finds hexagonal boron nitride, transition-metal
dichalcogenides, and III-VI compounds such as InSe and
GaS [6].

In addition to its common role in several areas such as
lubrication, batteries, and nuclear technology, graphite has
had a renewed interest in recent years in connection with the
discovery of graphene and the potential applications of this
two-dimensional material. In particular, mechanical proper-
ties of graphite, including elastic constants, have been studied
by using experimental and theoretical methods [7–15]. Nev-
ertheless, a precise knowledge of these properties has been
limited by the difficulty of obtaining high-quality single-
crystalline samples [16,17]. Thus, although there is a general
agreement on the values of the largest elastic stiffness con-
stants (i.e., their relative uncertainty is a few percent), values
of smaller elastic constants such as C44 and C13 are known
with relatively large error bars. For C13, for example, one
finds in the literature values of 0(3) GPa [8] and 15(5) GPa
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[7], derived from apparently reliable methods. This is in part
due to the high anisotropy of graphite, which means that
elastic stiffness constants related to in-plane deformations,
such as C11 and C12, are much larger than those related
to deformations along the z axis perpendicular to the basal
plane.

Theoretical work has been carried out to study structural,
elastic, and thermodynamic properties of graphite. Most of
the calculations and simulations performed to analyze such
properties of graphite (and solids in general) have considered
atomic nuclei as classical particles. This means that their
quantum zero-point motion is not taken into account in zero-
temperature calculations, and their motion is assumed to be
classical (i.e., follows Newton’s laws) in finite-temperature
Monte Carlo or molecular dynamics (MD) simulations. The
quantum delocalization of atomic nuclei becomes unim-
portant at high temperatures, but can lead to appreciable
corrections in physical observables for T lower than the De-
bye temperature of the material, �D [18]. Throughout this
paper we call nuclear quantum effects those caused by the
quantum nature of atomic nuclei, which manifests itself in a
spatial delocalization larger than that expected for a classical
calculation (thermal motion).

Several research groups employed density-functional the-
ory (DFT) calculations at T = 0, and in some cases finite
temperatures were considered by using a quantum quasi-
harmonic approximation (QHA) for the vibrational modes
[13,19,20]. This approach is generally accepted to be sound
at low temperature, but it can be inaccurate for layered mate-
rials at relatively high temperatures, as a consequence of an
appreciable anharmonic coupling between out-of-plane and
in-plane vibrational modes, which is not considered in a QHA.
Various works based on classical molecular dynamics and
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Monte Carlo simulations of graphite have also appeared in
the literature [21–27]. For this layered material, frequencies
of out-of-plane vibrational modes are lower than those of
in-plane vibrations, and one can define two different Debye
temperatures, one for the first set of modes (�out

D ∼ 1000 K)
and another for the second (�in

D ∼ 2500 K) [28,29]. This
means that nuclear quantum effects are expected to be appre-
ciable at temperatures on the order of 300 K and even higher.

The difficulties associated with using classical simulations
can be surmounted by employing simulation techniques which
take account of nuclear quantum effects in an explicit way,
such as those based on Feynman path integrals [30–33]. This
procedure is in principle equivalent to a quantization of the
vibrational modes in the solid, with the advantage that anhar-
monicities are directly included in the path-integral simulation
procedures. These kinds of methods have been used to study
properties of materials such as diamond [34,35], silicon [36],
boron nitride [37,38], and graphene [32,33,39]. We are not
aware of any quantum atomistic simulation of graphite. An
important point is the large anisotropy of this material, so
that quantum effects can be quantitatively very different for
properties along directions on the basal plane or perpendicular
to it.

Here we employ the path-integral molecular dynamics
(PIMD) method to study structural and elastic properties of
graphite in a temperature range from 50 to 1500 K. The impor-
tance of nuclear quantum effects in the considered variables
is assessed by comparing the results of quantum simulations
with those obtained from classical MD simulations. We find
that considering nuclear quantum motion is necessary for an
adequate description of the in-plane thermal expansion. In
general, quantum effects are non-negligible in structural and
elastic properties of graphite for temperatures even higher
than 300 K. Particular attention is set on the temperature
dependence of the linear elastic constants and bulk modulus
of graphite. At low temperature, quantum corrections in elas-
tic stiffness constants may be higher than 20%, whereas the
Poisson’s ratio and bulk modulus are appreciably reduced.

The paper is organized as follows. In Sec. II we describe
the computational methods employed in the simulations. In
Sec. III we discuss the phonon dispersion bands and the cal-
culation of elastic constants at T = 0. Results for the internal
energy of graphite are presented in Sec. IV. In Sec. V we
show results for the volume and the in-plane area, and the
thermal expansion is presented in Sec. VI. Data of the elastic
constants and bulk modulus at finite temperatures are given
and discussed in Secs. VII and VIII. Finally, we summarize
the main results in Sec. IX.

II. COMPUTATIONAL METHOD

In this paper we study the influence of nuclear quantum
effects on structural and elastic properties of graphite. This
means that we consider quantum delocalization of atomic
nuclei, and analyze its influence on physical observables of the
material. This requires, on one side, the definition of a reliable
potential to describe the interatomic interactions in the solid.
This potential is usually derived from ab initio methods (e.g.,
DFT), tight-binding-like Hamiltonians, or effective interac-
tions. This provides one with a Born-Oppenheimer surface

for motion of the atomic nuclei. On the other side, we need
a method to take into account the quantum dynamics (or
quantum delocalization) in the many-body configuration
space of atomic coordinates with the selected interatomic
interactions. This means that we have to base our finite-
temperature calculations on quantum statistical physics, in
contrast to the more usually employed classical statistical
physics to perform Monte Carlo or molecular dynamics sim-
ulations.

Thus, we employ PIMD simulations to study equilibrium
properties of graphite as a function of temperature and pres-
sure. The PIMD method rests on the Feynman path-integral
formulation of statistical mechanics [40], which turns out to
be a suitable nonperturbative procedure to study many-body
quantum systems at finite temperatures. In the implementation
of this method, each quantum particle (here, atomic nucleus)
is described as a set of NTr (Trotter number) beads, which
act as classical particles building a ring polymer [30,31]. In
this way, one has a classical isomorph displaying an unreal
dynamics, as it does not represent the true dynamics of the
actual quantum particles. This isomorph is, however, practi-
cal for an efficient sampling of the configuration space, thus
giving accurate values for time-independent variables of the
quantum system. Details on this simulation technique can be
found in Refs. [30,31,41,42].

Interatomic interactions between C atoms are described
here through a long-range bond order potential, the so-called
LCBOPII, mainly employed earlier to perform classical sim-
ulations of carbon-based systems [43]. Notably, it has been
used to study the phase diagram of carbon, including graphite,
diamond, and the liquid, and displayed its precision by yield-
ing rather accurately the graphite-diamond transition line [21].
More recently, this effective potential has been also found to
accurately describe various properties of graphene [44–48].

The LCBOPII potential was also employed in the last
years to perform PIMD simulations, providing a quantifica-
tion of nuclear quantum effects in monolayer and bilayer
graphene from a comparison with results of classical sim-
ulations [33,49]. In this paper about graphite, as in earlier
simulations of graphene [33,48,50], the original parametriza-
tion of the LCBOPII potential has been slightly modified
to increase the zero-temperature bending constant κ of the
graphene layers from 1.1 eV to 1.49 eV, closer to experimental
data [51,52]. The interlayer interaction was fitted to the results
of quantum Monte Carlo calculations [53], to yield a binding
energy of 50 meV/atom for graphite [54].

For the calculations presented here, we have employed
both the isothermal-isobaric (NPT ) and isothermal-isochoric
(NV T ) ensembles. For the NV T simulations we used cell
parameters obtained from equilibrium NPT simulations at the
same temperature. We have used effective algorithms for the
PIMD simulations, such as those presented in the literature
[55–57]. In particular, we have employed staging coordinates
to define the bead positions in the classical isomorph, and
in order to keep a constant T we have introduced chains
of four Nosé-Hoover thermostats connected to each staging
coordinate. In NPT simulations, another chain of four ther-
mostats was coupled to the barostat to give the equilibrium
volume fluctuations for the considered external stress [41,58].
The equations of motion have been integrated by using the
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FIG. 1. In-plane mean-square displacement, (�rp)2 = (�x)2 +
(�y)2, of carbon atoms in graphite, as derived from classical MD
(circles) and quantum PIMD simulations (squares) at various tem-
peratures. Error bars are less than the symbol size.

reversible reference system propagator algorithm (RESPA),
which allows us to consider different time steps for the in-
tegration of the slow and fast degrees of freedom [59]. The
time step corresponding to the interatomic forces was �t = 1
fs, which is adequate for the C atomic mass and the range
of temperatures considered here. More details on this type of
PIMD simulations are given elsewhere [56,60,61].

We considered orthorhombic simulation cells of graphite
with N = 960 atoms and similar side lengths in the in-plane
x and y directions (Lx ≈ Ly). These cells included four carbon
sheets in AB stacking, each with n = 240 atoms. Periodic
boundary conditions were assumed. To check the conver-
gence of our results, some simulations were carried out for
larger simulation cells with n = 960 atoms. As the size n is
increased, there appear vibrational modes with longer wave-
length λ. In fact, one has an effective wavelength cutoff
λmax ≈ L, where L = (LxLy)1/2, which translates into a wave
vector cutoff kmin ≈ 2π/L, with k = |k|. The results obtained
using n = 240 and 960 atoms/layer for the energy, in-plane
area, and interatomic distances coincide within the statistical
error bars of our simulations. For example, for the energy and
mean interatomic distance, differences are less than 6 × 10−4

eV/atom and 4 × 10−5 Å, respectively.
Sampling of the configuration space was performed in the

temperature range between 50 K and 1500 K. The Trotter
number NTr (number of beads in the ring polymers) varies
with the temperature as NTr = 6000 K/T , which gives a
roughly constant accuracy of the PIMD results for different
temperatures [60–62]. A typical simulation run in the NV T or
NPT ensembles consisted of 2 × 105 PIMD steps for system
equilibration and 8 × 106 steps for calculation of average vari-
ables. For comparison with the results of our quantum PIMD
simulations, we have also carried out classical molecular dy-
namics simulations with the same interatomic potential. In our
context, these classical simulations correspond to a Trotter
number NTr = 1.

In Fig. 1 we present the mean-square displacement (MSD)
of carbon atoms in the (x, y) layer plane, (�rp)2 = (�x)2 +
(�y)2, at several temperatures and zero external pressure.
Solid circles represent data points obtained from classical
MD simulations, whereas squares indicate results of PIMD
simulations. The classical results converge to zero in the low-
temperature limit, as expected in classical physics, while the
quantum data converge at low T to (�rp)2 = 3.4 × 10−3 Å2

(in-plane zero-point delocalization). The difference between
classical and quantum results decreases as temperature is
raised, but is clearly appreciable in the whole temperature
range displayed in Fig. 1. An even larger quantum delocal-
ization occurs for the out-of-plane z direction, which has been
studied in detail for graphene in Ref. [33]. Such atomic quan-
tum delocalization (in-plane and out-of-plane) causes changes
in the properties of the material, especially in the presence
of anharmonicities in the lattice vibrations, as the atomic
motion “explores” larger regions of the configuration space,
as compared to classical simulations.

The elastic stiffness constants at T = 0 have been calcu-
lated from the phonon dispersion bands and cell distortions
as explained in Sec. III. Relations between the elastic stiff-
ness constants Ci j and compliance constants Si j for hexagonal
crystals, as well as their definitions as functions of the strain
and stress components, ei j and τi j , are given in the literature
[63–65]. We use the standard notation for strain components,
with ei j = εi j for i = j, and ei j = 2εi j for i �= j [63,66].

At finite temperatures, we have also obtained the elastic
constants of graphite in two different ways. The first way
consists of applying a certain component of the stress tensor in
isothermal-isobaric simulations, and obtaining the associated
elastic constants from the resulting strain. Thus, for example,
for τxx �= 0 and τi j = 0 for the other components we can cal-
culate S11, S12, and S13. Then, from the obtained compliance
constants we calculate the stiffness constants Ci j using the
relations corresponding to hexagonal crystals [63–65].

In the second way, we take as a reference for each tem-
perature and kind of simulation (classical MD or PIMD)
the simulation cell parameters obtained from equilibrium
isothermal-isobaric simulations at that temperature. Then, we
carry out NV T simulations for cells strained a certain amount
with respect the equilibrium one. For example, for ezz �= 0 and
ei j = 0 for the other components of the strain tensor, we ob-
tain a stress tensor {τi j} from which we calculate the stiffness
constants C13 and C33. Comparing the results of both methods
provides us with a consistency check for our calculations.

III. PHONON DISPERSION BANDS AND ELASTIC
CONSTANTS AT T = 0

The evaluation of the elastic stiffness constants, Ci j, of
graphite with the LCBOPII potential model in the classical
T → 0 limit provides us with a useful reference for the sub-
sequent analysis of temperature and nuclear quantum effects.
Two alternative methods have been employed to derive Ci j

in this limit, namely the analysis of the harmonic dispersion
relation of acoustic phonons, and the calculation of the elastic
energy associated with some selected strain tensors, {ei j}.

The phonon bands of graphite derived from the LCBOPII
potential employed here are displayed in Fig. 2. These
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FIG. 2. Phonon dispersion bands of graphite as derived from
the LCBOPII potential model in a harmonic approximation. The
labels LA, TA, and ZA refer to the acoustic bands employed in the
calculation of the elastic stiffness constants. The inset amplifies the
low-energy acoustic bands along the 	-A direction.

bands were obtained by diagonalization of the dynami-
cal matrix along selected symmetry directions in reciprocal
space. Interatomic force constants were derived by numeri-
cal differentiation of the forces using atom displacements of
1.5 × 10−3 Å with respect to the equilibrium positions. The
phonon dispersion in Fig. 2 is similar to that obtained from
other empirical potentials and DFT calculations [67]. In Ta-
ble I we present frequencies of optical modes at the 	 point
and acoustic modes at the high-symmetry points M, K , A in k
space, derived from DFT calculations in the local-density ap-
proximation (LDA) and generalized-gradient approximation
(GGA) [67], as well as those obtained with the LCBOPII
interatomic potential.

The sound velocities for the three acoustic bands (LA, TA,
and ZA) along the direction 	-M, with wave vectors (kx, 0, 0),
correspond to the slopes (∂ω/∂kx )Γ . For the hexagonal sym-

TABLE I. Phonon frequencies (in cm−1) at high-symmetry
points in k space, obtained in Ref. [67] from LDA and GGA-DFT
calculations, along with those found for the LCBOPII interatomic
potential employed here.

LDA GGA LCBOPII

	 LO/TO 1597 1569 1570
ZO 893 884 901
TO′ 43 21
LO′ 120 128

M LA 1346 1338 1266
TA 626 634 714
ZA 472 476 396

K LA/LO 1238 1221 1158
ZA/ZO 535 539 465

TA 1002 1004 1035
A LA/LO′ 85 90

TA/TO′ 30 14

TABLE II. Definition of the six different cell strains employed
to calculate the elastic energy and the classical value of the elastic
stiffness constants at T = 0. The isotropic bulk modulus, Biso, is
defined in Eq. (18).

Strain Components, ei j �= 0 Eelas/V0

1 exx = eyy = e (C11 + C12)e2

2 exx = −eyy = e (C11 − C12)e2

3 ezz = e 1
2C33e2

4 exz = ezx = e 2C44e2

5 exx = eyy = ezz = e 9
2 Bisoe2

6 exx = eyy = − e
3 , ezz = 2e

3
1
9 (C11 + C12 + 2C33 − 4C13)e2

metry of graphite, these velocities are related to the elastic
stiffness constants as follows [68]:

ωLA =
(

C11

ρ

)1/2

kx, (1)

ωTA =
(

C11 − C12

2ρ

)1/2

kx, (2)

ωZA =
(

C44

ρ

)1/2

kx, (3)

where ρ is the density of graphite. Along the 	-A direction,
(0, 0, kz ), the sound velocities of the LA and the twofold-
degenerate TA branches are given by [68]

ωLA =
(

C33

ρ

)1/2

kz, (4)

ωTA =
(

C44

ρ

)1/2

kz . (5)

The interatomic potential LCBOPII was employed earlier to
obtain the phonon dispersion bands of graphene [69]. We note
that the version of the potential used in that work was slightly
different than that employed here, which is more realistic
to describe the bending of the graphene sheets [50,52], as
mentioned above in Sec. II.

Our second approach to determine Ci j at T = 0 consists of
calculating the elastic energy, Eelas, for small strains ei j , which
can be expressed as

Eelas

V0
= E − E0

V0
= 1

2

6∑
i=1

6∑
j=1

Ci jeie j, (6)

where E0 and V0 are the energy and volume of the equilibrium
configuration in the absence of strain (see below). We use the
Voigt notation, where the components of the strain tensor are
labeled as

{ei, i = 1, . . . , 6} = {exx, eyy, ezz, eyz, exz, exy}. (7)

The elastic energy corresponding to six different strain
tensors, employed in the evaluation of Ci j , is summarized in
Table II. The tensor components are defined with the help of a
dimensionless constant e. The elastic stiffness constants were
obtained by quadratic fits of the function Eelas/V0 for strains
defined in the region |e| � 2 × 10−3. One important aspect
in the calculation of the elastic energy is that, whenever the
solid lattice is subjected to a uniform strain, the atoms will
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TABLE III. Elastic stiffness constants, bulk modulus, and
Poisson’s ratio of graphite, derived from classical and quantum sim-
ulations at T = 0, 300, and 750 K. Data for Ci j and B are in GPa. We
give in parentheses the statistical error in the last digit.

T = 0 T = 300 K T = 750 K

classical quantum classical quantum classical quantum

C11 1007.7(5) 992(1) 969(1) 960(2) 917(2) 910(2)
C12 216.3(3) 174(1) 175(1) 162(2) 134(1) 131(2)
C13 1.05(4) 1.0(1) 3.4(1) 3.4(1) 5.7(1) 5.7(1)
C33 37.1(1) 35.9(1) 34.6(1) 33.9(1) 31.6(1) 31.2(1)
C44 1.03(2) 0.74(1) 0.61(1) 0.57(1) 0.42(2) 0.41(2)
B 35.1(1) 33.8(1) 33.0(1) 32.3(1) 30.4(1) 30.0(1)
ν 0.215 0.175 0.181 0.169 0.146 0.144

rearrange themselves in the distorted lattice to minimize the
elastic energy [70–72]. This aspect is especially important
in the case of strain 2 in Table II, where upon a uniform
distortion of the lattice, one finds that the elastic energy is
reduced by 13% when internal relaxation of atomic positions
in the distorted lattice is allowed. Only when this atomic
relaxation is included do the elastic constants calculated by
the elastic-energy method and the acoustic phonon dispersion
agree with each other [71]. Our results for the classical T → 0
limit of the elastic stiffness constants of graphite are summa-
rized in Table III, along with also finite-temperature values
which will be discussed below. The error bars in the classical
zero-temperature values were derived from the differences
encountered between both methods employed here, except for
C13, where the error bar corresponds to the results obtained
with strains 5 and 6.

IV. ENERGY

In this section we present the internal energy of unstressed
graphite, obtained from PIMD simulations in the isothermal-
isobaric ensemble at various temperatures. These kinds of
simulations yield separately the kinetic and potential energy
of the system [41,73], which allows us to analyze anhar-
monicities in the solid by comparing both energies. For given
temperature and external stress, we express the internal energy
as E = E0 + Epot + Ekin, where Epot and Ekin are the kinetic
and potential energy, and E0 is the energy of the classical
model at T = 0, i.e., the minimum-energy configuration of
the considered LCBOPII potential, with totally planar sheets
and no atomic quantum delocalization.

In the classical minimum, the energy of graphite de-
creases by 50 meV/atom with respect to an isolated graphene
monolayer. This stabilization energy, associated with layer
interactions, is in line with that found from classical Monte
Carlo simulations of bilayer graphene using the LCBOPII
potential [54] (25 meV/atom, since in this case each graphene
layer has only one neighboring layer). The interlayer binding
energies obtained from various ab initio calculations for the
AB stacking of graphite display a rather large dispersion,
with most data between 20 and 80 meV/atom [12,74,75].
Experimental values at room temperature lie between 35 and
52 meV/atom [12].
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FIG. 3. Internal energy of unstressed graphite as a function of
temperature, obtained from PIMD (squares) and classical MD simu-
lations (circles). Solid lines are guides to the eye. Error bars are less
than the symbol size. A vertical dashed arrow indicates the zero-point
energy, EZP = 173 meV/atom. A dashed line shows the internal
energy of monolayer graphene, as derived from PIMD simulations.

In Fig. 3 we display the temperature dependence of the
internal energy per atom, E − E0, as derived from our PIMD
simulations of unstressed graphite (solid squares). For com-
parison, we also show the internal energy obtained from
classical MD simulations (circles). In the quantum case,
E − E0 converges in the low-T limit to a zero-point energy
EZP = 173 meV/atom. This value is slightly higher than
that corresponding to a graphene monolayer [33] (EZP = 171
meV/atom), which indicates that most of the zero-point en-
ergy is due to high-frequency in-plane vibrational modes,
which are not appreciably changed by the interaction between
layers.

In the quantum model, the internal energy follows at low
temperature (T < 200 K) a dependence E − E0 ∼ T 3, which
is consistent with the known dependence cp ∼ T 2 for the spe-
cific heat of graphite in this temperature region [76,77]. The
classical model yields at low T a dependence E − E0 ∼ T , as
expected from the equipartition principle in classical statisti-
cal mechanics for harmonic lattice vibrations, which gives the
Dulong-Petit law: cp = 3NkB irrespective of T . At high T we
find from the classical simulations slight deviations from this
law, due to anharmonicity of the vibrational modes. The en-
ergy data found from PIMD simulations converge to those of
classical MD simulations as temperature is raised. However at
T = 1000 K we still observe a significant difference between
quantum and classical results, close to 50 meV/atom.

The dashed line in Fig. 3 represents the internal energy per
atom for a graphene monolayer, as derived from PIMD simu-
lations. This line is shifted upward by �E = 48 meV/atom
with respect to the quantum data of graphite, which is the
effective interlayer interaction. This value is slightly lower
than that found in the classical calculation at T = 0 (�E = 50
meV/atom), due to the larger zero-point energy per atom in
graphite.
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As indicated above, an overall quantification of the anhar-
monicity of vibrational modes in graphite can be obtained by
comparing the kinetic and potential energy yielded by PIMD
simulations. For strictly harmonic vibrations, one has Ekin =
Epot (virial theorem), so departure from pure harmonicity can
be assessed in view of deviations from unity of the ratio
Ekin/Epot. At low T , we find for graphite a ratio Ekin/Epot =
1.02. From earlier analysis of anharmonicity in solids, on
the basis of quasiharmonic approximations and perturbation
theory, it is known that for small T , changes in the vibrational
energy with respect to a harmonic approach are essentially
due to the kinetic-energy contribution. Indeed, for a perturbed
harmonic oscillator with an energy perturbation proportional
to r3 or r4 at T = 0 (here r is any coordinate in the problem),
the first-order change in the energy is due to a variation of Ekin,
and Epot remains changeless as in the unperturbed oscillator
[78,79].

V. STRUCTURAL VARIABLES

A. Crystal volume

In Fig. 4 we present the volume per atom as a function
of temperature, as derived from classical MD (circles) and
PIMD simulations (squares) in the NPT ensemble for zero
external stress (solid symbols) and a hydrostatic pressure
P = 1 GPa (open symbols). As is usual in thermodynamics,
and in the definition of the bulk modulus considered below, a
compressive pressure is positive. In the stress-tensor notation
employed in elasticity this corresponds to τxx = τyy = τzz =
−1 GPa, and ταβ = 0 for α �= β.

We comment first on the results for the unstressed ma-
terial. The data derived from classical simulations display a
temperature dependence of the volume close to linear, with a
positive slope dV/dT slowly increasing for rising T . These
data converge at low temperature to V0 = 8.727 Å3/atom,
which corresponds to the minimum-energy volume. For com-
parison, we mention that earlier theoretical work based mainly

on DFT calculations gave values for V0 between 8.61 and 8.94
Å3/atom [10,11,80,81]. The equilibrium volume obtained
from PIMD simulations at each temperature is larger than the
classical result, and converges to 8.837 Å3/atom for T → 0.
This represents a zero-point volume expansion of 1.3% with
respect to the classical minimum. At high temperature the
quantum and classical data converge one to the other. Our
results are not far from the volume obtained for graphite at
ambient conditions from x-ray diffraction experiments: 8.78
and 8.80 Å3/atom in Refs. [82] and [83], respectively.

At low temperature (T → 0) the interlayer distance, c,
increases from the classical limit by 0.4%, and the linear
expansion in the sheet plane (x and y directions) amounts also
to 0.4%. The zero-point expansion of a crystal is controlled by
the anharmonicity of the lattice vibrations. In terms of a QHA,
this expansion depends on each phonon through the product
of its zero-point energy and the corresponding Grüneisen pa-
rameter [13,66,84,85]. Given that the main contributions to
the in-plane and out-of-plane expansions are dominated by
phonons with different polarization, it seems accidental that
the relative quantum effects in directions x and z coincide, in
spite of the large anisotropy of the material. This anisotropy is,
however, clearly observable in the thermal expansion at finite
temperatures (see Sec. VI).

For graphite under a hydrostatic pressure P = 1 GPa, we
obtain classical and quantum results similar to those found for
the unstressed material, with the following differences. First,
the volume is reduced, but this reduction is much less in the
(x, y) plane than in the out-of-plane z direction, which cor-
responds to the different magnitudes of the elastic constants
governing the compressibility in different crystal directions
(see below). Second, the zero-point volume expansion is re-
duced with respect to that found for unstressed graphite. For
P = 1 GPa we find �V = 0.099 Å3/atom for T → 0 vs an
expansion of 0.110 Å3/atom for P = 0. Third, the thermal
dilation decreases under an applied hydrostatic pressure. In
the temperature range from T = 0 to 1000 K, we find from
the PIMD data an expansion of 0.169 and 0.207 Å3/atom for
the stressed and unstressed material, respectively.

The dependence of crystal volume on hydrostatic pressure
is displayed in Fig. 5 for several temperatures. Symbols are
data points derived from PIMD simulations and solid lines
are guides to the eye. The dashed line indicates the pressure
dependence of V for the classical model at T = 0. For each
pressure P, this corresponds to the minimum of the enthalpy
H = E − PV . Note the important difference between this
classical result at T = 0 and the quantum result at T = 100 K
(more than 0.1 Å3/atom), due to the low-temperature crystal
expansion for the quantum model, as shown in Fig. 4. The
solid lines in Fig. 5 seem at first sight rather parallel, but dif-
ferences between their slopes (in particular at P = 0) indicate
changes in the bulk modulus of the material (see below). The
volume differences between these isotherms become smaller
as the hydrostatic pressure is increased. Thus, the difference
between the quantum result at 100 K and the classical mini-
mum is reduced by 13% from P = 0 to 1 GPa.

Volume changes under a hydrostatic pressure are related
to the bulk modulus B, as discussed in Sec. VIII. From the
classical data at T = 0, we have dV/dP = −0.246 Å3/(atom
GPa) in the limit P → 0, whereas at T = 1000 K,
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FIG. 5. Volume of graphite as a function of hydrostatic pressure
at various temperatures, as derived from PIMD simulations. From
top to bottom, T = 1000, 750, 500, 300, and 100 K. Solid lines are
guides to the eye. A dashed line represents the pressure dependence
of the classical volume at T = 0.

our PIMD simulations yield dV/dP = −0.313 Å3/(atom
GPa).

The strain components exx and ezz for a hydrostatic pressure
P can be obtained from the elastic compliance constants Si j as
[63,65]

exx

ezz
= S11 + S12 + S13

2S13 + S33
. (8)

At room temperature (T = 300 K) we find from our PIMD
simulations exx/ezz = 0.027. At 1000 K this ratio decreases to
0.023.

For the calculation of elastic constants at finite tempera-
tures presented in Sec. VII, we have carried out simulations of
graphite under various kinds of stress, given by the different
components of the tensor {τi j}, as explained in Sec. II. In
Fig. 6 we present the dependence of the crystal volume on
uniaxial stress along the x and z directions at T = 300 K, as
derived from PIMD simulations. These uniaxial stresses cor-
respond to nonvanishing components of the stress tensor τxx

and τzz, respectively. The volume change in the second case is
much larger than in the former, due to the higher compress-
ibility in the z direction, perpendicular to the layer planes. For
τxx and τzz close to zero we find for the stress derivative of the
volume values of −7.2 × 10−3 and −0.256 Å3/(atom GPa),
respectively.

The volume change under a uniaxial stress can be obtained
from the elastic constants of the material, in particular from
the compliance constants. We have [63,65]

�V

V
= exx + eyy + ezz = (S11 + S12 + S13)τxx, (9)

or, for the stress derivative of the volume,

dV

dτxx
= (S11 + S12 + S13)V. (10)

-1 -0.8 -0.6 -0.4 -0.2 0

Stress  (GPa)

8.65

8.7

8.75

8.8

8.85

8.9

V
ol

um
e 

 (
Å

3  / 
at

om
)

τ
xx

τ
zz

Graphite
T = 300 K

PIMD

FIG. 6. Volume of graphite as a function of uniaxial stress along
the x and z directions of the orthorhombic simulation cell at T =
300 K. τxx and τzz indicate the nonvanishing components of the stress
tensor in each case. Symbols represent results of PIMD simulations,
with error bars less than the symbol size. Lines are guides to the eye.

Similarly, for a uniaxial stress τzz, one has

dV

dτzz
= (2S13 + S33)V. (11)

Note that the ratio of these stress derivatives of the volume
coincides with the ratio exx/ezz given above for a hydrostatic
pressure.

B. In-plane area

In the graphene literature, researchers have discussed with
great detail the behavior of the in-plane area of the 2D ma-
terial, which in the case of graphite corresponds to the area
LxLy on the xy plane of the simulation box. Here we will
consider the in-plane area per atom, Ap = LxLy/n. In Fig. 7
we show the temperature dependence of Ap for unstressed
graphite, as derived from classical MD (circles) and PIMD
simulations (squares). At first sight one observes an important
difference between the quantum and classical results. In the
quantum data we find a decrease in Ap for rising T until a
temperature of about 600 K, for which it reaches a minimum,
and an increase in Ap at higher T . In contrast, in the classical
data we obtain a rise (roughly linear) of Ap at low T , and
an increase faster than linear at T > 500 K. At T = 1500 K
the difference between classical and quantum data for Ap is
still much larger than the error bars of the simulation results
(smaller than the symbol size in Fig. 7).

In the low-temperature limit (T → 0), the in-plane area
Ap derived from PIMD simulations converges to 2.6371
Å2/atom, with a C-C bond length dC−C = 1.4276 Å. For
the classical minimum we find a value A0 = 2.6149 Å2/atom,
which corresponds to a C-C distance d0 = 1.4188 Å. This
gives for the quantum result a zero-point expansion in the area
Ap of 0.022 Å2/atom, i.e., a relative increase of about 1%,
associated with the rise in C-C bond length. Looking at the
C-C distance for the classical minimum, d0, we observe that
there is a slight in-plane lattice contraction with respect to the
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FIG. 7. Temperature dependence of the in-plane area per atom,
Ap, obtained from classical (circles) and PIMD (squares) simulations
for n = 240. Error bars are less than the symbol size. Solid lines are
guides to the eye. A dashed line indicates the dependence of Ap on T
for a graphene monolayer, as derived from PIMD simulations for the
same system size.

cases of a graphene monolayer (d0 = 1.4199 Å) and bilayer
(d0 = 1.4193 Å), as a consequence of interlayer interactions
[33,39]. We note that although in the classical model one
has planar carbon sheets for T → 0, in the quantum zero-
temperature limit the layers are not exactly planar, since there
is an atomic zero-point motion in the out-of-plane z direction
[33,48].

For comparison with the results for graphite, we also
present in Fig. 7 the area Ap obtained from PIMD simulations
of monolayer graphene with the same size n = 240 (dashed
line). In this case, the shape of the temperature dependence
is similar to that of graphite, with a decrease in Ap at low
T and an increase at high T . For graphene, however, the
decrease is larger and the minimum of Ap occurs at a higher
temperature. At low T , the area Ap of graphite is reduced by
4 × 10−3 Å2/atom with respect to a graphene monolayer, as a
consequence of layer interactions.

The fact that dAp/dT < 0 at low temperature, as obtained
in the quantum simulations, is due to the out-of-plane motion
of the carbon atoms, which dominates over the thermal ex-
pansion of the C-C bonds in the graphite layers. This effect
is not captured by a classical model for the atomic motion, as
happens in classical MD simulations, where the relative con-
tributions of the different vibrational modes are not correctly
represented at low temperatures. At high T , the bond expan-
sion dominates over the contraction associated with motion
in the z direction, so that dAp/dT > 0 in both classical and
quantum models.

VI. THERMAL EXPANSION

At low T our PIMD simulations give for graphite with AB
stacking an interlayer spacing c = 3.3510 Å. For the classical
model at T = 0 (minimum energy configuration with planar
graphene sheets) we find c0 = 3.3372 Å. Thus, we have a
zero-point expansion �c = 1.4 × 10−2 Å. At T = 300 K, we

0 500 1000 1500

Temperature  (K)

0

1

2

3

10
5

α 
  (

K
-1

)

α
z

α
x

Graphite

classical

classical

PIMD

PIMD

FIG. 8. Linear thermal expansion coefficients of graphite vs
temperature: αx along the in-plane x direction and αz along the out-
of-plane z direction. Symbols represent data obtained from PIMD
simulations for n = 960 and solid lines are guides to the eye. Dotted
lines indicate results derived from classical MD simulations. The
dashed line represents data obtained for αz by Bailey and Yates
[88] from interferometric measurements at T < 300 K. The dashed-
dotted line is a fit to experimental data of αz for T > 300 K [63].

have c = 3.3688 Å from PIMD simulations, not far from a
distance of 3.3538 Å obtained by Baskin and Meyer from
x-ray diffraction measurements at room temperature (T =
297 K) [86]. At 300 K, the difference between quantum and
classical results is around four times smaller than for the
low-temperature limit.

From the mean interlayer spacing we consider the linear
thermal expansion coefficient (TEC) αz, defined as

αz = 1

c

(
∂c

∂T

)
τ

. (12)

This TEC for vanishing external stress has been commonly
denoted as αc in the literature, but we will call it here αz

for notation consistency. Data for αz obtained from PIMD
simulations of graphite are presented in Fig. 8 as solid circles.
These data points were obtained from a numerical deriva-
tive of the mean layer spacing c found in the simulations at
several temperatures. One observes a fast rise of αz in the
low-temperature region up to around 200 K, and at higher
T this rise becomes much slower. At 300 K we find αz =
2.6 × 10−5 K−1. For comparison, we also present in Fig. 8
results of classical MD simulations for αz (dotted line). They
converge at low T to a value αz = 2.9 × 10−5 K−1. Note the
inconsistency of this classical result with the third law of
thermodynamics, which requires that TECs should vanish for
T → 0 [66,87].

Experimental data for αz of pyrolytic graphite at low T
were obtained by Bailey and Yates [88] from interferometric
measurements (dashed line in Fig. 8). The dashed-dotted line
indicates a fit to experimental data from several sources at
T > 300 K, presented by Marsden et al. [63]. Both dashed
and dashed-dotted lines derived from experimental data do
not fit well one with the other close to room temperature,
due to the dispersion of data in different source references.
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At T > 500 K we observe that the TEC αz obtained from
our PIMD simulations rises slower than the line fitted to
experimental data in Ref. [63].

In the xy layer plane, we consider a linear TEC defined as

αx = 1

Lx

(
∂Lx

∂T

)
τ

. (13)

In Fig. 8 (bottom) we display αx obtained from PIMD sim-
ulations of graphite up to 1500 K (solid squares). The solid
line represents a polynomial fit to the data points. At low
temperature this TEC is negative and reaches a minimum at
Tm ≈ 250 K. For T > Tm, αx increases for rising tempera-
ture and becomes positive at Tm ≈ 600 K, which coincides
with the temperature at which the in-plane area Ap attains
its minimum value, as shown in Fig. 7. For comparison, the
dotted line in Fig. 8 (bottom) represents the results obtained
for αx from classical MD simulations. This classical αx takes
positive values in the whole temperature region considered
here, and converges at low T to a (nonphysical) value of
2.2 × 10−6 K−1. The quantum data for αx are below the clas-
sical ones, and for T > 1500 K they are close one to the other.

Our results for αx show a temperature dependence similar
to those obtained earlier employing other theoretical tech-
niques, in particular that found by Mounet and Marzari [13]
from a combination of DFT calculations with a QHA for the
vibrational modes. These authors found for αx a minimum
of −1.2 × 10−6 K−1 for T ≈ 250 K and a vanishing TEC
for T ≈ 500 K. Experimental results for the TEC αx show a
minimum at a temperature between 200 and 300 K, similarly
to the data obtained from our quantum simulations [63,89,90].
Several experimental data sets display a minimum of about
−1.5 × 10−6 K−1, which turns out to be somewhat less than
our data presented in Fig. 8.

VII. LINEAR ELASTIC CONSTANTS AT FINITE
TEMPERATURES

In this section we present and discuss nuclear quantum
effects in the elastic stiffness constants of graphite. Such ef-
fects are present in general for the different elastic constants,
mainly at low temperature, but they turn out to be especially
large for C12 and C44. In Fig. 9(a) we present the temperature
dependence of the elastic constant C12, as derived from our
classical (circles) and PIMD (squares) simulations. The clas-
sical finite-temperature results converge at low T to the value
obtained from the phonon dispersion, indicated by an open
circle in Fig. 9(a). In the limit T → 0, this elastic constant
is found to decrease from the classical value of 216 GPa to
174 GPa due to zero-point motion. This represents a reduction
of 19% with respect to the classical result. At room tempera-
ture the quantum reduction amounts to a 7%.

In Fig. 9(b) we display the dependence of C44 on tem-
perature for both quantum (squares) and classical (circles)
cases. The open circle at T = 0 represents the value calculated
from the phonon dispersion curves as explained in Sec. III
[C44 = 1.03(2) GPa]. The quantum results converge at low T
to C44 = 0.74 GPa. This elastic constant is particularly inter-
esting from the viewpoint of quantum effects. Given its small
value in comparison to other stiffness constants of graphite,
at low temperature the quantum correction with respect to the
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FIG. 9. Temperature dependence of the elastic constants: (a) C12

and (b) C44, as derived from classical MD (circles) and PIMD
(squares) simulations in the NV T ensemble. Open circles in (a) and
(b) represent the classical value at T = 0, calculated from the phonon
dispersion curves. Error bars, when not shown, are in the order of the
symbol size. Lines are guides to the eye.

classical result is very large. In the limit T → 0, it means a
relative reduction of C44 by 28%.

Concerning nuclear quantum effects, something similar
occurs for other elastic stiffness constants, as C11 and C33, for
which results of classical and PIMD simulations are given in
Table III at T = 300 and 750 K, as well as for the low-T limit.
In all cases, the classical value at T = 0 is calculated from
the phonon dispersion bands and lattice strains, as explained
in Sec. III. The low-temperature quantum values are obtained
from an extrapolation of finite-temperature PIMD results. For
C11 and C33, zero-point motion causes a decrease of 1.5%
and 3.0% with respect to the classical value, respectively. We
do not clearly observe any quantum effect in C13. In fact,
for this stiffness constant the results of PIMD and classical
MD simulations coincide within error bars in the temperature
region considered here.

It is worthwhile commenting on the relation between the
temperature dependence of the linear elastic constants shown
in Fig. 9 and the quantum delocalization of atomic nuclei.
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TABLE IV. Elastic stiffness constants, bulk modulus B, and
Poisson’s ratio ν of graphite obtained from various experimental
techniques by different authors at ambient conditions. Data for Ci j

and B are given in GPa. The bulk modulus B is obtained in each case
from the elastic constants by using Eq. (16).

Blakslee [7] Bosak [8] Nicklow [9]

C11 1060(20) 1109(16) 1440(200)
C12 180(20) 139(36)
C13 15(5) 0(3)
C33 36.5(1) 38.7(7) 37.1(5)
C44 0.27(9) 5.0(3) 4.6(2)
B 35.8(2) 36.4(11)
ν 0.17 0.13

For C12 and C44, we find in the classical results a decrease
as temperature is raised. This is related to classical thermal
motion of the carbon atoms, which grows with temperature
as indicated by the MSD shown in Fig. 1. In the results of our
quantum PIMD simulations we observe an important decrease
in the zero-temperature elastic constants, due to zero-point de-
localization (finite MSD), with respect to the classical values,
where the atomic MSD vanishes. As temperatures increases,
the quantum and classical results converge one to the other, as
happens for the MSD. Something similar can be said for the
results of the bulk modulus presented below in Sec. VIII.

In Table IV we present values of the elastic stiffness con-
stants derived from experimental data by several authors, from
a combination of ultrasonic, sonic resonance, and static test
methods [7], as well as inelastic x-ray scattering [8] and in-
elastic neutron scattering along with a force model [9]. There
appears some dispersion in these results derived from experi-
ments at ambient conditions, in particular for C13 and C44, as
can be seen in our Table IV and in Refs. [7,8]. For C44 these
values range from 5.0 GPa to less than 1 GPa. The low value
C44 = 0.27(9) GPa obtained by Blakslee et al. [7] may be
due to the presence of dislocations in the studied material, as
suggested by the authors. In a later paper, Seldin and Nezbeda
[91] found that this elastic constant rises when the graphite
samples are irradiated with neutrons at several temperatures.
These authors found that natural graphite crystals have after
irradiation a shear modulus C44 in the range 1.6–4.6 GPa.
Experimental data for C13 of graphite are scarce, and different
techniques have yielded diverse outcomes. The results found

by Bosak et al. [8] were compatible with a vanishing C13

(within their error bars).
In Table V we give values of the elastic constants of

graphite calculated by various research groups. Several cal-
culations were carried out in the framework of DFT, with
both local-density approximation (LDA) and generalized-
gradient approximation (GGA) [10,12,13]. Moreover, Jansen
and Freeman [11] employed the full-potential linearized
augmented-plane wave (FLAPW) method, and Michel and
Verberck obtained the elastic constants from the phonon spec-
trum calculated with an effective potential [14]. In spite of
the general reliability of these theoretical procedures, there
are some discrepancies between the results of the different
research groups. A common feature of the data derived from
DFT calculations is that they yielded C13 < 0, as shown in
Table V. Although this is not forbidden for the stability of
hexagonal crystals [92], we are not aware of any experimental
work on graphite where C13 was found to be negative. We
also note the anomalous (very small) value obtained for C33

in Ref. [12] from DFT-GGA calculations, which seems to
be due to a largely underestimated interlayer interaction. Our
main conclusion concerning the linear elastic constants of
graphite is that the intrinsic difficulty of calculating the elastic
constants of this largely anisotropic material is still more com-
plicated at temperatures lower than the Debye temperature of
the material, where nuclear quantum effects are relevant.

From the elastic stiffness constants one can obtain the Pois-
son’s ratio ν, which is a measure of the relation between the
transverse and longitudinal strains under an applied stress. For
graphite one has ν = C12/C11. In Table III we give the Pois-
son’s ratio calculated from the elastic constants yielded by our
classical and quantum simulations. In our results, ν is found
to decrease as temperature is raised. In the low-temperature
limit, nuclear quantum motion causes a reduction of ν from
0.215 to 0.175; i.e., it decreases by 19%. At T = 300 K the
classical and quantum values are 0.181 and 0.169, respec-
tively, with a decrease of 7% due to quantum motion. At 750 K
this decrease is small, about 1%.

In Table IV we give values of the Poisson’s ratio obtained
from the elastic constants found in experimental works [7,8].
The value derived from the work of Blakslee et al. [7] is
close to our quantum result at T = 300 K, and that from the
paper by Bosak et al. [8] is somewhat lower. Data derived
from theoretical methods given in Table V are close to our
classical value at T = 0, ν = 0.215. A larger collection of

TABLE V. Elastic stiffness constants, bulk modulus, and Poisson’s ratio of graphite obtained from various calculations based on density-
functional theory with LDA and GGA, as well as FLAPW and lattice dynamics (Latt. dyn.). Values indicated with an asterisk (∗) correspond
to C11 + C12. Data for Ci j and B are given in GPa. The bulk modulus B is obtained in each case from the elastic constants by means of Eq. (16).

LDA [10] FLAPW [11] LDA, GGA [12] LDA, GGA [13] Latt. dyn. [14]

C11 1279.6∗ 1430∗ 1118, 1079 1211.3
C12 235, 217 275.5
C13 −0.5 −12 −2.8, −0.5 0.59
C33 40.8 56 30.4, 0.8 29.5, 42.2 36.79
C44 4.5, 3.9 4.18
B 38.3 50.2 28.0, 39.6 35.1
ν 0.210, 0.201 0.227
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data for the Poisson’s ratio of graphite derived from theoret-
ical methods is given in Ref. [93]. The data reported in the
literature display a large dispersion, most of them lying in
the region from 0.12 to 0.3. We note that the Poisson’s ratio
usually considered for graphite is an in-plane variable; i.e.,
it refers to the x and y directions. One can equally define an
out-of-plane ratio νxz, referring to the x and z directions. In this
case, νxz = C13/C11, and we find from our PIMD simulations
at 300 K νxz = 3.5 × 10−3.

VIII. BULK MODULUS

We present here results for the isothermal bulk modulus,
B = −V (∂P/∂V )T , derived from our classical MD and quan-
tum PIMD simulations. To check the overall consistency of
our procedures, we obtain B in three different ways: (1) cal-
culating ∂P/∂V from a numerical differentiation for positive
and negative hydrostatic pressures P close to P = 0, (2) from
the volume fluctuations along NPT simulation runs at temper-
ature T , and (3) from the elastic constants obtained from the
simulations.

In the isothermal-isobaric ensemble (our second method),
the bulk modulus can be directly calculated from the mean-
square fluctuations of the volume, σ 2

V , using the formula
[94,95]

B = kBTV

σ 2
V

, (14)

kB being Boltzmann’s constant. This expression has been em-
ployed earlier to obtain the bulk modulus of various kinds of
solids from path-integral simulations [34,95].

The bulk modulus of graphite can also be calculated from
the elastic constants of the material (our third procedure). For
a hydrostatic pressure P, we have τxx = τyy = τzz = −P, so
that

�V

V
= exx + eyy + ezz = −(2S11 + 2S12 + 4S13 + S33)P,

(15)
and using the relations between stiffness and compliance con-
stants [63,65], we find

B = −V
∂P

∂V
= (C11 + C12)C33 − 2C2

13

C11 + C12 + 2C33 − 4C13
, (16)

as in Refs. [10,11].
The temperature dependence of the bulk modulus B of

graphite derived from our simulations is shown in Fig. 10.
Solid and open symbols represent results of classical and
quantum simulations, respectively. In each case, symbols rep-
resent data obtained from (1) numerical derivative dP/dV
(squares), (2) fluctuation formula (circles), and (3) elastic con-
stants (diamonds). The values obtained for the bulk modulus
from the three methods agree well in the whole temperature
range considered here, for both quantum and classical data.
In the limit T → 0, we find B = 35.1 and 33.8 GPa for the
classical and quantum models, respectively. This means a
reduction of the bulk modulus by 4% due to zero-point motion
of the C atoms.

In Table III we give values of the bulk modulus B of
graphite calculated using Eq. (16) from the stiffness constants
derived from our classical and quantum simulations at T =
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FIG. 10. Temperature dependence of the bulk modulus of
graphite, obtained from PIMD (open symbols) and classical MD sim-
ulations (solid symbols). The data shown in both cases were obtained
by following three different procedures: (1) numerical derivative
dP/dV from various hydrostatic pressures P (squares), (2) fluctua-
tion formula in Eq. (14) (circles), and (3) from the elastic constants
using Eq. (16) (diamonds). Error bars are on the order of the symbol
size. Dashed lines are guides to the eye.

300 and 750 K, as well as for the zero-temperature limit.
Values of B obtained from the elastic constants yielded by
experimental and theoretical methods are given in Tables IV
and V, respectively. From an analysis of the equation of state
of graphite at room temperature, Hanfland et al. [82] found
at ambient pressure B = 33.8(30) GPa, a little higher than our
quantum result at 300 K (B = 32.3 GPa). Zhao and Spain [83]
obtained a somewhat larger value, B = 35.8(16), from x-ray
diffraction experiments. Tohei et al. [96] found B = 28.7 GPa
at 300 K from LDA-DFT calculations combined with a QHA
for the lattice modes.

One can also define an “isotropic bulk modulus” Biso for
isotropic changes of the volume [11], which means exx =
eyy = ezz = e and �V/V = 3e. One thus has a hydrostatic
pressure

P = −1

3
(τxx + τyy + τzz ), (17)

which gives

Biso = −V
∂P

∂V
= 1

9
(2C11 + 2C12 + 4C13 + C33). (18)

For the classical limit at T = 0 we have Biso = 276.6 GPa,
and from our PIMD simulations we find, for T → 0, Biso =
263.5 GPa. At T = 300 K, the classical and quantum simula-
tions yield 259.6 and 254.6 GPa, respectively.

IX. SUMMARY

PIMD simulations allow us to quantify nuclear quantum
effects in structural and elastic properties in condensed matter.
For graphite, in particular, we have seen that such quantum
effects are appreciable for T in the order of 500 K, and even
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higher for some variables. At low temperature, the quantum
zero-point expansion of the graphite volume is non-negligible,
and amounts to 1.3% of the classical value. In spite of the
large anisotropy of graphite, we have found that the expansion
due to zero-point motion is nearly isotropic; i.e., the relative
increases in in-plane and out-of-plane directions are approxi-
mately the same.

The thermal contraction of the in-plane area (αx < 0) ob-
served in x-ray diffraction experiments at low temperature is
reproduced by our quantum simulations, contrary to classical
MD, where a positive in-plane thermal expansion is found
in the whole temperature range studied here. Given that a
negative αx in layered materials is caused by out-of-plane
atomic motion, the in-plane contraction of graphite is essen-
tially due to quantum motion of the C atoms in the z direction.
Also, the characteristic trend of αx (negative at low T and
positive at high T ) is a clear signature of anharmonicity in
the vibrational modes, indicating a coupling between in-plane
and out-of-plane modes.

Quantization of lattice vibrations gives rise to changes in
the elastic properties of graphite with respect to a classi-
cal model. At low temperature, the most significant relative
changes in the elastic stiffness constants correspond to C12

and C44, where quantum corrections cause a reduction of
19% and 28%, respectively. The bulk modulus and Poisson’s
ratio decrease by 4% and 19% at low T because of zero-
point motion of the carbon atoms. In general, our results
indicate that graphite is “softer” than predicted by classical
simulations.

In connection with C13, the question is still open as to why
several ab initio calculations have yielded negative values,
which has not been observed in experimental studies. We
found here positive values for this elastic constant, but we
did not observe any quantum effect on it. All this could be
due to a lack of precision in the description of interlayer
van-der-Waals-like interactions.

We finally note the consistency of the simulation results
with the third law of thermodynamics. This means, in partic-
ular, that for T → 0, thermal expansion coefficients should
vanish. Moreover, the temperature derivatives of the elastic
stiffness constants and bulk modulus should also vanish.
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