
PHYSICAL REVIEW B 104, 054108 (2021)

Interpolation method for crystals with many-body interactions
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We propose an interpolation scheme to describe pair correlations in crystals with many-body interactions
that requires only information on relative displacements for the nearest neighbours and in the long range. Using
crystalline Ni as a test case, the scheme is shown to deliver the functional form for the radial distribution function
at least as well as molecular dynamics simulations. The results provide a fast route for verification of interatomic
potentials and study of many-body interactions using a combination of x-ray scattering and x-ray absorption
spectroscopy.
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I. INTRODUCTION

Many-body interactions feature widely in nature [1], being
intrinsic to solids [2], and liquids [3], metals, proteins, macro-
molecular, molecular, and colloidal systems [4]. Short and
long-range interatomic correlations are intrinsically linked
to these interactions (and the corresponding potentials), and
hence are connected with the thermodynamic and elastic
properties, activation phenomena, and a variety of excita-
tions. However, the effect of many-body interactions on the
fundamental properties of condensed matter remains largely
unstudied. This is, not in the least, due to a challenging
problem of developing a methodology that can provide direct
experimental access to the many-body interactions and corre-
lations in solids and liquids on atomic scale.

Dynamic processes in real atomic systems can be modelled
using, for example, molecular dynamics (MD) simulations,
but the latter require appropriate interatomic potentials in
order to yield sufficiently reliable data. The choice of a
potential is typically tested indirectly against experimentally-
accessible properties such as heat capacity, bulk modulus,
elastic constants, phonon dispersion spectra [5–9]. In some
of the systems, most notably in molecules and nanostructures,
access to the bulk properties is challenging if at all possible.
As a consequence, the details of a variety of microscopic pro-
cesses generated in MD simulations may be inaccurate or lost
altogether. Experimental techniques such as neutron and x-ray
scattering [10–14] can yield pair distribution function (PDF)
and hence do provide direct access to the atomic structure
and interatomic correlations, and thus to the information on
the nature of interatomic potentials. However, when PDF data
alone are used in solving the corresponding inverse problem
of extracting information about potentials, the well-known
ambiguities arise [15–17] with distinctly different interatomic
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interactions resulting in similar (or identical within experi-
mental errors) PDFs.

At the same time, spectroscopic methods such as extended
x-ray absorption fine structure (EXAFS) are particularly sen-
sitive to the local interatomic correlations [18–24] (and hence
to the local interactions) and can provide information com-
plementary to the scattering techniques. Indeed, these two
methods are intrinsically sensitive to the atomic dynamics at
different length scales, for they are based on the near- (EX-
AFS) and far-field (PDF) x-ray interference effects, providing
access to the short-range (EXAFS) and long-range (PDF)
correlations. However, combination of these techniques is not
generally utilized for the purpose of study and verification
of interatomic potentials. One of the key issues is absence
of the common correlation analysis framework for joint data
interpretation. Furthermore, numerous reports on compari-
son of the MD simulations and of the EXAFS-derived data
all show as yet unexplained discrepancies [25–27] between
experimental data and MD-based models. These discrepan-
cies significantly limit application of EXAFS in recovering
structural information and application of advanced methods
(e.g., machine learning [28–30]) and in analysis of complex
data sets obtained, for example, under in-operando catalysis
conditions [31,32], in biology [33] and in complex novel
nanostructures [34–36]. Besides, the ability to accurately ac-
count for distance-dependence of interatomic displacements
in EXAFS [20] has not yet been addressed and discussions
are still ongoing [37].

Thus, the field of condensed matter research would ben-
efit significantly from a method for fast PDF calculations
and an analysis framework that should connect information
contained in EXAFS and PDF data to the interatomic po-
tentials. In this paper, we introduce just such a framework
based on the interpolation method (IM, [38–41]) extended to
include many-body interactions found in real atomic systems.
We describe a methodology for testing interatomic potentials
by direct comparison with the atomic-scale interactions and
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demonstrate that our approach can be utilised for fast and
accurate calculations of PDF in real crystals.

II. PAIR CORRELATIONS AND MANY-BODY
INTERACTIONS

Consider a crystal of particles with pairwise and three-
body forces. At thermodynamic equilibrium in the canonical
(NVT) ensemble, the pair and three-body correlation func-
tions should minimise the Helmholtz free energy of the
crystal, F = F2 + F3, where F2,3 = E2,3 − T S2,3 correspond
to pairwise and three-body interactions (as denoted by the
subscripts), E and S are the interaction energy and the entropy,
and T is the temperature (we use energy units). Similarly to
Ref. [40], using the expansion for entropy through correlation
functions reported in Ref. [42], we obtain

F2 = n2

2

∫
dr1dr2 g2(1, 2)[ϕ(1, 2) + T ln g2(1, 2)],

F3 = n3

6

∫
dr1dr2dr3 g3(1, 2, 3)×

× [ϕ3(1, 2, 3) + T ln g̃3(1, 2, 3)], (1)

where n = N/V is the particle density, N is the total num-
ber of particles in the volume V , g2(1, 2) ≡ g2(r1, r2) and
g3(1, 2, 3) ≡ g3(r1, r2, r3) are the pair and three-body corre-
lation functions, the same abbreviations of arguments we use
for pairwise and three-body interaction potentials, ϕ(1, 2) and
ϕ3(1, 2, 3); g̃3(1, 2, 3) = g3(1, 2, 3)/g2(1, 2)g2(1, 3)g2(2, 3)
and we assume that g̃3(1, 2, 3) → 1 at large distances between
the particles.

Since the particles in a crystal move near their equilibrium
positions, we can write [40]

g(r) = 1

n

∑
α

pα (r − rα ), (2)

where g(r) ≡ g2(r2 − r1), and each function pα (r) is a spatial
probability density, describing the contribution by a particle
α with equilibrium position rα . Since the peaks are localised
spatially, we can consider the following moments:∫

dr pα (r) = 1,

∫
dr rpα (r) = 0,∫

dr (eα · r)2 pα (r) = σ 2
‖α,∫

dr (r2 − (eα · r)2) pα (r) = (D − 1) σ 2
⊥α,∫

dr (eα · r)3 pα (r) = γα, (3)

where eα = rα/|rα| is a unit vector in the rα direction, D =
3 is the spatial dimension, σ 2

‖α and σ 2
⊥α are the longitudinal

and transverse components of the MSRD of the particle α,
and γα is the third moment in radial direction. The first two
conditions in (3) are related to the normalisation per particle
and equilibrium position of a particle at node α.

Now, to find the functional form of pair correlation peaks,
we minimize the functional of the Helmholtz free energy

F {pα, g̃3} and obtain g̃3 = exp(−ϕ3/T ) and

pα (r) = Cα exp
[

− ϕ(r + rα )

T
− bα (eα · r) −

− (eα · r)2

2a2
‖α

− r2 − (eα · r)2

2a2
⊥α

− dα (eα · r)3
]
, (4)

(see Supplemental Material [43] and references
[5–9,40,42,44–47] therein) where the constants Cα , a2

‖α ,
a2

⊥α , bα , and dα are determined by Eqs. (3). Note that Eq. (4)
was derived directly from Eqs. (1)–(3), using the variation of
free energy.

We see that the profile (4) has the same functional form as
if we assumed the interactions to be pairwise. In this approx-
imation, three-body interactions just affect the second and
third moments in (3). In the same manner one can consider
many-body interactions of higher orders (using expansions for
entropy reported in [42]), to illustrate that they do not change
the functional form (4). Therefore, having the temperature
dependencies of σ 2

‖,⊥α and γα for different particles α, one
can obtain g(r) at different temperatures for a given crystalline
lattice and pairwise potential ϕ(r).

The number of free parameters within the outlined the-
oretical description can be significantly reduced using the
interpolation method (IM). Within IM, if we walk between
sites through the shortest graph on the crystalline lattice, the
MSRDs are growing recurrently (in 3D case) with each step
as [39]

σ̃ 2
α+1 = σ̃ 2

α + 1 − 2φ

√
σ̃ 2

α , (5)

where α denotes the number of steps in the shortest graph,
σ̃ 2

α = σ 2
α /σ 2

1 , and φ =
√

σ 2
1 /σ 2

∞/2.
We can see that the method described above interpolates

between the two correlation regimes-from short distances
where local correlations are significant to large distances
where at the limit of σ 2

∞ the relative correlations vanish—all
the while taking into account the functional form of individual
correlation peaks (4). Thus, using the IM we can reconstruct
the correlation peaks pα (r) if we know σ 2

‖,⊥1 (for the nearest
neighbours) and σ 2

∞. In the case of the expression (4) modified
to include the three-body interactions, we additionally need to
know γ parameter for the nearest particles, and a posteriori
analysis proves high accuracy of such approach. One of the
key elements of our approach is that parameters σ 2

‖1 and γ

can be obtained experimentally with EXAFS, whereas the
(isotropic) function g(r) = ∫

d� g(r)/4π (here, � is the solid
angle) can be measured with x-ray (or neutron) scattering and
used to extract σ 2

∞.
In what follows we demonstrate that EXAFS data can

be used to identify the most suitable embedded-atom model
potential (EAM) for MD simulations. We then use MD sim-
ulations to obtain the required IM parameters across the wide
range from room temperature to the melting point. Finally,
we demonstrate that the modified IM delivers excellent agree-
ment with the MD simulations and experimental PDF data
for crystalline Ni. We use crystalline Ni as a test case on
account of well-known many-body affects in metals [48] and
availability of the experimental data.
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(a)

(b)

FIG. 1. The parameters of the first correlation peak obtained
with EXAFS and MD simulations. The moments (a) σ 2

‖1 and (b) γ ,
corresponding to the first correlation peak, obtained with EXAFS
(red crosses), MD simulations (grey and blue symbols) for fcc Ni
lattice at different temperatures. The solid grey and blue lines are fits
(6).

III. RESULTS AND DISCUSSION

First we tested the ability of EXAFS data to discriminate
different EAM models used in MD simulations to reproduce
the temperature behavior of σ 2

‖ and γ in Ni, since a number
of reports exist all showing discrepancies [25–27] between
experimental data and MD-based models. The details of the
MD simulations, EXAFS data collection, and analysis can be
found within the Supplemental Material [43]. We considered
five EAM models developed for crystalline Ni (models MD1
[9], MD3 [5], MD4 [6], MD5 [7]) and for Ni glass (MD2 [8]).

The comparison of experimental EXAFS data and MD
results is provided in Fig. 1. Here, the experimental results
are shown with red crosses, whereas MD results are shown
with grey symbols for the models MD1-MD4 and with blue
circles for the model MD5. The solid grey and blue lines are
the following fits:

σ 2
‖1 = α1,‖T (1 + β1,‖T ), γ = αγ T 2(1 + βγ T ), (6)

where α and β are fitting parameters. The coefficients α1,‖
and β1,‖ describe the temperature-dependence of MSRDs and
their anharmonic corrections, respectively. We see that the
agreement between MD data and EXAFS displays an unex-
pected sensitivity to the exact parameters of EAM potentials
and, hence, a capability do discriminate between a selection
of EAM models. Based on the data in Fig. 1, we conclude
that the model MD5 provides the best description of both
microscopic parameters σ 2

‖ and γ for the first correlation peak
(4). Therefore, we used the model MD5 for further analysis of
pair correlation functions.

(a)

(b)

(c)

FIG. 2. The temperature evolution of parameters characterising
fcc Ni lattice. (a) The MSRDs σ 2

1 (light blue symbols) and σ 2
∞ (dark

blue symbols), the correlation parameter (green symbols), and ap-
proximations with fits (7) (solid lines). (b) The asymmetry coefficient
σ 2

⊥1/σ
2
‖1 (red circles) and its fit (red solid line). (c) The γ parameter

for the first correlation peak (circles) and fit (6) (solid line). The
density was taken under normal conditions.

Having verified the most appropriate potential model for
Ni, we utilised MD simulations to obtain σ 2

1 , σ 2
∞, the asym-

metric coefficient σ 2
⊥1/σ

2
‖1, and the third moment γ of the first

peak along the axis eα , throughout the extended temperature
range from room to melting temperature, Fig. 2. The symbols
correspond to the MD results, the fits used here for MSRDs
are

σ 2
1,∞ = α1,∞T (1 + β1,∞T ),

σ 2
⊥1/σ

2
‖1 = αaT (1 + βaT ). (7)

The values of the coefficients α1,∞, β1,∞ we obtained for
fcc Ni are presented in the Table I within the Supplemental
Material [43]. We see that using only two pairs of σ 2

1 and
σ 2

∞ (at high and low temperatures) one can reconstruct the
MSRDs dependencies across the entire temperature range,
from the cold crystal to the melting line. We can now also
derive the correlation parameter φ using Eq. (5) [see inset in
Fig. 2(a)] and observe [Fig. 2(b)] that the asymmetry between
the transverse and longitudinal MSRDs σ 2

⊥1/σ
2
‖1 increases

linearly with temperature growth. The radial third moment
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(a)

(b)

FIG. 3. Pair correlations in crystalline Ni. (a) The radial distribu-
tion function for 3D fcc Ni lattice at T = 300. The diffraction data
is presented by red symbols, the model MD5 is marked by orange
circles and the other models are marked by gray symbols. Solid lines
are related to the theoretical curves received from the IM. (b) The first
peaks in color-code format at the same temperature calculated using
the MD5 model. Red lines correspond to the isolines of theoretical
fit with IM.

γ increases with temperature too, as expected [Fig. 2(c)].
With the results for MSRDs and third moments, we can now
calculate g(r) with the IM.

Finally, we compare g(r) at T = 300 K obtained with the
IM and experimentally [10] [see Fig. 3(a)]. Here, the MD
results for MD5 model and experimental data are marked by
blue diamonds and orange circles, respectively. The models
MD1-MD4 are also presented here by the same grey sym-
bols as in the Fig. 1. Solid-red line is the theoretical profile
obtained with the IM using the results shown in Figs. 1 and
2. The insets show a close-up of the first correlation peak.
The results perfectly illustrate the ambiguities described in the
introduction: All potentials (MD1-MD5) used in MD simula-
tions result in a rather good agreement with the experimental
PDF data. This further emphasises importance of utilising
EXAFS data for verification of the interatomic potentials.
Crucially, numerical analysis shows that the IM theory (solid
red line) shows the best agreement with the experimental data
together with the MD5 model verified by EXAFS (see Table
II within the Supplemental Material [43]).

To further illustrate the versatility and the level of insight
IM can provide into the atomic dynamics on microscopic
scale, the 2D cross section of the first correlation peak is

shown in Fig. 3(b) as a color-coded map. The red isolines
here correspond to IM, and show excellent agreement with
the black isolines of the MD5 result, demonstrating IM ca-
pabilities to recover the full microscopic picture of MSRDs.
Overall, the model that provides the best description for σ 2

‖1
and the third moment γ also provides the best description
of the pair correlation function g(r). Note that the profile
of the first correlation peak is excellently described with the
parametric form (4). Three-body interactions just affect the
temperature dependencies of the parameters of the correla-
tion peaks, but not its functional form. These results clearly
demonstrate that the IM provides precise connection between
the short and long-range correlations, which can be studied
experimentally with EXAFS and x-ray scattering techniques.

IV. CONCLUSIONS

Here, we developed an IM that takes into account three-
body interactions. We found that in this implementation only
normalization of the σ 2

∞ and σ 2
1 dependencies is required:

Many-body interactions have shown to only renormalize pa-
rameters of pair correlation peaks, but not their functional
form. We show that parameters required for PDF calculations
using IM can be obtained from MD simulations. Crucially,
we demonstrate that EXAFS can be used to guide a selection
of the best suitable MD potential as it shows remarkable
sensitivity to their specific form.

Combining experiments, MD simulations, and the devel-
oped IM approach, we studied face-centric cubic Ni crystal
as a representative system. The validity of the new IM has
been tested by comparing the results with experimental x-
ray scattering data both in the long- and short-range order.
Furthermore, we demonstrate that using IM, information only
at two different temperatures (low value and close one to the
melting point) is needed to recover atomic displacements over
the entire temperature range. The main aim of this paper was
to introduce the IM for systems with many-body interactions,
and use the case of Ni as a test. Analysis of other systems
(e.g., ionic and anisotropic crystals) is beyond the scope of
this paper and should be performed in the future.

In summary, we demonstrate that EXAFS shows remark-
able ability to discriminate interatomic potentials through
atomic displacements suggesting a new methodology for
direct verification, or indeed development, of interactomic
potentials. In combination with the new IM approach, our
methodology describes the atomic dynamics on microscopic
scale as well as MD simulations do. Due to the nature of
the methodology, this approach can be adapted to a a wide
selection of systems including molecules and nanoparticles. It
is also clear that the modified IM can be used for analysis of
many-body interactions and joint analysis x-ray scattering and
EXAFS data.
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