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Quantifying multipoint ordering in alloys
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A central problem in multicomponent lattice systems is to systematically quantify multipoint ordering.
Ordering in such systems is often described in terms of pairs, even though this is not sufficient when three-point
and higher-order interactions are included in the Hamiltonian. Current models and parameters for multipoint
ordering are often only applicable for very specific cases or require approximating a subset of correlated
occupational variables on a lattice as being uncorrelated. In this paper, cluster order parameters are introduced to
systematically quantify arbitrary multipoint ordering motifs in substitutional systems through direct calculations
of normalized cluster probabilities. These parameters can describe multipoint chemical ordering in crystal sys-
tems with multiple sublattices, multiple components, and systems with reduced symmetry. These are defined in
this paper and applied to quantify four-point chemical ordering motifs in platinum/palladium alloy nanoparticles
that are of practical interest to the synthesis of catalytic nanocages. Impacts of chemical ordering on nanocage
stability are discussed. It is demonstrated that approximating four-point probabilities from superpositions of
lower-order pair probabilities is not sufficient in cases where three- and four-body terms are included in the
energy expression. Conclusions about the formation mechanisms of nanocages may change significantly when
using common pair approximations.
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I. INTRODUCTION

Chemical ordering in alloys and multicomponent crystal
systems strongly influences the properties of materials such as
mechanical strength, durability, and thermodynamic stability.
This includes both the long-range periodic arrangement of
elements in ordered alloys such as Cu3Au and the short-range
order (SRO) that occurs in solid-solution crystal systems [1].
In alloys, SRO can influence thermodynamic stability as well
as mechanical properties; increased SRO in CrCoNi alloys
leads to increased hardness [2,3]. In semiconductors, the
optical and electronic properties are affected by chemical
ordering [4]. At the solid-solution interfaces of alloy catalysts,
the adsorption of solution species is correlated with alloy
ordering, and this influences the electrochemical response [5].
In the case of platinum-based alloy nanoshells applied in hy-
drogen fuel cells as oxygen reduction catalysts, the chemical
SRO and structure of the surface alloy have a strong influence
on catalyst durability [6]. In these catalytic surface alloys and
in many cases, such as high-entropy oxides, semiconductor
crystals with multiple sublattices, and other catalyst systems,
the chemical ordering motifs of interest are composed of
multiple points and may span multiple sublattices [5,7,8]. Due
to the strong interdependence between SRO and the properties
of materials, it is desirable to systematically quantify chemical
ordering in substitutional systems.
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The Warren-Cowley SRO parameters are among the most
commonly used descriptors for pair ordering in alloys, both
experimentally and theoretically [9–14]. These parameters
can be written for binary systems as

γ pq
m = 1 − P(q|p)m

cq
. (1)

The parameter is given in terms of the conditional probability
that atom p is at a site with atom q in some neighbor shell
around it, labeled by m [Fig. 1(a)]. These probabilities, which
can be obtained by inversion of pair correlations, are then
divided by the concentration cq. In a random alloy the pair
parameter is 0; when γ pq > 0, there is a tendency of p-q
ordering, and when γ pq < 0, there is a tendency of p-p and
q-q pair ordering. While the description of chemical SRO in
terms of pair ordering is useful in many cases, pairs alone
do not completely describe a substitutional system. For ex-
ample, in Fig. 1(b), the Warren-Cowley parameters do not
describe the ordering motif where a blue atom occupies a
site adjacent to a gray-blue pair (a three-point ordering). It
also cannot describe a three-point ordering between sublat-
tices in an alloy oxide. While the high-order (three-body and
beyond) correlations of this sort are often less significant than
pair correlations, all of the n-body correlations are needed to
completely describe a system [15]. Many alloys and substi-
tutional crystal systems can be represented with an Ising-like
Hamiltonian that depends on chemical occupation variables
of sites in the lattice. In such models, it has been proven
that correlations up to the order of the interactions in the
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(a)

(b)

FIG. 1. (a) Chemical ordering is often described in terms of pairs
(dark red motifs) and how much the chemistry of a given neighbor
shell deviates from its nominal stoichiometry on average in the crys-
tal. (b) Chemical ordering across multiple shells and/or sublattices
can be difficult to quantify and often requires approximation.

Hamiltonian (e.g., three-point correlations if three-body inter-
actions are included) are required to completely describe all
other correlations in the system [16]. Neglecting many-body
correlations, three atomic sites or more, can lead to poor pre-
dictions of materials properties, as in the inverse Monte Carlo
method [17–19]. Incorporation of high-order correlations and
associated SRO into models and analysis of substitutional
systems would be beneficial, but it is often dismissed due
to challenges in obtaining the multipoint probabilities both
experimentally and theoretically.

A number of other developments have been made to extend
the Warren-Cowley parameters beyond their typical applica-
tion to pair ordering in AB alloys, including the extension
of the Warren-Cowley parameters to systems with more than
two components [20,21]. Work by Clapp and co-workers
showed that some multipoint correlations can be obtained
from lower-order ones through the Kirkwood superposition
(multiplication of pair probabilities) [22–25]. In special cases
such as linear binary chains or in equimolar AB alloys, some
of the high-order correlations may be exactly expressed in
terms of lower-order pair and single-site correlations. In gen-
eral this is approximate and not suitable for systems with
highly correlated lattice occupations or with strong multipoint
interactions [16,23]. Similar approximations have been made
by Shirley and Wilkins, reconstructing multipoint correlations
from pair combinations contained in the motif [26,27]. This
method still approximates the occupations of correlated lattice
sites contained in the motif as combinations of pairs that
occur independently from one another. Its main utility is at
the order-disorder transition temperature. Definitions of multi-
point order parameters were included by Shirley and Wilkins,
but these suffer from the deficiencies associated with the ap-
proximated multipoint correlations used to define them. It was
proven by Nicholson et al. [16], and demonstrated by other au-
thors, that such methods only work in cases where interactions

beyond pairs are negligible [28]. When only pair interactions
are significant, obtaining multipoint orderings from pair cor-
relations can be highly successful [29,30]. Some three- and
four-point ordering parameters have been defined and used
for stochastic generation of two-dimensional substitutional
lattices possessing high-order correlations [31,32]. Methods
such as the geometrical locus method that quantify the order-
ing of derivative structures are currently limited to specific
crystal systems and motifs [33–35]. Exact quantification of
general multipoint orderings is still needed for substitutional
lattice systems with multiple components and between sub-
lattices. Approximating these from low-order correlations is
desirable for connection to experimental SRO intensities but,
as we show in this paper, does not apply well for all systems
with many-body interactions above pairs.

The extraction of three-point and higher-order correlations
from crystals in x-ray experiments is still an active area of
study [36–39]. Impressive strides have been made in energy-
resolved scanning tunneling electron microscopy to directly
measure SRO domains in alloys, but atomic-level chemi-
cal ordering across multiple points in alloy systems is still
challenging to quantify [3,40]. Simulation and theory could
be used to directly evaluate multipoint chemical ordering to
support experimental findings, but it can be challenging to
obtain meaningful statistics in substitutional or alloy systems
with many degrees of freedom. The notions of statistical
efficiency and accuracy need to be addressed as descriptors
of chemical ordering, such as the Warren-Cowley parameter,
are extended to multipoint motifs. This was partly addressed
by the work of de Fontaine when the order parameters were
recast as normalized pair probabilities and the number of
independent pair parameters was defined for systems with
arbitrary numbers of components [20]. We aim to extend the
description of normalized probabilities to multipoint ordering
in alloys. In this paper, cluster order parameters (ClstOPs) are
introduced for systematically quantifying multipoint ordering
in multicomponent crystals through direct measurements of
normalized cluster probabilities.

II. DEFINING THE CLUSTER ORDER PARAMETERS

A. Order parameters on a single sublattice

We define a set of order parameters to quantify arbitrary
multipoint chemical ordering. Like the Warren-Cowley pa-
rameters and the current three- and four-point parameters in
the literature, the new set of parameters should be 0 for the
disordered phase. To begin, an occupation variable represen-
tation of a single substitutional lattice is adopted, much like
that for Ising or cluster expansion models. The occupations of
sites on a lattice are designated by a collection of variables as
an occupation or spin vector,

�σ = {σ1, σ2, σ3, . . . , σN }. (2)

A spin variable σi is assigned to each lattice site of an N-site
crystal. The spin variables are integers that take on the values

σi =
{−m,−m + 1, . . . ,−1, 1, . . . , m − 1, m : m = d/2

−m,−m + 1, . . . ,−1, 0, 1, . . . , m − 1, m : m = (d − 1)/2;
(3)
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FIG. 2. A spectral expansion of the energy is enabled by defining
a complete basis over the entire domain of alloy configurations. The
alloy configuration is given by a collection of spin variables that
specify the occupation of the lattice sites. The basis functions are
defined as all possible products of the spin variables (or appropriate
site basis function to maintain orthogonality conditions). For a clus-
ter expansion in this basis, there are terms corresponding to not only
single sites and pairs (of different ranges) similar to an Ising model
but also all high-order terms such as triplets and beyond.

the first case occurs when the compositional degrees of free-
dom for a lattice site, d , are even, and the second case occurs
when the degrees of freedom are odd. In a binary alloy con-
taining two species A and B, the spin variables can take the
values σi = {−1, 1} corresponding to A and B, respectively.

We are interested in developing an order parameter for ar-
bitrary collections of lattice points in a crystal. The complete,
orthonormal set of basis functions defined for the discrete
variable space in Eq. (2) are a convenient starting point [15].
The cluster basis, spin products, is defined over the entire
configurational domain of an alloy crystal (Fig. 2). A scalar
extensive property such as the energy may be represented as
a linear expansion in this basis, E = ∑

α jα�α , where the
sum runs over clusters α and jα are the expansion coefficients
associated with the respective cluster basis function �α . The
chemical occupations for any combination of lattice sites (e.g.,
two lattice sites, three lattice sites, or more) are related to
the measured value of a corresponding cluster basis func-
tion(s) that is defined for the same lattice points. Therefore
the chemical ordering of any combination of lattice sites may
be described within the cluster expansion formalism, because
the cluster basis is complete. This formalism is defined below,
and the exact relationship is shown.

For a given cluster in the set of cluster basis functions
{�α (�σα )}, the measured value of the basis function for an alloy
configuration specified by the spin vector, Eq. (2), depends on
the spin variables of the sites contained in the cluster, �σα . Each
cluster basis function is given by

�α =
∏

( j,m) ∈α

ym(σ j ), (4)

where the product of particular site basis functions, indexed by
m, is taken over all sites j in the cluster [15]. The combination
of site indices, j ∈ α, as well as the site basis function indices,
m ∈ α, is implied by the cluster index α. The cluster basis

functions obey the orthogonality condition

〈�a(�σ )|�b(�σ )〉 = δab (5)

and the completeness relationship∑
α

�α ( �σ1)�α ( �σ2) = δ12. (6)

The choice of the site basis in Eq. (4) is somewhat arbitrary
as long as the corresponding cluster functions obey the com-
pleteness and orthogonality conditions, Eqs. (5) and (6). In
this paper, an appropriate trigonometric basis is used, and the
specification of site basis indices, m in Eq. (4), is set by the
cluster index α [41]. The set of cluster basis functions includes
an empty identity cluster for completeness, single-site, pairs,
triplets, quadruplets, and so on, as shown schematically in
Fig. 2.

In practice, for periodic crystals, the symmetry of the
crystal imposes constraints on the expansion coefficients. For
practical cases, it is more convenient to average the cluster
basis functions over the crystal. The average cluster basis
functions, often referred to as cluster correlation functions, are
given as

�̄α (�σ ) = 1

mαN

∑
β≡α

Np∑
p

�β[�σβ (p)], (7)

where the inner sum runs over all distinct locations of a
cluster, p, and the outer sum runs over all symmetrically
equivalent clusters, β ≡ α. Per-site correlations are obtained
by dividing by the number of lattice sites N and the number
of symmetrically equivalent clusters mα . It is noted that the
number of distinct cluster locations Np may differ from the
total number of sites N in crystals with reduced symmetry,
such as a two-dimensional surface with a set thickness. This is
the case in the example given later. A scalar extensive property
such as the energy of a substitutional lattice system E (�σ ) may
be represented per site as a linear expansion in the cluster
correlations:

E (�σ ) =
∑

α

mαJα�̄(�σα ). (8)

Here, the sum is performed over all symmetrically distinct
clusters, and the coefficients Jα , referred to as the effective
cluster interactions (ECIs), describe the strength of an inter-
action averaged over the lattice.

The correlations in Eq. (7) can be written in terms of oc-
cupational pair, triplet, quadruplet, and higher-order multiplet
probabilities as a weighted average:

�̄α (�σ ) = Np

N

∑
�σα

�α (�σα )P̄(�σα ). (9)

Here, the sum now runs over all distinct occupations of the
cluster multiplied by the respective probability of finding any
symmetrically equivalent cluster with that specific occupation
in the crystal, P̄(�σα ). These probabilities, referred to as cluster
probabilities, can be defined as

P̄(�σα ) = 1

mα Np

∑
β≡α

n(�σβ ). (10)
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The total number of clusters with the desired occupation is
counted at each distinct location, p, in the crystal to give
n(�σα ). The counts are summed over all symmetrically equiv-
alent clusters and divided by the symmetry multiplicity and
total number of occurrences of the cluster in the crystal, Np.
These probabilities sum to 1:∑

�σα

P̄(�σα ) = 1. (11)

The sum is taken over all possible distinct occupations of the
cluster. Using the multipoint probabilities defined in Eq. (10),
the ClstOP is defined as

γα

(
�σ k
α

) = 1 − P̄
(
�σ k
α

)
Prandom

, (12)

where the order parameter γα is given in terms of the average
probability of finding a cluster with a desired occupation
(�σ k

α ) in the crystal that is normalized by the probability of
the cluster forming with the desired occupation in a random
alloy, Prandom. In the random alloy the probability of a site
being occupied by a specific species, P(σi ), is given by the
atomic concentration of that species Ci; the probability in the
denominator is the product of the site probabilities for a given
cluster occupation. For example, Prandom in an AB alloy for
a three-point occupation of (�σ k

α ) = [−1,−1,−1] correspond-
ing to (AAA) is given by CACACA. It can be directly shown
that by selecting a pair cluster α ∈ {pairs} the ClstOP reduces
to the binary Warren-Cowley SRO parameters.

The analysis of the ClstOPs is similar to that for the
Warren-Cowley pair parameters [10]. When the ClstOP is
zero, the cluster shape with the specified occupation occurs
as frequently as it would in a random alloy. When γα > 0,
the cluster with the specified occupation is found less often
than in a random alloy of the same composition. Finally,
when γα < 0, the cluster with desired occupation occurs more
frequently than in a random alloy. The cluster expansion of
the energy in Eq. (8) may be written in terms of the ClstOPs.
Using Eqs. (9) and (8), the cluster expansion of the energy
may be written as

E (�σ ) = Np

N

∑
α

mαJα

∑
�σα

�α (�σα )Prandom[1 − γα (�σα )], (13)

where the outer sum runs over all symmetrically distinct clus-
ters and the inner sum runs over the chemical labelings of that
cluster. In this equation, the cluster correlations �̄α have been
rewritten in terms of ClstOPs rather than the cluster probabil-
ities as in Eq. (9). It is noted that the inner sum runs over the
same cluster labelings and sites for multicomponent cluster
functions belonging to the same orbit; the different site basis
functions just give a different value of �α (�σα ) [15]. What can
be inferred from Eq. (13) is that sums of the chemical ordering
parameters scaled by the evaluated basis function for a given
cluster labeling, �α (�σα ), determine the energy contribution
from a given cluster. If the expansion coefficient associated
with a cluster correlation �̄α is large, the influence of the
associated chemical orderings will have more of an impact on
the system energetics. The relationship between the chemical
ordering and the energy is not linear in general; the value of
the ClstOP, γα (�σ k

α ), and all other ClstOPs associated with the

possible occupations of the cluster, γα (�σκ �=k
α ), is constrained

dependently by the composition of the system.
One benefit of the completeness of the cluster basis is

that the energy contribution from any correlation may be
calculated, and through Eq. (13), the energy contributions
from any set of associated chemical orderings. These may
correspond to long- or short-range correlations. Conversely,
a given set of chemical orderings for a system can be used
to extract expansion coefficients that may yield said chemi-
cally ordered structures (inverse Monte Carlo method) [42].
The inverse Monte Carlo method performed with ClstOPs
could be distinguished from traditional inverse Monte Carlo
methods that provide interaction energies from pair ordering
alone. Limiting values of the ClstOPs may be related to long-
range or superstructure orderings depending on the cluster
and crystal. The limits of the ClstOPs at large separations
could be used to generalize long-range order parameters [43].
Special cases of derivative structure orderings and multipoint
motifs can be inferred by the geometrical locus method. Re-
call that the generalized geometrical locus method provided
constraints on the pair parameters spanning derivative polyhe-
dra in certain AB crystals (rocksalt, CsCl structure, and SnS
structure) [33,34]. The ordering of octahedra in the rocksalt
lattice can be inferred on the basis of composition, whether
or not the octahedra are arranged periodically, the compo-
sition of the octahedron, and noting that the octahedra span
the crystal. With ClstOPs the ordering of octahedra (or other
derivative polyhedra) can be directly measured with the poly-
hedral “cluster.” Defining similar parameters with the cluster
probabilities could allow for a generalization of the geomet-
rical locus method to derivative structures beyond polyhedra
and to alloys with more than two components [44].

B. Order parameters on multiple sublattices

The ClstOPs can be generalized to crystals with multi-
ple sublattices. This is demonstrated here in a two-sublattice
system, as an example. The occupations of the sites in each
respective sublattice are designated with spin vectors �σ and �δ
as in Eq. (2) of the main text. A set of cluster basis functions
can be assigned to each sublattice, {�1

α (�σ )} and {�2
α (�σ )}. A

complete set of composite basis functions can be defined for
the multilattice crystal by taking the tensor product of the
single-sublattice cluster spaces [45]. Using a notation similar
to that given by Tepesch et al., these composite basis func-
tions, indexed by θ , can be denoted as

{
θ (�τθ )}, (14)

where we have defined a single vector containing the spin
variables for the entire crystal:

�τ = (
σ1, σ2, . . . , σN1 , δ1, δ2, . . . , δN2

)
. (15)

The intersublattice and single-sublattice correlations are given
as the expectation value of the composite basis functions over
the crystal. These are calculated as


̄θ (�τ ) = 1

mθN

∑
φ=θ

Nc∑
c


φ[�τφ (c)]. (16)
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(a) (b) (c)

FIG. 3. The palladium (111) face-centered-cubic nanoparticles coated with a few atomic layers of a Pt-Pd alloy (a), prepared in Ref. [6],
rely on specific multipoint chemical ordering motifs, palladium channels that span the surface alloy region (b), to generate high-surface-area
catalyst cages for the oxygen reduction reaction (c). A sufficient amount of Pd is needed to observe the “channel” order motif [shown in (b)]
to allow for the etching of the palladium core but not so much that it diminishes the catalyst durability.

The inner sum runs over all distinct locations of the composite
cluster, c, and the outer sum now runs over all symmetrically
equivalent composite clusters, θ = φ. The sum of the evalu-
ated composite cluster functions at all of these points is then
divided by the total number of sites in the crystal coming from
sublattices 1 and 2, N = (N1 + N2), multiplied by the number
of symmetrically equivalent composite clusters mθ .

The correlations in Eq. (16), can also be written as
weighted averages of cluster basis functions evaluated for
specific cluster occupations following a form similar to that
for a single sublattice.


̄θ (�τ ) = Nc

N

∑
�τθ


θ (�τθ )P̄(�τθ ), (17)

where the sum now runs over all occupations possible in the
composite cluster. The multipoint probabilities for the inter-
sublattice correlations are defined as

P̄(�τθ ) = 1

mθ Nc

∑
φ=θ

n(�τφ ). (18)

The counts of composite clusters with a specific intersub-
lattice occupation, τθ , are summed for all symmetrically
equivalent composite clusters and divided by the total num-
ber of occurrences of the composite cluster in the crystal,
Nc, multiplied by the symmetry multiplicity. With this, the
intersublattice ClstOP can be defined as

γθ = 1 − P̄
(
�τ d
θ

)
Prandom

. (19)

The correlations in Eq. (17) could also be inverted to
obtain specific probabilities. In the case of the composite
cluster formed by the product of the two single-site basis
functions, 
(σi, δ j ) = �1

single(σi )�2
single(δ j ), the intersublat-

tice pair probabilities could be extracted. Because correlations
beyond pairs can be considered, the ordering of cations about
an anion vacancy could be considered in the rocksalt crystal
structure, for example [8]. Pair ordering alone would likely
show a large tendency of unlike pair ordering between the
cation and anion species [46].

III. APPLICATION TO Pt-BASED ALLOY
NANOSHELL CATALYST

The need for an exact description of chemical SRO is high-
lighted in the case of platinum-based nanoshells in Fig. 3 [6].
To make the platinum-based nanoshells, thin layers of di-
lute Pt-Pd alloy are deposited on palladium nanoparticles.
The Pd cores are subsequently leached out leaving a highly
active, predominantly Pt shell (9.1% mass Pd). Though the
thicknesses of these catalyst shells are as low as four atomic
layers, this resembles the surface of many other core-shell and
alloy interfaces [47–49]. As evidenced by Zhang et al. [6],
the formation of Pd channels that span, or nearly span, the
deposited surface alloy allows for subsequent etching of the
Pd cores. They also found that excess Pd content decreased
mechanical stability of the shells. Nanoshell catalysts with
increased durability could potentially be produced by de-
creasing the Pd content while still allowing for Pd channel
formation [Fig. 3(b)].

Pair-ordering analysis would provide some insights into
the Pd channel content in alloy surfaces, but the pair ap-
proximations used to quantify the Pd channel occurrence are
somewhat arbitrary. The ClstOPs were used instead to di-
rectly quantify Pd channel content in models of this alloy
surface and were compared with an approximated channel
parameter constructed from pair probabilities. The surfaces of
these alloy-coated nanoparticles were modeled using cluster
expansions fit with and without a continuum solvent interface
above the alloy surface to simulate some effects of the ex-
perimental environment [41,50]. In these models, the (111)
face-centered-cubic surface was represented with four layers
of Pt-Pd alloy on top of four pure palladium layers to describe
the palladium core. The occurrence of four-point Pd channels
spanning the alloy region determines whether the catalyst can
be synthesized and its durability.

A. Model for the alloy surface

1. Density functional theory calculations

A selection of 398 symmetrically unique alloy configu-
rations were used as training data for the cluster expansion.
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FIG. 4. Examples of surface cells used to fit the cluster expansion coefficients (grouped as multiples of the primitive surface cell). All
symmetrically distinct configurations in the 1× and 2× cells are used for fitting along with larger randomized surface cells.

Some examples are provided in Fig. 4. The mixing energies
of these alloy configurations were calculated using density
functional theory (DFT). The surface alloy slabs were com-
posed of eight layers in total with a vacuum height of 6 Å
on either side. Four of the layers on the bottom were pure
Pd to represent the Pd core of the nanoparticles, and the top
four layers were composed of both Pt and Pd with varied
concentration. The DFT calculations were performed using
the QUANTUM ESPRESSO suite with plane-wave basis sets [51].
The kinetic energy cutoff for the basis sets was 100 Ry.
Norm-conserving pseudopotentials from the PSEUDODOJO li-
brary were used to represent ion cores [52]. An approximately
uniform distribution of reciprocal Bloch vectors (k points)
was used to sample the Brillouin zone across the cells by using
a k-point density of (11/m × 11/n × 1) for an m × n surface
cell. Electronic occupations were smoothed with 0.001 Ry
of Marzari-Vanderbilt smearing [53]. The k points, smear-
ing, slab thickness, energy cutoffs, and vacuum height were
converged with respect to the Fermi energy of the system,
to within 0.05 eV, ensuring that the interfacial dipole was
converged. During geometry optimizations of surface alloy
slabs the bottom two layers of Pd were fixed at calculated bulk
lattice parameters, and total forces were below 25 meV/Å.

To account for average solvent effects on the surface alloy,
the DFT energies for the surface alloy configurations were
also calculated in the presence of a continuum solvent via the
self-consistent continuum solvation (SCCS) method [50]. The
shape and onset of the dielectric cavity are defined using mini-
mum and maximum charge density cutoffs (ρmin = 0.0013 a.u.
and ρmax = 0.010 25 a.u.), and the original switching function
provided by Andreussi et al. [50] was used. The dielectric
constant inside the cavity is 1 and switches smoothly to a
dielectric constant of 78.3 outside the cavity. Surface tension,
pressure, and volume terms were omitted as done by Huang
et al. [54]. Though the fitting cells in Fig. 4 are not sym-
metric, the contributions from solvent on the palladium core
side should cancel out when calculating the mixing energies.

Models including explicit solvation, adsorption of solution
ions, and the etchant will likely show a stronger influence on
the surface alloy structure and would help determine solvent
conditions suitable for making more durable cages [5,55].

2. Cluster expansions

The cluster expansion model represents a scalar extensive
quantity as a linear expansion in the cluster basis functions
of Eq. (7) and was obtained using the ICET software pack-
age [41]. The mixing enthalpy (per site) for the representative
surface alloy was expanded as

�Hmix(�σ ) =
∑

α

mαJα�̄(�σα ), (20)

with the sum being taken over all symmetrically distinct clus-
ters up to some maximum size and order. Aside from identity
and single-site clusters, all pair and triplet clusters with within
three neighbor shells were included. Additionally, some larger
quadruplet clusters are included that span the fourth- and
fifth-neighbor shells. This is done to include the cluster cor-
responding to the channel shape in Fig. 3(b) in the energy
expression. This resulted in 25 pair, 138 triplet, and 34 quadru-
plet clusters for a total of 201. The expansion coefficients were
trained against DFT fitting data in Fig. 4 using the automatic
relevance determination regression (ARDR) method imple-
mented in SCIKIT-LEARN to obtain an optimally sparse set of
ECIs and reduce overfitting yielding 68 nonzero ECIs after
training [56]. A weighting function was added on the basis of
convex hull distances, by W = (1 + e− D

kT )/(1 − e− D
kT ), where

D is the distance between the convex hull and the mixing
energy of the configuration, k is Boltzmann’s constant, and
T is the temperature. After optimization of regularization
parameters with respect to k = tenfold cross validation, the
test error was 5 meV/site. The ECIs as a function of cluster
radius and numbers of vertices are given in Fig. 5, with the
exception of the identity and single-site clusters with ECIs
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FIG. 5. Effective cluster interactions and expansion coefficients for the surface alloy system in contact with the implicit solvent. The blue
bars mark the magnitude and sign of the coefficient for pair, triplet, and quadruplet clusters, order 2, 3, and 4, respectively.

of −15.3 and −2.1 meV, respectively. The relative sizes of
the ECIs reflect the relative contribution to the mixing energy
for some surface alloy configuration. Relatively large ECIs
associated with clusters containing four vertices highlight the
importance of interactions beyond pairs in this system.

3. Monte Carlo sampling

Using stochastic algorithms, a representative 10 × 10
(2.7 × 2.7 nm) surface cell was sampled in the canonical
ensemble at 473 K. Only shells with low concentrations
of Pd (1–20% surface content) were considered because of
the mechanical destabilization of shells with high palladium
content. For each composition, an order parameter was ob-
tained for the chemical ordering motif associated with the
the channel shape, a four-point vertically oriented cluster in
Fig. 3(b) along with relevant pair orderings. The relatively
accurate predictions of the multipoint orderings were facil-
itated by sampling converged simulations. The convergence
of the parallel Monte Carlo simulations was quantified with
the potential scale reduction factor from Brooks and Gel-
man [57], which uses the the effective number of independent
measurements, Meff (k) = 1/[1 + 2λ(k)], and ratios of pooled
and within-simulation variances to quantify the convergence
of the parallel chains [57,58]. Each parallel simulation was
run for 1000 passes after a 100-pass burn-in. The resulting
potential scale reduction factors are on the order of 1.000 18,
and the simulations are considered well converged [57]. The
statistical analysis and error measurements are detailed further
in the Supplemental Material [59].

The MCHAMMER Monte Carlo software was used through
ICET to carry out Markov-chain Monte Carlo samplings of
the surface alloy system [41,60]. The ClstOPs were evalu-
ated from the Monte Carlo trajectories using the CLST_ORDER

software package developed for this work. The CLST_ORDER

PYTHON software calculates the normalized, symmetry-
averaged probabilities in Eq. (9) for arbitrary cluster shape
and order. The parameters can be calculated in general two-
or three-dimensional crystal systems provided that the atoms
can be projected onto pristine parent lattice(s). This software

is compatible with the trajectories produced from MCHAM-
MER but can also be used with other software packages that
generate trajectories or structure files compatible with Atom-
istic Simulation Environment (ASE) such as the Large-Scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
package [61,62].

4. Chemical ordering quantification

Chemical ordering analysis for alloys is commonly given
in terms of pair ordering in certain nearest-neighbor shells.
Discussions of multipoint ordering motifs generally involve
a consideration of all constituent pair orderings contained
in the motif [24,34]. In the case of the Pd channel, the Pd
pair ordering in the zeroth- to third-nearest-neighbor shells
contained in the channel shows some limiting factors for the
occurrences of the channels as well as the structure of the
alloy overall. Due to the anisotropy of the system along the
surface normal, pair orderings in a given neighbor shell are not
the same throughout the surface alloy; pair ordering oriented
along the surface normal differs from pair ordering parallel to
the surface. For this reason, we extract from the Monte Carlo
simulations both sets, the set of zeroth- to third-neighbor pair
parameters starting from the top of the surface alloy and also
from the bottom, of vertically oriented pair order parameters
that can be used for a Kirkwood superposition of the Pd chan-
nel. The respective anisotropic constituent pair parameters are
reported in Fig. S3 of the Supplemental Material to further
demonstrate the Kirkwood superposition, while the combined
order parameters for the Pd-Pd pairs are reported in Fig. 6
as a function of Pd fraction [59]. The respective combined
pair parameters are highlighted in the plot. In crystals pos-
sessing three-dimensional periodicity, this same model can be
applied with averaging pair probabilities over all equivalent
orientations and constant single-site correlations that are given
simply by the concentrations.

The parameters in Fig. 6 describe how likely Pd-Pd pairs
in the first- to third-neighbor shells of the channel shape are
relative to a completely random alloy (along with the single-
site Pd ordering in the zeroth-neighbor shell). Recalling that
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FIG. 6. The pair parameters for all of the nearest-neighbor (NN)
shells contained in the four-point channel are provided along with
the combined single-site correlations at the surface and bottom of
the alloy.

these parameters are zero in a completely random alloy, the
lower values for the Pd-Pd pairs in the first-neighbor shell
(circle markers) indicate that Pd-Pd pairs are likely to form
at the top or bottom of the surface alloy. The likelihood for
the occurrence of precursors of the Pd channels is high. In the
third shell (triangle markers), the occurrence of Pd-Pd pairs is
highly unlikely, and this is one of the key factors that limits the
occurrence of Pd channels overall. The Pd tends to reside in
the middle of the shell as indicated by the third-neighbor shell
parameter as well as the single-site correlation for the top or
bottom of the alloy. This supports the experimental findings of
Zhang et al. [6], because a significant amount of Pd remains
after etching of the core. This low-order analysis, which is
common in the literature, is useful for determining limiting
factors for channel occurrence and alloy structure.

The Pd channels were quantified during parallel Monte
Carlo simulations of the surface alloy using ClstOPs, and the
results are reported in Fig. 7. For the compositions tested,
the channels occur less frequently than in a randomized alloy
lattice, because the results show that the four-point Pd channel
ClstOP is greater than 0. The channels occur only in small
amounts. This supports the need for small amounts of Pd
channels without excess that mechanically destabilizes the
shell in experiment. From pair analysis alone, one may expect
insignificant amounts of Pd channels at experimentally rele-
vant compositions (with an atomic fraction of Pd of ∼15%)
given the limiting formation of third-neighbor shell Pd-Pd
pairs (Fig. 6), but there are significant amounts of channels
when quantified exactly with ClstOPs. Using the limiting
pair parameter alone is not sufficient for quantifying the Pd
channel occurrence.

Improved quantification of Pd channels can be made by
approximating the four-point probability with combinations
of pair probabilities. There are various combination or super-
position expressions that could be used to approximate the
four-point Pd channel probability, but two key examples are

FIG. 7. The exact four-point order parameter corresponding to
the channel-shaped cluster from direct calculation during Monte
Carlo simulations (blue circles) is compared with that calculated
from Clapp’s implementation of the Kirkwood superposition (brown
diamonds). A visualization of low-order probabilities used to approx-
imate the four-point channel probability is shown for each case.

provided for comparison. Using a slightly modified form of
Eq. (7) of Ref. [23], the relative four-point probability can be
approximated using Kirkwood’s superposition,

P̄(�σα )/Prandom ≈ (P0 × P01 × P02 × P03 + Pr )/cPd
7, (21)

where Pi j are the Pd probabilities between the ith- and
jth-neighbor shells and cPd

7 is the product of the marginal
probabilities for the constituent pairs and single-site correla-
tions. Pr is the product of the equivalent pair probabilities in
reversed order (e.g., starting from the bottom of the surface
alloy rather than the top). The corresponding approximation
to the ClstOP is given as the curve with diamond markers in
Fig. 7. This approximation describes some qualitative trends
correctly but deviates from the exact ClstOP value. From
a consideration of constituent pair probabilities in this way,
the amount of Pd channels at low concentrations may still
be misleadingly small. One benefit of this approximation
is that it can often be obtained from experimentally deter-
mined Warren-Cowley parameters. It is additionally pointed
out that the parameters estimated with cluster probabilities
constructed via the Kirkwood superposition are known with
less certainty. Figure 8 shows the relative standard errors in
the measured cluster probabilities using the Kirkwood super-
position as well as the ClstOP.

In Fig. 8, it is shown that the relative standard error for
the measured quantities for the ClstOP ranges between 0.9
and 580% over the full Pt composition range tested (0.9–
22% over the experimentally relevant composition range of
cPd = 0.05–0.2). The Kirkwood superposition gives a relative
standard error range of 1.6–1800% over the full composi-
tion range tested (1.6–25% over the experimentally relevant
composition range). After propagation of error, the approx-
imation method quantifies the Pd channel occurrence with
larger uncertainty than the exact ClstOP due to the multiple
measurements needed to construct the Kirkwood superposi-
tion. The increased relative error in the low-Pd limit is due
to the low Pd concentration, which is related exponentially to

054109-8



QUANTIFYING MULTIPOINT ORDERING IN ALLOYS PHYSICAL REVIEW B 104, 054109 (2021)

FIG. 8. The relative error in the measured cluster probabilities
using the cluster order parameter formalism compared with a con-
stituent pair superposition approximation.

the probability of observing a Pd channel, and possibly the
quality of the model in the very dilute Pd limit for the cluster
expansion model. Error comparisons and further discussion
of the measured cluster probability relative to random alloy
fluctuations are contained in Fig. S2 of the Supplemental
Material [59]. Connections are provided with original theory
for special quasirandom structures [63].

The approximation suggested by Shirley and
Wilkins [26,27] may provide a slightly improved prediction
of the exact parameter in the surface alloy system. For this
case, the four-point probability is approximated as

P̄(�σα ) ≈ (P01 × P23 + P02 × P13 + P03 × P12). (22)

This approximation is not given in this paper because it re-
lies on spatially resolved ordering probabilities that are not
obtained from typical experimentally derived pair parameters.
In many three-dimensional alloy crystals, the cluster probabil-
ities are averaged over the distinct cluster locations needed to
construct the four-point probability in Eq. (22).

IV. CONCLUSION

A general cluster order parameter (ClstOP) was introduced
to systematically quantify multipoint ordering motifs in alloy
crystals via direct calculation of cluster probabilities. This
parameter can be used to evaluate chemical ordering in al-
loys and substitutional systems that cannot be addressed by
pair-ordering analysis alone. Though the pair ordering and
pair interactions are often most important, there are systems
where higher-order correlations are significant and cannot be
ignored. The utility of the ClstOPs is that a specific multipoint
motif of interest can be quantified directly in simulations
or in theoretical applications. In certain special cases where
“clusters” are chosen such that they can represent derivative
structures of a crystal, these parameters could be used to help
generalize the geometrical locus method. Despite the expected
low probability of occurrence for multipoint ordering motifs,
meaningful predictions of ClstOPs can be made through ef-

ficient sampling during parallel Markov-chain Monte Carlo
simulations. The average ClstOPs can be predicted with rea-
sonable certainty with relative standard errors of 22–0.9%
within the experimentally relevant composition range of cPd =
0.05–0.20, respectively. The ClstOP associated with the four-
point Pd channel motif quantifies Pd channel occurrence with
improved certainty and accuracy over approximate methods
such as the Kirkwood superposition. Similar sampling ap-
proaches could be used to predict multipoint ClstOPs in many
other practical applications such as descriptors for data-driven
materials discovery and machine-learning models of alloy
systems [64]. With the multilattice generalization, chemical
orderings between multiple sublattices can also be described.
This generalization is particularly useful for describing order-
ing between ligand vacancies on one sublattice and alloying
metals in another.

The utility of the parameters was demonstrated while mod-
eling representative surfaces of the Pt-Pd nanoparticle alloy
system in Fig. 3. Cluster expansion models were generated
for a four-layer dilute Pt-Pd alloy on top of a four-layer bulk
palladium core region with the (111) surface orientation, and
these systems were sampled using Markov-chain Monte Carlo
simulations. In this system, Pd channels that span the surface
alloy are needed for the synthesis of high-surface-area Pt
nanocage catalysts. The calculated ClstOP corresponding to a
channel shape in these simulations suggests that Pd channels
occur in significant amounts, with 0.12 channels per nanopar-
ticle with experimental facet sizes (octahedra with 19.4 Å
edge lengths with a 15% atomic fraction of Pd in the surface).
Using pair probabilities alone to quantify Pd channels leads
to a significant underestimation of channel ordering, and less
than half as many channels occurring with a predicted 0.05
channels per nanoparticle. Though pair ordering provides a
wealth of information about the alloy structure overall and the
factors that limit the occurrence of a Pd channel, it provides
poor estimates of the true number of channels occurring in the
alloy. This is because multipoint energetics are significant in
this system. Additional results in the Supplemental Material
suggest that different solvent environments could aid in the
design of nanostructured catalysts that are more durable [59].
Solvation induces a surface enrichment of Pd without com-
pletely eliminating the occurrence of Pd channels that span
the surface alloy. This was shown by exact quantification of
the four-point channel motif where the limiting factors derived
from pair ordering alone may lead one to believe that the Pd
channels do not occur in significant amounts.

The data are available upon reasonable request from the
authors. Software to calculate the order parameters is also
available [65].
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