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Stress-induced phase transitions in nanoscale CuInP2S6
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Using the Landau-Devonshire approach and available experimental results, we constructed multiwell thermo-
dynamic potential of the layered ferroelectric CuInP2S6 (CIPS). The analysis of temperature dependences of
the dielectric permittivity and lattice constants for different applied pressures unexpectedly reveals the critically
important role of a nonlinear electrostriction in this material. With the nonlinear electrostriction included we
calculated the temperature and pressure phase diagrams and spontaneous polarization of a bulk CIPS, within the
assumed range of applicable temperatures and applied pressures. Using the developed thermodynamic potential,
we revealed the strain-induced phase transitions in thin epitaxial СIPS films, as well as the stress-induced phase
transitions in СIPS nanoparticles, the shape of which varies from prolate needles to oblate disks. We also revealed
the strong influence of a mismatch strain, elastic stress, and shape anisotropy on the phase diagrams and polar
properties of a nanoscale CIPS, and derived analytical expressions allowing for elastic control of the nanoscale
CIPS polar properties. Hence obtained results can be of particular interest for the strain engineering of nanoscale
layered ferroelectrics.
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I. INTRODUCTION

Multiferroics [1–3], such as solid-state ferroics with cou-
pled magnetoelectric and/or magnetoelastic orderings of
different type, are among the most fascinating objects of
fundamental research [4–6] and reveal very promising ap-
plication perspectives for advanced memories, micro- and
nanoelectronics [7], and straintronics [8]. Nanoscale ferroics
and multiferroics [9], including ferromagnets, ferroelectrics,
and ferroelastics, are the main objects of fundamental research
of unusual polar, magnetic, elastic, and structural properties
[10,11]. The leading role is played by the emergence of long-
range order parameters, such as switchable and often curled
electric polarization [12–14] and magnetization [15], and their
interaction with elastic subsystem of a nanoscale ferroic.
The role of the surface stress, mismatch strains, and surface
screening increases significantly with a decrease in the size of
nanoscale ferroics [16], very often leading to the unusual mor-
phology of polar domains [17] and three-dimensional vortices
[18,19].

Cu-based layered chalcogenides, with a chemical formula
CuInP2Q6 (Q is S or Se) [20,21], are promising layered uniax-
ial ferrielectrics [22–24], with a possibility of downscaling to
the limit of a single layer [21,25]. Here S- and Se-based Cu-In
compounds have similar structure of individual layers, with
Cu+ and In3+ ions counterdisplaced within individual layers,
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against the backbone of P2Q6 anions [26–28]. The spon-
taneous polarization of the uniaxial ferrielectric CuInP2S6

ranges from 0.05 to 0.12 C/m2 [29], and is about 0.025 C/m2

for the uniaxial ferrielectric CuInP2Se6 [30]. The ferroelectric
(or ferrielectric) phase transition temperature is ∼305 K for
CuInP2S6 and ∼230 K for CuInP2Se6.

The CuInP2(S, Se)6 family reveals very unusual features of
a nonlinear dielectric response indicating that a spontaneous
polarization may exist above the transition temperature [31],
extremely large elastic nonlinearity in the direction perpendic-
ular to the layers [32,33], a giant negative electrostriction and
dielectric tunability [34], the electrostriction-induced piezo-
electricity above the ferroelectric transition temperature [35],
morphotropic phase transitions between its monoclinic and
trigonal phases [36], and anomalous “bright” domain walls
with enhanced local piezoelectric response [37,38].

Despite the significant fundamental and practical inter-
est in CuInP2Q6, the polar properties of this material and
their analytical dependence on elastic stresses and/or strains
are generally unknown. Most notably, the appropriate free-
energy functional that can effectively capture the various
properties of this material has not been developed. Us-
ing the Landau-Devonshire (LD) theoretical approach and
available experimental results, here we reconstruct the ther-
modynamic potential of a layered ferroelectric CuInP2S6

(CIPS), then calculate the phase diagrams and spontaneous
polarization of a bulk CIPS in dependence on temperature
and pressure. Using the coefficients of the reconstructed
thermodynamic potential, we study the strain-induced phase
transitions in СIPS thin films, as well as the stress-
induced phase transitions in СIPS ellipsoidal nanoparticles,
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FIG. 1. The temperature dependence of relative dielectric permittivity (a), (c). The dependence of renormalized coefficient α (b), (d) on the
uniaxial (a), (b) and hydrostatic (d) pressure. The temperature dependences of the lattice constants variations �a, �b, �c (e); and spontaneous
polarization (f) at normal conditions. Symbols are experimental data from Refs. [43–45] for the plots (a)–(d), from Ref. [24] for the plot (e)
and from Ref. [46] for the plot (f); solid curves are our fitting.

the shape of which varies from prolate needles to oblate
disks.

II. THEORETICAL DESCRIPTION

A. Reconstruction of CIPS thermodynamic potential
from experiments

Since CIPS is a uniaxial ferroelectric with the one-
component ferroelectric polarization component P3, the
bulk density of the Landau-Ginsburg-Devonshire (LGD)
functional is

gLGD =
(

α

2
− σiQi3

)
P2

3 +
(

β

4
− σiZi33

)
P4

3

+ γ

6
P6

3 + δ

8
P8

3 − P3E3 + g33i j
∂P3

∂xi

∂P3

∂x j
. (1)

As is conventional, we assume that only the coeffi-
cient α depends linearly on the temperature T as α(T ) =
αT (T − TC ), where TC is the Curie temperature of bulk

material. In accordance with classical Landau theory, the
coefficients β, γ , and δ are temperature independent, but
in many ferroics, including CuInP2(S, Se)6, β or/and γ can
change their sign with temperature, pressure, and chem-
ical composition leading to the appearance of tricritical
[39], bicritical, and tetracritical points at phase diagrams
[40–42]. The values σi denote stress tensor diagonal com-
ponents in the Voigt notations, i = 1, 2, 3. The values Qi3

and Zi33 denote the linear and nonlinear electrostriction
strain tensor components, respectively. E3 is an electric
field, and the last term is the energy of polarization gra-
dient, which strength and anisotropy are defined by the
tensor g33i j .

The values TC , αT , β, γ , δ, Qi3 and Zi33 were de-
fined from the fitting of experimentally observed temperature
dependence of dielectric permittivity [43–45], spontaneous
polarization [46], and lattice constants [24] for hydrostatic
and uniaxial pressures (see Fig. 1). The elastic compliances
si j were estimated from the ultrasound velocity measurements
[33,35,47]. These parameters are summarized in Table I. The
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TABLE I. LGD parameters for a bulk ferroelectric CuInP2S6.

Coefficient Value

εb 9
αT (C−2 m J/K) 1.640 67 × 107

TC (K) 292.67
β(C−4 m5 J) 3.148 × 1012

γ (C−6 m9 J) −1.077 6 × 1016

δ(C−8 m13 J) 7.631 8 × 1018

Qi3(C−2 m4) Q13 = 1.701 36−0.003 63 T, Q23 = 1.134 24−0.002 42 T, Q33 = −5.622 + 0.010 5 T
Zi33(C−2 m4)a Z133 = −205 9.65 + 0.8 T, Z233 = −121 1.26 + 0.45 T, Z333 = 138 1.37−12 T
si j (Pa−1)b s11 = 1.510 × 10−11, s12 = 0.183 × 10−11b

g33i j (J m3/C2)c Estimated parameter, which has an order of 10−9, e.g., g ∼= (0.5–2.0) × 10−9

aNote that Z133 and Z233 are negative entire the temperature range, and Z333 becomes negative above 115 K.
bPositive s12 means a negative Poisson ratio.
cThe range of g33i j agrees with DFT calculations for CuInP2Se6 [37].

details of their determination are given in Appendix C in
Supplemental Material [48].

Note that we estimated, rather than fitted, the value of the
polarization gradient coefficients g33i j from the intrinsic width
of the uncharged ferroelectric domain wall observed in CIPS
by piezoelectric force microscopy (PFM) [31]. This is an es-
timation only, because the method cannot separate rigorously
the contribution from the tip apex size to the apparent width
of the domain wall, as well as the possible broadening of
the wall near the surface (see, e.g., Refs. [49,50] for details).
Hence, the main problem of g determination from PFM is
that the instrumental resolution function makes a significant
contribution to the apparent thickness of the domain walls,
so that the intrinsic width is actually less than the observed
one, and consequently the g value obtained from PFM is an
upper bound only. Even if the nominal tip size is known,
its effective size can be different due to the apex erasure or
water meniscus appearance [49]. These effects can decrease
the method sensitivity strongly. So, density-functional theory
(DFT) calculations giving us the value of the domain walls’
surface energy for which the gradient energy can be fitted
seem urgent for the case of CIPS.

The jumps on the theoretical curves for the lattice con-
stants variations and spontaneous polarization at about 320
K, shown in Figs. 1(e) and 1(f), respectively, are consequence
of the first-order phase transition, since in this case the spon-
taneous strain and polarization should have a jump in the
transition point. The Curie temperature, TC = 292.67 K, is
estimated from the above data and from the jumplike behavior
of dielectric permittivity below 320 K at normal pressure [see
red points in Fig. 1(b)]. However, the experimental points
in Fig. 1(e) do not hint at such jumps, likely due to the
smearing of the phase transition by the influence of defects,
domain-wall motion, and local electric fields. The smearing
appeared significantly smaller for the temperature depen-
dences in Figs. 1(b) and 1(e), where the jumplike behavior
is present. Due to the jumplike behavior, we were not able
to describe the temperature dependence of polarization and
permittivity by simple models, such as 2-4 and 2-4-6 Landau
expansion on polarization powers. It appears necessary to
include a higher eighth-order degree of polarization in the free
energy (1). In this case, the coefficient γ at P6 turned out to be
negative, which indicates the first-order transition. A dashed

zigzaglike curve in Fig. 1(e) is the metastable region, related
with the signs β > 0 and γ < 0.

Notably, the linear electrostriction coefficients have the
signs opposite to the ones, typical of the vast majority of
classical perovskite ferroelectrics with Q11 = Q22 = Q33 > 0
and Q12 = Q23 = Q13 < 0 corresponding to a cubic parent
phase. The temperature-dependent negative Q33 and positive
Q13 = Q13 for T < 400 K in CIPS are in complete agreement
with the values reported earlier [34]. The unconventional Qi j

signs, which are not forbidden by thermodynamics, can ex-
plain the anomalous electromechanical properties of CIPS.
Specifically, the existence of the temperature-dependent and
negative nonlinear electrostriction Zi33 < 0 is the only possi-
bility to fit both the maxima dielectric permittivity and lattice
constants temperature dependences. Per Table I, Z133 and Z233

are negative in the temperature range below 103 K, and Z333

becomes negative above 115 K.
In principle, the nonlinear electrostriction can explain the

experimentally observed extremely large elastic nonlinearity
in the direction perpendicular to layers [32,33]. Here the non-
linear electrostriction is critically important to describe the
polar and dielectric properties of CIPS. The unconventional
signs of CIPS electrostriction coefficients explain its negative
piezoelectric coefficients, reported earlier [20,21,34].

In most cases, nonlinear electrostriction can be considered
as a small correction, and the influence of this effect can be
estimated in different ways. For example, it is known that
a “linear” electrostriction tensor, which is characterized by
Qi j coefficients, determines two effects: the external pressure
dependence of a dielectric permittivity and the value of a
spontaneous strain (see Appendix C for details). These facts
make it possible to find the coefficients Qi j from indepen-
dently obtained experimental data and compare the values
obtained by different methods. For some ferroelectrics this
procedure has been completed (e.g., for BaTiO3 [51]).

In the case of CIPS, there were obvious contradictions
between the values of Qi j extracted from the fitting of di-
electric permittivity and spontaneous strain temperature and
pressure dependences, respectively. In particular, the signs
of several Qi j coefficients obtained from these two fittings
appeared opposite (see Appendix C for details). The only
way to resolve the contradiction is to take into account the
higher-order electrostriction terms, Zi j , which do not change
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FIG. 2. The dependence of the reconstructed LD energy density (1) on the polarization P3 calculated for E3 = 0, small positive (a), zero
(b), small negative (c), and higher negative (d) hydrostatic pressures σ1 = σ2 = σ3 = −σ , respectively. Multiple curves (from red to violet)
correspond to different temperatures varying from 210 to 310 K with a step of 5 K for the plots (a), (b), and (c), or from 201.5 to 241.5 K
with a step of 2 K for the plot (d). The curves in the inset to the plot (b) corresponds to the temperature T = 0, 100, 200, and 300 K (from the
bottom to the top).

the pressure dependence of the permittivity, but affect the
spontaneous strain. Exactly the competing contributions of
Qi j and Zi j resolve the contradiction for CIPS.

We also note that the effects related with nonlinear
electrostriction appeared important for other ferroelectrics
including BaTiO3 with negative temperature-dependent coef-
ficient β, that can either change its sign [52] or higher-order
expansion coefficients γ and δ must be included [53]. Indeed,
the characteristic but relatively seldom appreciated feature
of such materials is the inclusion of the eighth-order term
δ
8 P8

3 with positive δ, which may indicate the existence of
other hidden (e.g., antiferroelectric) order parameters [37,38].
Note that the inclusion of δ

8 P8
3 is mandatory for the stabil-

ity of thermodynamic potential (1), because γ < 0 in the
considered case.

The dependence of the reconstructed 2-4-6-8 power LD
potential on the polarization P3 is shown in Fig. 2 for E3 = 0.
Multiple curves (from red to violet) correspond to different
temperatures varying from 210 to 310 K (with a step of
5 K). The plots in Figs. 2(a)–2(d) correspond to positive,
zero, small negative, and higher negative hydrostatic pres-
sure σ1 = σ2 = σ3 = −σ , respectively. It is seen from the

plots calculated at σ = 0 that the eighth-order potential has
two deep and equivalent wells at lower temperatures, which
transform into the four nonequivalent wells with the temper-
ature increase [see Fig. 2(b)]. Each two of these four wells
correspond to the states with higher and lower spontaneous
polarization values, separated by a potential barrier, height
and existence of which depend significantly on the temper-
ature. With the temperature increase the deeper well at first
lifts up, its depth becomes equivalent with the shallower
well, and then eventually disappears, indicating the material
transitions to a paraelectric phase. At zero and very small
negative pressures the second- and the first-order phase tran-
sitions are possible [see Figs. 2(b) and 2(c)], while the high
positive pressure makes them of the first order [see Fig. 2(a)].
A high negative pressure makes all these phase transitions
of the second order, and the evident case is not shown in
the figure.

Application of the intermediate negative pressure sig-
nificantly complicates the free-energy profile, because the
potential wells become shallow and approximately equal,
forming an almost “flat” potential curve at a certain value
of temperature T0 and pressure σ0 [see Fig. 2(d)]. The point
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{T0, σ0} can be in a special point of coexistence of ferroelectric
phases with small and large spontaneous polarization, as well
as the paraelectric phase. The special point can be related
with the appearance of polycritical points, depending on the
number of coexisting phases [39–42]. The behavior of the
system in the vicinity of these points is a subject of a separate
study; in this work we just point out their existence.

Let us estimate the depth of the potential well Umin (in
units of eV) at the temperatures T = 0 K and σ = 0, within a
continuum LGD approach. The approach (in distinction with
the first-principles calculations) is applicable for the volumes
much higher than the unit cell, because it considers the long-
range correlations of the order parameter. Consequently, the
minimal volume is a correlation volume, determined by the
correlation radius [54]. Actually, according to the Ginzburg-
Levanyuk criteria of LGD approach applicability, derived
from the Ornstein-Zernike correlator of the order parameter
fluctuations, the LGD is applicable if the thermal fluctua-
tions of the order parameter in the correlation volume is
small enough in comparison with its average value in the
volume [55].

Substitution of the minimal LGD energy density gmin ≈
−3.1 MPa [see the bottom curve at 0 K in the in-
set to Fig. 2(b)], correlation radius Lc =

√
g

2αT (TC−T ) ≈
0.456 nm, and corresponding correlation volume Vc

∼=
4π
3 (3Lc)3 ≈ 10.75 nm3 (estimated for T = 0 K and gradient

coefficient g = 2 × 10−9 J m3/C2) to the expression Umin =
gminVc, gives Umin = −0.208 eV. Here the correlation volume
Vc

∼= 4π
3 (3Lc)3 corresponds to the conventional exponential

polarization correlator 〈G〉 ∼ G0exp(− r
Lc

), giving 0.05G0 for
r = 3Lc [54].

The estimated value Umin = −0.208 eV is surprisingly
close to DFT results [see Fig. 1(d) in Ref. [29]). Since the po-
tential well appears anomalously deep for a small spontaneous
polarization 0.04 C/m2, our result requires a proper verifica-
tion by the low-temperature measurements of the spontaneous
polarization, domain-wall width, and dielectric response. Ac-
tually, all experimental data in Fig. 1 are above 100 K, and
their fitting by expression (1) in a low-temperature range
(0–100) K may be a significant step beyond the limits of the
expression applicability.

Taking into account the above restrictions, here we
determine all unknown parameters in the LD functional
density (1), which is valid for a bulk CIPS in a wide
range of temperatures (100–400) K and pressures (0–1)
GPa. With these in hand we proceed to calculate the
phase diagrams and polar properties of CIPS thin films and
nanoparticles.

B. Phase diagrams and polarization dependences on
temperature and stress for a bulk CuInP2S6

Let us calculate the regions of homogeneous polar ferro-
electric (FE) and nonpolar paraelectric (PE) phases existence
for a bulk CIPS in dependence on the temperature T and
pressure σ for zero external field (E3 = 0) and without po-
larization gradient ( ∂P3

∂xi
= 0). To do this we minimize the LD

functional and derive the seventh-order algebraic equation for

the determination of spontaneous polarization P3,[
αT (T − TC ) − 2σiQi3 + (β − 4σiZi33)P2

3

+ γ P4
3 + δP6

3

]
P3 = 0, (2)

which nonzero solution allows us to analyze the dependence
of the spontaneous polarization on T and σ . Since it appeared
that γ < 0 for CIPS (see Table I), we cannot neglect the
positive term δP6

3 in comparison with the negative term γ P4
3 in

Eq. (2). The solution of Eq. (2) is either P3 = 0 or is given by
very cumbersome Cardano formulas. Let us analyze several
particular cases.

Since β < 0 and the nonlinear electrostriction can be
strong, the condition β−4σiZi33 > 0 cannot be excluded a
priori. Because of this we need to distinguish the cases
β−4σiZi33 > 0 (realizing a strong nonlinear electrostric-
tion) and β−4σiZi33 < 0 (corresponding to a weak nonlinear
electrostriction).

In the case β−4σiZi33 > 0 and in the regions where the
terms γ P5

3 + δP7
3 in Eq. (2) can be neglected, CIPS undergoes

the second-order phase transition between the thermodynam-
ically stable PE phase with P3 = 0 and FE phase with P2

3 > 0
under the condition

αT (T − TC ) − 2σiQi3 = 0. (3a)

From Eq. (3a), the temperature of the second-order FE-PE
transition is given by the expression Ttr (σ ) = TC − 2

αT
σiQi3.

As a matter of fact, the last expression is an equation for
the determination of Tcr (σ ) because Zi33 linearly depends on
temperature (see Table I).

In the case β−4σiZi33 < 0, the condition (3a) corresponds
to the critical temperature of the PE phase absolute instability.
In a particular case of zero or very small renormalized coeffi-
cient [αT (T − TC ) − 2σiQi3], we obtain that the spontaneous
polarization is either absent (P3 = 0), or equal to (P+

3 )2 ≈√
γ 2−4(β−4σiZi33 )δ−γ

2δ
and (P−

3 )2 ≈ −
√

γ 2−4(β−4σiZi33 )δ−γ

2δ
.

The first special point corresponds to the conditions

αT (T − TC ) − 2σiQi3 = 0 and β − 4σiZi33 = 0. (3b)

From Eq. (2), the spontaneous polarization in this point
is either zero, P3 = 0, or nonzero being equal to P2

3 = −γ

δ
.

However, this special point is not a tricritical point, be-
cause γ < 0 and δ > 0 allow the nonzero polarization. For
the application of hydrostatic pressure σ1 = σ2 = σ3 = −σ ,
the special point can be found from the system of equa-
tions β − 4(Z133 + Z233 + Z133)σtcr = 0 and αT (Ttcr − TC ) −
2σcr (Q13 + Q23 + Q33) = 0.

The boundary of FE phase absolute instability can be found
in the following way. The condition of zero second derivative
of the potential (1) on P3 along with Eq. (2) give the equation
for polarization values:

(β − 4σiZi33)P2
3 + 2γ P4

3 + 3δP6
3 = 0, (3c)

the solutions of which are (P+
3 )2 =

√
γ 2−3(β−4σiZi33 )δ−γ

3δ
and

(P−
3 )2 = −

√
γ 2−3(β−4σiZi33 )δ−γ

3δ
. These solutions must be sub-

stituted back to Eq. (2), which gives us a transcendental
equation for the determination of the boundary of FE phase
absolute instability.
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FIG. 3. (a) The bulk of CIPS subjected to an elastic stress or hydrostatic pressure. An orange arrow shows the direction of spontaneous
polarization; thin black, blue, and reddish arrows illustrate different ways of applying stress. The dependence of spontaneous polarization
P3 on temperature and hydrostatic pressure (b), lateral biaxial stress (c), and normal uniaxial stress (d). Color scales show the polarization
values. White dashed and solid curves are the boundaries of the FE phase absolute instability. White dotted curves correspond to the condition
αT (T − TC ) − 2σiQi3 = 0. Black dashed curves show the condition β−4σiZi33 = 0. Empty black circles denote the first special point found
from the conditions (3b). Empty white circles denote the second special point found from the conditions (3d). CIPS parameters are listed in
Table I.

The second special point corresponds to the merging of
both solutions of Eq. (3c). In the point (P+

3 )2 = (P−
3 )2 = −γ

3δ

and the condition γ 2 − 3(β−4σiZi33)δ = 0 must be valid. The
expression for (P±

3 )2 and the above condition should be sub-
stituted to Eq. (2). After elementary transformations this leads
to the system of equations for the special point determination:

2σiQi3 = αT (T − TC ) − γ 3

27δ2
and σiZi33 = 1

4

(
β − γ 2

3δ

)
,

(3d)
where Qi3 and Zi33 linearly depend on T .

Using expressions (1)–(3) we study the application of hy-
drostatic pressure σ1 = σ2 = σ3 = −σ , biaxial lateral stress
σ1 = σ2 = −σ, σ3 = 0, or uniaxial normal stress σ1 = σ2 =
0, σ3 = −σ to a bulk CIPS [see Fig. 3(a)]. The dependence
of spontaneous polarization P3 on temperature and hydrostatic
pressure, lateral biaxial and normal uniaxial stress are shown
in Figs. 3(b)–3(d), respectively, in the form of color maps.
Note that the color scale of the spontaneous polarization cor-
responds to the absolute minimum of the free energy (i.e., to

the deepest potential well), while the polarization value cor-
responding to the shallower well is not shown. The boundary
between the PE and FE phases, as well as their coexistence
region, are superimposed on the polarization color maps.

Thus, Figs. 3(b)–3(d) also represent the phase diagrams
of a bulk CIPS in coordinates {T, σ }. Dotted white curves,
satisfying the condition (3a), αT (T − TC ) − 2σiQi3 = 0, cor-
respond either to the second-order PE-FE phase transition
curve, or to the boundary of the PE phase absolute instabil-
ity. Black dashed curves show the condition β−4σiZi33 = 0.
Empty black circles denote the first special point (3b) cor-
responding to the intersection of the curves αT (T − TC ) −
2σiQi3 = 0 and β−4σiZi33 = 0. Note that the color scale of
polarization is insensitive to the special point, because numer-
ical solution corresponds to the deepest potential well. The
polarization corresponding to the shallower well is sensitive
to the special point, but it is not shown in Fig. 3.

The dashed and solid white curves are the boundaries of
the FE phase absolute instability. These curves are calculated
from the substitution of the two solutions of Eq. (3c) for
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FIG. 4. (a) A CIPS film covered with perfect electrodes and placed on a rigid substrate. An orange arrow shows the direction of the
spontaneous polarization; thin black arrows illustrate the strain. (b) The dependence of spontaneous polarization P3 on temperature and
mismatch strain. A color scale shows the polarization values. The dotted, dashed, solid curves, and circles have the same meaning as in
Fig. 3. CIPS parameters are listed in Table I.

polarization in Eq. (2), respectively. The curves correspond
to the deeper and shallower potential wells (see Fig. 2), and
their intersection is the second special point (3d), denoted by
the white empty circle in Fig. 3. The coexistence region of the
PE and FE phases lies between the dotted and dashed white
curves.

The phase diagram, shown in Fig. 3(b), corresponds to
the hydrostatic compression (or expansion) of a bulk CIPS.
It contains the largest region of FE phase corresponding to
compression (σ > 0), and the smallest region of the phase cor-
responding to expansion (σ < 0). The PE-FE boundary is the
second-order phase transition at σ < 0, and is the first-order
one at σ > 0. The coexistence region denoted as “FE+PE”
starts in a critical point located at small negative pressure and
expands for zero and positive pressures. The first special point
corresponds to σ ≈ 0.15 GPa and T ≈ 300 K; the second
special point corresponds to σ ≈ −0.1 GPa and T ≈ 210 K.

The phase diagram, shown in Fig. 3(c), corresponds to
the lateral (in-plane) compressive (or tensile) stress of a bulk
CIPS. Its structure is similar to the one shown in Fig. 3(b), but
the region of FE phase is bigger at σ < 0 and smaller at σ > 0
than the ones in Fig. 3(b). The first special point corresponds
to σ ≈ 0.27 GPa and T ≈ 250 K; the second special point
corresponds to σ ≈ −0.16 GPa and T ≈ 265 K.

The phase diagram, shown in Fig. 3(d), corresponds to
the normal (out-of-plane) compressive (or tensile) stress of
a bulk CIPS. Its structure is different from the ones shown
in Figs. 3(a) and 3(b), and the coexistence region FE+PE is
much thinner than the ones in Figs. 3(a) and 3(b). The first
special point corresponds to σ ≈ 0.3 GPa and T ≈ 350 K,
while the second special point is not shown (it corresponds to
much higher tensile stress).

The common feature of all diagrams in Fig. 3 is that the
FE-PE transition temperature increases and the region of FE
phase with a big and small out-of-plane spontaneous polariza-
tion P3 expands for a compressive stress σ > 0. For a tensile
stress σ < 0 FE-PE transition temperature decreases and the
region of FE phase with a small out-of-plane spontaneous

polarization P3 constricts. The situation is opposite to the one
observed for the most uniaxial and multiaxial ferroelectrics,
where FE-PE transition temperature decreases and the region
of FE phase constricts for σ > 0 and expands for σ < 0. The
physical origin of the unusual effect is the negative sign of the
nonlinear electrostriction coupling, Zi33 < 0, and anomalous
signs of the linear electrostriction coupling, Q33 < 0, Q23 > 0
and Q13 > 0 (see Table I).

C. Strain-induced phase transitions in thin CuInP2S6 films

Using the coefficients in thermodynamic potential (1), we
can study the strain-induced phase transitions in thin epitaxial
CuInP2S6 films clamped on a rigid substrate [see Fig. 4(a)].
Here we assume that the top surface of the film is me-
chanically free and the film is placed between conducting
electrodes.

Within continuous media approach, the value and orien-
tation of the spontaneous polarization Pi in thin ferroelectric
films can be controlled by their thickness h, temperature T ,
and mismatch strain um originated from the film-substrate
lattice constants mismatch [56,57]. The density of the LD
free energy, minimization of which allows us to calculate
the phase diagram of a strained uniaxial ferroelectric with a
homogeneous polarization P3, has the form

gL = α̃

2
P2

3 + β̃

4
P4

3 + γ̃

6
P6

3 + δ̃

8
P8

3 − P3E3. (4)

The coefficients in the expression (4) are renormalized by
elastic strains:

α̃ = αT (T − TC ) − 2
Q13 + Q23

s11 + s12
um + deff

ε0ε f (h + deff )
, (5a)

β̃ = β + (Q13 + Q23)2

s11 + s12
+ (Q13 − Q23)2

s11 − s12
− 4um

Z133 + Z233

s11 + s12
,

(5b)
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γ̃ = γ + 3

[
(Q13 + Q23)(Z133 + Z233)

s11 + s12

+ (Q13 − Q23)(Z133 − Z233)

s11 − s12

]
, (5c)

δ̃ = δ + 2

[
(Z133 + Z233)2

s11 + s12
+ (Z133 − Z233)2

s11 − s12

]
. (5d)

Here si j are elastic compliances in the Voigt notations;
u1 = u2 = um are the components of biaxial mismatch strain
in Voigt notations. Note that the existence of nonlinear elec-
trostriction leads to the renormalization of the sixth- and
eighth-order terms in the energy density (4), at that the term
δ̃
8 P8

3 appeared not small in comparison with γ̃

6 P6
3 for CIPS.

The spontaneous polarization satisfies the seventh-order equa-
tion, α̃P3 + β̃P3

3 + γ̃ P5
3 + δ̃P7

3 = 0.
To derive Eqs. (4) and (5), we substituted the expr-

essions for elastic stresses, σ1 = um
s11+s12

− s11Q13−s12Q23

s2
11−s2

12
P2

3 −
s11Z133−s12Z233

s2
11−s2

12
P4

3 , σ2 = um
s11+s12

− s11Q23−s12Q13

s2
11−s2

12
P2

3 − s11Z233−s12Z133

s2
11−s2

12
P4

3 ,
and σ3 = 0 into Eq. (1). The derivation details are given
in Appendix A. The last term in Eq. (5a) originates
from the depolarization field inside the ferroelectric film,
E3 = − P3

ε0ε f

deff
h+deff

[58], where h is the film thickness, deff

is the thickness of the effective physical gap or dead layer,
which may exist at the film surfaces, ε f is a relative dielectric
permittivity of the film, and ε0 is a universal dielectric
constant. The depolarization effects can be very important
in thin films under imperfect screening conditions, e.g.,
for domain formation [59], but in this section we would
like to focus on the strain-induced effects and neglect the
depolarization field and polarization gradient effects. This
is possible if the effective gap and dead layer are either
absent or ultrathin, i.e., deff < 0.1 nm and ε f � 1, so that
the depolarization field becomes very small and the domain
formation is not energetically favorable.

The dependence of the spontaneous polarization P3 on
temperature and mismatch strain um is shown in Fig. 4(b).
The boundary between the PE and FE phases, as well as
their coexistence region, are superimposed on the polarization
color maps. The dotted, dashed and solid curves, and circles
have the same meaning as in Fig. 3. The diagram contains a
relatively small triangularlike region of the PE phase located
at temperatures more than 300 K and tensile mismatch strains.
The rest of the diagram is filled by the FE phase, which
can coexist with the PE phase in the FE+PE region. The
PE-FE boundary is the second-order phase transition at tensile
strains um > 0, and is the first-order transition at compres-
sive strains um < 0. The FE+PE coexistence region exists for
tensile strains only. The first special point corresponds to a
small compressive strain um ≈ −0.45% and temperature T ≈
250 K. The second special point is located at small tensile
strain um ≈ +0.5% and temperature T ≈ 265 K.

The unusual feature of the epitaxial CIPS film diagram
is that the high-temperature FE phase with big and small
out-of-plane spontaneous polarizations P±

3 exists at a com-
pressive strain um < 0. The phase does not vanish for a tensile
strain um > 0; instead, it expands its area with the increase
of um > 0, while the polarization becomes small at um > 0

FIG. 5. Considered shapes of CIPS nanoellipsoids. Thick orange
arrows show the direction of the spontaneous polarization; thin black
arrows illustrate the way of the stress application. A needlelike el-
lipsoidal nanoparticle stressed in lateral directions with respect to its
long axis (a), a hydrostatic compression of the nanosphere (b), and a
disklike nanoparticle stressed in the direction normal to its polar axis
(c). The spontaneous polarization is directed along the polar axis z in
all three cases.

and eventually undergoes the second-order phase transition at
the dotted line. The magnitude of P3 is big for um > 0 and
small for um < 0. The situation for um > 0 is untypical for
the most uniaxial and multiaxial ferroelectric films, where the
out-of-plane polarization is absent or very small at um > 0,
the region of FE c phase vanishes or significantly constricts
for um > 0, and increases for um < 0 [56,57].

The physical origin of the unusual features of the phase
diagram of the thin film is similar to the one for the bulk
diagrams. It is the negative sum of the high nonlinear elec-
trostriction coupling coefficients, Z133 + Z233, and positive
sum of the linear electrostriction coupling coefficients Q13 +
Q23 (see Table I). The mathematical explanation follows
from Eq. (5). Actually, the coefficient α̃ = αT (T − TC ) −
2 Q13+Q23

s11+s12
um in Eq. (5a) decreases for um > 0, since Q13 +

Q23 > 0, while the corresponding coefficient for perovskite
films with a cubic parent phase, α̃ = αT (T − TC ) − 4Q12

s11+s12
um,

increases for um > 0, since Q12 < 0 for most perovskites [56].
The coefficient β̃ = β + (Q13+Q23 )2

s11+s12
+ (Q13−Q23 )2

s11−s12
− 4um

Z133+Z233
s11+s12

in Eq. (5b) decreases for um > 0, since Z133 + Z233 < 0, while
the corresponding coefficient for perovskite films, β̃ = β +
4(Q12 )2

s11+s12
, is independent of mismatch strain [56].

The calculated diagram predicts the possibility to increase
the FE phase region up to 500 K in the compressed epitaxial
CIPS films, and up to 400 K for stretched CIPS films, and the
analytical expressions (5) allow us to select the optimal values
of T and um for the phase transitions control. The result can be
of particular interest for the strain engineering of CIPS films.

D. Stress-induced phase transitions in CuInP2S6 nanoparticles

Using the four-well thermodynamic potential (1), we study
the stress-induced phase transitions in CIPS nanoparticles, the
shape of which varied from prolate needlelike ellipsoids to
oblate disks (see Fig. 5). Note that any type of mechanical ac-
tion (e.g., hydrostatic pressure, biaxial or uniaxial stress) can
be applied to the nanoparticle of arbitrary shape. Leaving the
study of a general case for the future, here we consider several
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particular cases: a needlelike ellipsoidal nanoparticle stressed
(or expanded) in lateral directions with respect to its longer
polar axis z by, e.g., a pore material [Fig. 5(a)], the hydrostatic
pressure (or expansion) of the nanosphere [Fig. 5(b)], and a
disklike nanoparticle stressed (or expanded) in the direction
normal to its short polar axis by, e.g., mechanical clamping
[Fig. 5(c)].

We consider the situation when the nanoparticles are
placed in a semiconducting medium with a high electric con-
ductivity and a very small effective screening length λ <

0.1 nm, which effectively screen their spontaneous polar-
ization in such way to prevent the domain splitting in the
particles. That said, we consider single-domain nanoparticles
here, leaving the case λ > 0.1 nm, when the domain splitting
can appear, for future studies.

Taking into account the elastic stress and imperfect screen-
ing, the density of the LD energy is

gLD =
(

α∗

2
− σiQi3

)
P2

3 +
(

β

4
− σiZi33

)
P4

3 + γ

6
P6

3

+ δ

8
P8

3 − P3E3 + g33i j
∂P3

∂xi

∂P3

∂x j
, (6a)

where

α∗(T ) = αT (T − TC ) + nd

ε0[εbnd + εe(1 − nd ) + nd (D/λ)]
,

(6b)

Here εb and εe are the dielectric permittivity of ferro-
electric background [60] and external media, respectively,
nd = 1−ξ 2

ξ 3 (ln
√

1+ξ

1−ξ
− ξ ) is the depolarization factor, ξ =√

1 − (R/L)2 is the eccentricity ratio of ellipsoid with a
shorter semiaxis R and longer semiaxis L [61], and D is the
ellipsoid semiaxis (R or L) in the direction of spontaneous
polarization P3 (see Fig. 5). The derivation of Eq. (6b) is
given in Ref. [62]. and Appendix B. In order to focus on the
external pressure effect, we neglect the surface tension and
polarization gradient effects considered elsewhere [63–65].

It follows from Eq. (6a) that the critical temperature Tcr

of the PE phase instability at fixed size D (or the critical
size Dcr at fixed temperature T ) is determined from the equa-
tion 1

2α∗(T, D) − σiQi3 = 0, where the coefficient α∗(T, D)
is given by Eq. (6b). As it is illustrated below, elastic stresses
σi can change strongly (in particular increase) the tempera-
ture Tcr (or decrease the size Dcr) of the nanoparticle, and,
consequently can enhance their polar properties at operating
(e.g., room) temperature and decrease the minimal size of the
working element. Thus, an application of elastic stress can
be indeed promising for the optimization of CIPS nanoparti-
cles working performances towards superior polar properties.
Since it impossible to tell a priori what shape of the CIPS
nanoparticles is required for different types of fundamental
research and/or applications, the influence of stress on their
polar properties is illustrated by Fig. 6 for the nanoparticles
with various shape.

The dependence of the spontaneous polarization P3

on temperature and hydrostatic pressure (σ1 = σ2 = σ3 =
−σ ), or lateral biaxial stress (σ1 = σ2 = −σ, σ3 = 0), or

normal uniaxial stress (σ1 = σ2 = 0, σ3 = −σ ) are shown in
Figs. 6(b)–6(d) for a nanosphere, a needle, and a nanodisk,
respectively. The boundary between the PE and FE phases,
as well as their coexistence region, are superimposed on the
polarization color maps.

The phase diagram, shown in Fig. 6(b), corresponds to
the hydrostatic pressure of a spherical CIPS nanoparticle. It
contains the large region of the FE phase with relatively big
polarization P3 corresponding to compression (σ > 0), and
the thin region of the phase with a small P3 corresponding to
expansion (σ < 0). The PE-FE boundary is the second-order
phase transition at σ < 0, and is the first order at σ > 0. The
coexistence of FE and PE phases starts in the special point
located at σ ≈ −0.20 GPa and T ≈ 50 K, and expands for
zero and positive pressures (see the solid and dashed white
curves, and white circle). The diagram is similar to the bulk
diagram, shown in Fig. 3(a); all the difference consists of the
presence of the depolarization field effect, which causes the
second term in Eq. (6b) that increases α∗(T ). As anticipated
for any spherical nanoparticles [62–65], the depolarization
field effect lowers the temperature for the FE-PE transition,
constricts the region of FE phase, and shifts it to the lower
temperatures and higher pressures.

The phase diagram, shown in Fig. 6(c), corresponds to
the lateral (i.e., perpendicular to the z axis) compressive
(or tensile) stress of a CIPS needlelike nanoparticle. The
phase structure is very similar to the bulk diagram shown
in Fig. 3(c), the quantitative differences originated from the
depolarization effect, which is very small for a needlelike
nanoparticle with polarization directed along the long axis
of the needle. Actually, the depolarization factor nd 	 1 for
the case.

The phase diagram, shown in Fig. 6(d), corresponds to the
normal (i.e., parallel to the z axis) compressive (or tensile)
stress of a CIPS disklike nanoparticle. Its structure is similar to
the bulk diagram shown in Fig. 3(d), but the FE phase and the
FE+PE coexistence regions are significantly smaller, thinner,
and shifted to lower temperatures in comparison with the cor-
responding regions in Fig. 3(d). The significant suppression
of the FE phase and associated polar properties are related
with a strong depolarization effect, since the corresponding
depolarization field contribution in Eq. (6b) is not small for
nanodisks.

The common feature of the nanoparticle diagrams is that
the FE-PE transition temperature and the region of FE phase
increase for a compressive stress σ > 0, and decrease for
a tensile stress σ < 0. The trend is opposite to the situa-
tion observed for many uniaxial and multiaxial perovskite
nanoparticles, where FE-PE transition temperature and the
region of FE phase increases for σ < 0. The origin of the
difference is the negative nonlinear electrostriction coupling
Zi33 < 0 and “inverted” signs of the linear electrostriction
coupling Q33 < 0, Q23 > 0, and Q13 > 0 (see Table I). The
diagrams, shown in Fig. 6, reveal the strong impact of the
elastic stress and shape anisotropy on the polar properties of
CIPS nanoparticles with various shapes, required for different
types of fundamental research and applications.

Spherical ferroelectric nanoparticles (in reality they are
quasispherical, sometimes even more close to cubic) can
be easily obtained by, e.g., ball milling [66,67] of a bulk
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FIG. 6. (a) A CIPS nanoparticle under stress. The dependence of the spontaneous polarization P3 on temperature and pressure for the
stressed CIPS nanosphere with a radius R = 20 nm (b), the needlelike nanoellipsoid with semiaxes L = 200 nm and R = 20 nm (c), and
disklike nanoellipsoid with semiaxes L = 20 nm and R = 200 nm (d). The effective screening length λ = 0.5 nm, εe = 2. Color scales show
the polarization values. The dotted, dashed, solid curves, and circles have the same meaning as in Fig. 3. CIPS parameters are listed in Table I.

material, or advanced chemical vapor deposition (CVD) tech-
nology, can be interesting as fillers for various ferroelectric
nanocomposites and nanocolloids [68], where the matrix can
be polymeric or soft matter [69–71]. These nanocompos-
ites can be used in capacitors, functionalized liquid crystal
displays, etc. Our calculations, results of which are illus-
trated by Fig. 6(b), predict that a hydrostatic pressure can
increase strongly the spontaneous polarization and the critical
temperature Tcr of ferroelectricity disappearance in a CIPS
nanosphere. Also, as it follows from Eq. (6), the pressure can
decrease significantly the critical radius Rcr of the nanosphere,
which can be useful for the creation of miniaturized CIPS
nanospheres with superior polar properties.

It is relatively easy to synthetize (e.g., by self-assembled
CVD) CIPS nanowires and long nanorods with rounded ends,
which can be modeled theoretically by prolate nanoellipsoids.
Either single nanorods or their oriented arrays placed on/in
special templates can be interesting and promising for mul-
tifunctional applications, such as alternative 3D memories,
nanochannels and related logic elements, as well as piezo-
or pyro-nanogenerators for energy harvesting [72,73]. For
all these applications the prolate shape of a nanoparticle
is critically important. Since the spontaneous polarization

is regarded oriented along the nanorod axis, its critical ra-
dius of the ferroelectricity disappearance can be essentially
smaller than for the nanosphere. This is a relative benefit
of a prolate shape. Multiple examples of the interest in fer-
roelectric nanorods and nanotubes can be found in topical
reviews [74,75]. We can imagine that the discovered liquid
glass state [76] with additional ferroelectric ordering and other
cross-talk effects, are possible in a suspension of the prolate
CIPS nanoparticles. Our calculations, results of which are
illustrated by Fig. 6(c), predict that a lateral compression
can increase significantly the spontaneous polarization and
the critical temperature of ferroelectricity disappearance in
CIPS needles/nanowires. Also, the compression can decrease
the critical radius of the needles, which can be used for the
creation of ultrathin polar nanoneedles for versatile multifunc-
tional applications.

The possible interest in CIPS nanodisks is related with
the same applications, which are important for nanoflakes
and nanoplates of other ferroelectrics [77]. The synthesis of
nanoflakes can be much cheaper than the production of thin
films, but their polar properties may be worse. Indeed, the
typical situation is that the critical thickness corresponding
to the ferroelectricity disappearance in a nanodisk with an
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out-of-plane polarization is relatively big (e.g., in comparison
with a critical radius of a nanowire), but our calculations, re-
sults of which are illustrated by Fig. 6(d), predict that normal
stresses can decrease the critical size strongly, opening the
way for the synthesis of CIPS nanoflakes with conserved polar
properties.

III. CONCLUSION

Using the LD approach and available experimental re-
sults we reconstruct the four-well thermodynamic potential
for the layered ferroelectric CIPS, which is valid in a wide
range of temperatures (100–400) K and applied pressures (0–
1) GPa. The simultaneous fitting of independent experimental
measurements, such as the temperature dependences of the di-
electric permittivity and lattice constants for different applied
pressures, unexpectedly reveals the critically important role
of a nonlinear electrostriction, which appeared negative and
temperature dependent.

With the nonlinear electrostriction included we calculated
the phase diagrams and spontaneous polarization of a bulk
CIPS in dependence on temperature and pressure. Using the
coefficients of the reconstructed thermodynamic potential,
we study the strain-induced phase transitions in СIPS thin
films, as well as the stress-induced phase transitions in СIPS
nanoparticles, the shape of which ovaries from prolate needles
to oblate disks.

The common feature of the bulk and nanoparticle dia-
grams, shown in Figs. 3 and 6, is that the FE-PE transition
temperature increases and the region of FE phase expands
for a compressive stress. The feature of the FE phase is the
existence of a big and a small out-of-plane spontaneous po-
larization, corresponding to the deep and shallow wells of
the four-well thermodynamic potential. The FE-PE transition
temperature decreases, and the region of the FE phase with
a small out-of-plane spontaneous polarization constricts for a
tensile stress. The situation is opposite to the one observed
in the most of uniaxial and multiaxial bulk ferroelectrics.

The unusual feature of the CIPS film diagram, shown in
Fig. 4, is that the high-temperature FE phase with a big and
small out-of-plane spontaneous polarization, which exists at a
compressive strain, does not vanish for a tensile strain, but
instead it expands its area, while the polarization becomes
small here. The situation for tensile strains is untypical for the
most uniaxial and multiaxial ferroelectric films, where out-of-
plane polarization is absent or very small for tensile strains
[56,57]. The origin of the unusual effects, which we predict
for the phase diagrams, is the negative sign of the temperature-
dependent nonlinear electrostriction coupling and anomalous
signs of the linear electrostriction coupling (see Table I).

To summarize, our calculations predict the strong impact
of elastic stress and shape anisotropy on the phase dia-
grams and polar properties of nanoscale CIPS. We would
like to underline that the derived analytical expressions for
the renormalized strain- (or stress-) dependent coefficients in
the four-well thermodynamic potential allow us to tune the
stress/strain range and select the optimal size and shape of the
nanoscale CIPS to control its polar properties. Thus, we hope
that obtained results can be of particular interest for the stress
and strain engineering of nanoscale layered ferroelectrics.
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and S. Kralj, Impact of ferroelectric and superparaelectric
nanoparticles on phase transitions and dynamics in nematic
liquid crystals, Phys. Rev. E 96, 022705 (2017).

[71] A. Mertelj, L. Cmok, M. Čopič, G. Cook, and D. R. Evans,
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