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Energy spectra of graphene quantum dots induced between Landau levels
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When an energy gap is induced in monolayer graphene the valley degeneracy is broken and the energy
spectrum of a confined system such as a quantum dot, becomes rather complex exhibiting many irregular level
crossings and small energy spacings, which are very sensitive to the applied magnetic field. Here we study
the energy spectrum of a graphene quantum dot that is formed between Landau levels, and show that for the
appropriate potential well the dot energy spectrum in the first Landau gap can have a simple pattern with
energies coming from one of the two valleys only. This part of the spectrum has no crossings, has specific
angular momentum numbers, and the energy spacing can be large enough, consequently, it can be probed with
standard spectroscopic techniques. The magnetic field dependence of the dot levels as well as the effect of the
mass-induced energy gap are examined, and some regimes leading to a controllable quantum dot are specified.
At high magnetic fields and negative angular momentum a simple approximate method to the Dirac equation is
developed, which gives further insight into the physics. The approximate energies exhibit the correct trends and
agree well with the exact energies.
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I. INTRODUCTION

Some experiments [1–4] have shown that a quantum dot
can be formed in a single sheet of graphene by adjusting
the tip-induced potential of a scanning tunneling microscope
(STM). In a uniform magnetic field discrete energy levels
have been probed between bulk Landau levels [1,2], and the
electronic properties of confined states have been explored
[1–5]. To better control the tunability of the quantum devices
in the experimental studies an energy gap is usually induced
at the Dirac points K and K ′ of the band structure. Without the
energy gap the two valleys at the Dirac points are degenerate
and the charge carriers are massless [6]. Inducing an energy
gap between the conduction and the valence bands leads to
charge carriers with mass and the valley degeneracy is broken.

In a graphene sheet the energy gap can be induced with
some simple techniques [7–11]; however, breaking the val-
ley degeneracy leads to more complex energy spectra for a
confined graphene system, since the energies of the charge
carriers depend on the specific valley. The resulting energy
spectra exhibit many level crossings as well as anticrossings,
and small energy spacings, which are rather sensitive to the
applied magnetic field. These features could make difficult
the use of graphene dots to optoelectronics and valleytronics
applications [12,13].

In the present paper we study the energy spectrum of a
graphene quantum dot that is formed between bulk Landau
levels, and show that for the appropriate fields the dot energy
spectrum can have a simple pattern. Specifically, if we focus
on the first Landau gap, namely, between the Landau levels
−1 and 0, then there is an energy range with discrete energies
coming from one of the two valleys only. Thus, a graphene dot
with a specific valley index can be realized. We demonstrate
that the dot energy spectrum consists of specific angular mo-

mentum values and has no crossings, simplifying drastically
the identification of the dot energy levels. Our calculations
show that when the mass term is a few tens of meV and
the applied magnetic field is a few Tesla, the typical energy
spacing can be a few meV. By adjusting the STM induced
potential well the discrete levels of the dot formed in the first
Landau gap can be energetically isolated and lie away from
the bulk Landau levels.

To obtain further insight into the physics we develop an
approximate method to compute the dot energies. The method
takes into account the fact that the zeroth Landau level has a
Dirac state with one component zero, and even though this
component becomes nonzero in the presence of the STM
potential, it can still be vanishingly small compared to the
second component. Using this condition we derive an approx-
imate Schrodinger equation for the dominant component of
the Dirac state. We find that at high fields and negative an-
gular momentum the approximate energies exhibit the correct
potential dependence, and are in a good agreement with the
exact ones. The typical error is of the order of 1 − 2%, and
depending on the specific parameters the error can decrease to
less than 0.1%.

Only in the proper range of parameters the quantum dot
energy spectra have a simple pattern. Anticrossing points,
which are relevant to the Klein tunneling effect do not occur
in the range of parameters used in this paper. Quantum dots
at low magnetic fields, typically lower than 0.5 T, exhibit-
ing Klein tunnelling have been theoretically examined earlier
[14,15] but these dots might be more difficult to probe due
to the relatively small energy spacings and the fabrication of
the required dot confining potential [14]. Quantum dots in the
Klein tunneling regime have also more complicated quantum
states and the approximate method developed in this paper is
inapplicable.
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The quantum dot system studied here is edge-free therefore
the reported results are insensitive to the microscopic details
of the edges. This property offers a superior control over the
dot states compared to dot states formed in nanosheets of
graphene [6]. The results are relevant to other confined sys-
tems formed in two-dimensional materials by external fields
[16–25], as well as to general hybrid graphene-based systems
including defects and heterostructures [26–33].

Section II presents the physical model of the graphene
quantum dot and explains with some qualitative arguments
how the discrete levels of the dot emerge from the bulk Landau
levels. The energy range of interest is also specified in Sec. II,
and then in Sec. III the energy spectra of the quantum dot
are studied. In Sec. IV an approximate method to derive the
dot energies is presented and a comparison with the exact
energies is made. The conclusions are presented in Sec. V.
Finally, in Appendices A, B, and C the quantum dot equations
are derived and some further results are presented.

II. QUANTUM DOTS FORMED IN THE FIRST
LANDAU GAP

In the continuum approximation the charge carriers in
graphene satisfy the Dirac equation [6]

[vFσ · (p + eA) + V + τ�σz/2]� = E�, (1)

with vF = 106 m s−1, p = (px, py) is the momentum operator,
and σ = (σx, σy), σz are the Pauli matrices. A uniform mag-
netic field B is perpendicular to the graphene sheet in the z
direction and the magnetic vector potential is Aθ (r) = Br/2
in the azimuthal direction, where r is the radial coordinate.
The scalar potential has the form V (r) = −V0 exp(−r2/2L2),
which models the STM-induced potential well with an ef-
fective depth V0 � 0. The effective width is controlled by
the parameter L, which is taken to be

√
2L = 40 nm unless

otherwise specified. The mass term is denoted by �/2 giving
rise to an energy gap equal to �, and τ = 1 (−1) denotes
the K (K ′) valley. Because of the cylindrical symmetry the
two-component envelope function can be written as [15,23]
�(r, θ ) = ( f1(r) exp[i(m − 1)θ ], i f2(r) exp[imθ ])/

√
r, where

m = 0,±1, ... is the angular momentum quantum number,
and θ is the azimuthal angle. Here, f 2

i is the radial probability
distribution for each of the two sublattices of the graphene
sheet. Equation (1) is discretized with a finite-difference
scheme [14] applying the appropriate boundary conditions for
confined states that satisfy E (m, B, τ ) = E (1 − m,−B,−τ ).
This scheme converts the continuum eigenvalue problem
Eq. (1) to a matrix eigenvalue problem, which is solved nu-
merically.

When there is no potential, V0 = 0, Eq. (1) gives rise to
the Landau levels. Defining the Landau index N = n + (|m| +
m)/2 with the integer n = 0, 1, . . . then the Landau levels
for N = 0 (n = 0 and m � 0) are E = −τ�/2. The excited
Landau levels for N � 1 are E = ±√

2h̄v2
FNeB + �2/4.

When � = 0 all m � 0 give a Landau energy E = 0 inde-
pendent of the valley. On the contrary, when � �= 0 all m � 0
for τ = −1 give a Landau energy E = �/2, and all m � 0
for τ = 1 give a Landau energy E = −�/2. As quantified
below, by increasing V0 �= 0 the original Landau energies
E = ±�/2 start to decrease with a rate that depends on |m|;

small |m| energies are affected more by V0. Thus, the energies
E = �/2 form a set of discrete energies with τ = −1, and
similarly the energies E = −�/2 form another set of dis-
crete energies with τ = 1. When the Landau gaps are large
enough only these two energy sets are relevant and the typical
energy separation between them is of the order of �, while
the two sets overlap when V0 � �. The key conclusion is
that discrete energies, which come from different valleys can
lie in a very different energy range, for the proper parameter
regime, allowing the realization of a dot with a well-defined
valley. All these arguments are quantified below, and it is also
shown that the typical spacing of the discrete energies lying
in the first Landau gap is large enough as needed to define a
controllable quantum dot. In this paper the first Landau gap,
which is denoted by EL, is defined from −√

2h̄v2
FeB + �2/4

to −�/2, and this energy gap specifies the energy range of
interest.

For V0 �= 0 a numerical approach is needed to compute
the energies, however, some insight into the valley-dependent
energy range can be obtained without solving Eq. (1). If
we set fi = yigi with i = 1, 2, and gi is determined ex-
plicitly in Appendix A, then the function yi satisfies the
second-order differential equation d2yi/dr2

i + Q2
i yi = 0. The

energy-dependent coefficient is

Q2
i (r, E ) = ∓ U ′

γ
± U

γ

V ′

V∓
+ V ′′

2V∓
− 3

4

(
V ′

V∓

)2

− U 2

γ 2

+ (V − E )2

γ 2
− �2

4γ 2
, (2)

with the parameter γ = vFh̄. The upper/lower sign is
for i = 1/2, V∓ = V − E ∓ τ�/2, U/γ = (2m − 1)/2r +
eAθ /h̄, and prime denotes differentiation with respect to r.

Unlike the V0 = 0 limit for V0 �= 0 a confined state � can
exist when both components yi are nonzero. However, this
condition is guaranteed only for specific forms of Q2

i (r, E ). As
an example, consider the parameters B = 1 T, � = 20 meV,
V0 = 20 meV and for brevity focus on m = −1 and energies
in the first Landau gap. A nonzero yi can exist when there is
a spatial region with Q2

i (r) > 0; yi is localised in this region
and Q2

i (r) < 0 asymptotically and for r → 0. A nonzero yi

can also exist when Q2
i (r) < 0 for all r but R0 with V∓(R0) =

0 resulting in Q2
i (R0) → −∞. Then, yi is localised in the

vicinity of R0. However, for τ = −1 no energies satisfy the
required forms for both coefficients Q2

i (r), and simultaneously
the limit E → �/2 as V0 → 0. In contrast, for τ = 1 and
for specific energies both Q2

i (r) have the required forms. The
exact energies for the τ = 1 valley can computed by solving
the equations for yi. Increasing now V0 to V0 = 72 meV, and
exploring again the form of Q2

i (r) in the first Landau gap
shows that both yi can be nonzero for both valleys τ = ±1.
This example demonstrates that with the proper choice of V0,
which can be controlled with the STM tip-induced potential,
energies from the τ = 1 valley only, or from both valleys can
be formed in the first Landau gap.

III. QUANTUM DOT ENERGY SPECTRA

In this section the energy spectra of the graphene quan-
tum dot are examined with exact numerical calculations.
Figure 1(a) shows the energy levels as a function of the
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FIG. 1. Energies as a function of the potential-well depth for the
parameters: (a) B = 1 T, � = 0; (b) B = 1 T, � = 20 meV; (c) B =
2 T, � = 20 meV. Solid lines correspond to τ = 1 and dashed lines
to τ = −1. The first Landau gap relevant to this paper is denoted by
EL and the mass-induced gap by �. The numbers 0, –1, –2 denote
the angular momentum number.

potential depth V0 for B = 1 T and � = 0. For V0 = 0 the
energies define the bulk Landau levels while by increasing V0

discrete energy levels start to form in the Landau gaps. At
a fixed V0, the number of energy levels in each Landau gap
is different because the effect of the potential on the levels

depends on the corresponding angular momentum number
m. The general rule is that states with large |m|, which are
localised away from the potential well are affected less by
changes in V0, and their energies deviate only slightly from the
Landau levels. On the contrary, states with small |m| are local-
ized nearer the origin of the potential well and are more sensi-
tive to changes in V0. As a result, increasing V0 shifts the corre-
sponding energies in the Landau gaps by a significant amount.

In a graphene sheet the bulk Landau levels are broadened
due to impurities, e.g., in the substrate, and/or a disorder
potential. For a controllable quantum dot its discrete energy
levels of interest can be more easily probed when they are
defined away from the Landau levels. Therefore, one possible
choice is to define the dot levels in (the center of) the first
Landau gap, which is the largest. This paper is concerned with
this case.

Focusing on the first Landau gap EL = √
2h̄v2

FeB in
Fig. 1(a) where � = 0, then at V0 ≈ 32.5 meV the lowest
energy level is equal to E ≈ −EL/2. This level has m = 0
and the next higher level has m = −1, then m = −2, and so
on. Eventually, for large negative m values the energies are
approximately zero defining the zeroth Landau level E = 0.
The low-lying m energies are well isolated from other energies
and can define the quantum dot levels. This is not guaranteed
when V0 is arbitrary large and the resulting energy spectrum is
more complicated involving both positive and negative values
of m without a specific order. In Fig. 1(a) this trend starts to
occur for V0 > 62 meV. The knowledge of m as well as the
dot-energy range are useful since they specify the form of the
quantum states, e.g., position of peaks and number of nodes.

In Fig. 1(b) the energy levels are plotted for B = 1 T and
� = 20 meV. Now the energy levels are different for the two
valleys, but the general characteristics of the energy spectra
are similar to those when � = 0. Discrete energy levels in the
mass-induced gap are induced even when B = 0 but because
of the symmetry E (m, τ ) = E (1 − m,−τ ) the energies from
the two valleys cannot be separated. Furthermore, in a specific
device the mass-induced gap is not so easily tunable as the
Landau gap and its value is rather sensitive to the specific
device configuration. For this reason, this paper is concerned
with the energy levels of a quantum dot formed in the first
Landau gap, which is easily tunable by the magnetic field
and can be adjusted at will. In Fig. 1(c) the energy levels
are plotted at a higher field, e.g., B = 2 T but the same � =
20 meV. Compared to the B = 1 T spectrum now more levels,
corresponding to greater values of |m|, are introduced in the
first Landau gap. The reason is that by increasing B the states
tend to shift nearer the origin thus the effect of the potential
well becomes more important and the energies start to deviate
from the zeroth Landau level.

For the calculations of the energy spectra the range of
angular momentum numbers m is large enough to accurately
derive all energies in the considered energy range. The con-
vergence of the energy spectrum for larger values of V0 and B
requires a broader m range. For example, at V0 = 30 meV and
B = 1 T the m = −10 energy level is about 41 μeV below
the zeroth Landau level. When the field increases to B = 2 T
then to a good approximation the same energy difference is
observed for m = −18.
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Figures 1(b) and 1(c) demonstrate that an interesting en-
ergy pattern arises in the first Landau gap provided V0 is
not too large; for example, in Fig. 1(b) for V0 < 35 meV
only energy levels from the K valley (τ = 1) are relevant. In
contrast, for V0 > 35 meV energy levels, which come from
both valleys lie in the first Landau gap leading to a more
complex energy spectrum. Focusing on the first Landau gap,
at a fixed B and � there is a critical potential well depth
V v

0 , that defines the crossover from the “single-valley” energy
spectrum to the “two-valley” spectrum. This effect is rather
robust and can be more easily identified when � is large.
Since in the experiments the energy gap is usually fixed we
below focus on the magnetic field dependence of V v

0 .
To explore the energy spectrum in the first Landau gap we

first identify the energy level E (m = 0, τ = −1,V0 = 0) =
+�/2. By increasing V0 this energy level decreases and we
define the critical potential V v

0 , which satisfies

E
(
m = 0, τ = −1,V0 = V v

0

) = −�/2. (3)

For V0 > V v
0 energies from both valleys lie in the first Landau

gap and eventually the spectrum becomes rather complex with
many crossing points appearing at random values of V0, B due
to the broken valley degeneracy. The critical potential V v

0 can
be considered as the maximum allowed value of V0, which
leads to a single-valley energy spectrum in the first Landau
gap. To specify the optimum dot-energy range we also need
to determine the minimum value of V0, consequently, we need
to choose a reference ground energy in the first Landau gap.
For this purpose we identify the energy level E (m = 0, τ =
1,V0 = 0) = −�/2, which decreases with V0, and we define
the critical potential V g

0 , which satisfies

E
(
m = 0, τ = 1,V0 = V g

0

) = −�/2 − EL/2, (4)

with EL being the value of the first Landau gap as indicated
in Fig. 1. This definition of V g

0 ensures that the lowest level in
the first Landau gap lies in the middle of this gap. As a result,
when the B field is high enough the few lowest discrete levels
are energetically isolated lying far away from the bulk Landau
levels.

Both critical potentials V v
0 and V g

0 are magnetic field de-
pendent. In Fig. 2 we plot V v

0 and V g
0 versus the magnetic field

for three values of �. The potential V v
0 decreases as the field

increases and the field dependence is rather large for small
fields when the difference between the mass-induced gap and
the Landau gap is small. In contrast, if the magnetic field is
high enough then V v

0 varies slowly and eventually V v
0 → �.

For example, our calculations show that at B = 20 T V v
0 ≈

41.5 meV for � = 40 meV and V v
0 ≈ 20.7 meV for � =

20 meV. The potential V g
0 has almost a linear-field dependence

but for low enough fields (B < 1 T) the field dependence can
be more complicated. This regime is not of particular interest
here because of the small value of the Landau gap, which
in a realistic sample becomes even smaller due to the level
broadening. The energies coming from the two valleys lie in a
different energy range provided V v

0 > V g
0 , and according to

Fig. 2 this condition is satisfied only for B � 1.7 T when
� = 20 meV. But, when � = 40 meV V v

0 > V g
0 even when

the magnetic field [34] is as high as 6 T. A larger � results
in a broader B field range in which V v

0 > V g
0 . This feature
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FIG. 2. Critical potentials V v
0 and V g

0 defined in Eqs. (3) and
(4), respectively, as a function of the magnetic field for � = 0, 20,
40 meV. For V v

0 > V g
0 the energy levels in the first Landau gap come

from the K valley only, and the lowest energy level in the first Landau
gap lies in the middle of this gap with m = 0. For � = 0 the potential
V v

0 cannot be defined.

might be advantageous to easily separate the energies from the
two valleys and define a dot with a specific valley. However,
engineering a large � cannot be guaranteed and, as quantified
below, by increasing � both the first Landau gap and the
energy spacing between successive levels in the gap decrease.
Consequently, a very large � is not necessarily ideal.

To obtain a better insight into the energy spectra we plot
in Fig. 3 the energy spacing between successive energy levels
δ = E (m, τ = 1) − E (m + 1, τ = 1) lying in the first Landau
gap at V0 = V g

0 . All the relevant levels correspond to m � 0
and originate from the −�/2 Landau level. According to
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FIG. 3. Energy spacing δ = E (m, τ = 1) − E (m + 1, τ = 1)
between successive energy levels as a function of the angular mo-
mentum number m with −15 � m � −1. The magnetic field is B,
the mass term is � = 40 meV. The potential is V0 = V g

0 , thus by
definition E (m = 0, τ = 1) is the lowest lying energy in the middle
of the first Landau gap.
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Fig. 3, for all magnetic fields the largest spacing occurs be-
tween the two lowest levels that correspond to m = 0, −1 in
order of increasing energy. However, the spacing, in general,
can exhibit a strong B dependence for the field range consid-
ered; as B increases the spacing tends to increase drastically
for large |m| values. For m = −10 the spacing is vanishingly
small at B = 1 T, but is about 1 meV at B = 5 T. This is due
to the fact that larger |m| states are shifted nearer the origin
of the well because of the increase of the magnetic barrier
so their energies start to deviate significantly from the bulk
Landau level −�/2. The conclusion is that by tuning the
magnetic field the system can be switched from a few-level
dot to a many-level dot with an appreciable energy spacing.
At B = 4 T the Zeeman splitting is about 0.46 meV, for g =
2 g-factor, and kBT ≈ 0.34 meV at T = 4 K. These values
are much smaller than a typical spacing of δ ≈ 2 − 4 meV
(Fig. 3) allowing the spectroscopy of the dot levels [1]. For
the results in Fig. 3 the effective width of the potential well
is

√
2L = 40 nm. Increasing the width to

√
2L = 80 nm the

m = 0 energy level lies closer to −V0 and the typical energy
spacing decreases, e.g., at B = 2 − 4 T the spacing between
the two lowest levels is about 1.5 meV. The results are only
slightly sensitive to the details of the potential well profile [25]
provided the effective width of the well remains fixed.

According to the above analysis for the proper B, V0 the
discrete energies coming from the two valleys can be ad-
justed in different ranges, and in the first Landau gap only
K-valley (τ = 1) energies can exist; with an energy spacing
of a few meV for the low-lying energies. An important issue
is how these properties are affected by the mass term �.
To explore this issue we plot in Fig. 4 the energy spacing
δ = E (m = −1, τ = 1) − E (m = 0, τ = 1) as a function of
� at three different magnetic fields and V0 = V g

0 . A more
general � and V0 dependence of the energies is presented in
Appendix B. In Fig. 4 the condition V v

0 > V g
0 is not neces-

sarily satisfied, and only for � � 10 meV the energy level

E (m = −1, τ = 1) corresponds to the first excited level in
the first Landau gap for all the fields considered. For smaller
values of � the level E (m = 0, τ = −1) is relevant. As seen
in Fig. 4, the energy spacing δ decreases with � because the
effective mass of the carriers increases, therefore the Dirac
system starts to resemble a Schrodinger one. At B = 1 T a
mass term of � � 16 meV is needed to induce only K-valley
energies in the first Landau gap, i.e., the condition V v

0 � V g
0

is satisfied. At B = 3 T the critical value of � increases to
� � 26 meV. Despite this increase the induced Landau gap
at B = 3 T or 5 T (Fig. 4, inset) is still more than twice
larger than at B = 1 T, while the corresponding decrease in
δ is small. As a result at higher magnetic fields the discrete
energies of the dot can be put further away from the bulk
Landau levels and still δ can have an appreciable value of
δ ≈ 4 meV for � ≈ 50 meV.

In this paper, the lowest energy level of the quantum dot is
defined in the first Landau gap by the m = 0 level for τ = 1. It
is thus useful to explore the variation of this level with respect
to the external parameters V0 and B. As seen in Fig. 1(a) for
� = 0 and B = 1 T this energy cannot be less than −V0.
This feature is always valid and the energy difference from
the bottom of the well is small when the effective width of
the well L is large. Furthermore, as the B field increases the
lowest dot energy shifts closer to −V0, and eventually the field
dependence of the energy becomes weak at high fields when
the maximum amplitude of the state occurs in the quantum
well region. Some of these trends are quantified in Fig. 5.
Specifically, at V0 = 50 meV the m = 0 energy shifts closer
to −V0 and changes by over 90% when the field increases
from B = 1 T to B = 3 T. At B = 5 T the m = 0 state is al-
most entirely localised in the quantum well region, therefore,
by further increasing the field to B = 7 T the corresponding
energy changes by less than 5%. On the contrary, focusing
on m = −5, −10 and tuning the field from B = 5 T to 7 T
the corresponding energies change by over 28% and 57%,
respectively. For these values of m small changes in the energy
are observed at much higher magnetic fields.

IV. APPROXIMATE METHOD

Approximate methods for graphene systems are rather rare
in the literature, since the differential equations describing the
systems do not usually allow for any simplified assumptions
to be made. However, if a simple condition is approximately
fulfilled by the two envelope functions fi then some assump-
tions can be made. This idea is followed here.

Specifically, in this section, we develop an approximate
method to determine the m � 0 energies E , which lie in the
first Landau gap and satisfy the limit E → 0 (−�/2) when the
potential V → 0. These energies constitute the dot energies of
interest studied in Sec. III. The approximation is particularly
good in the regime where one of the two components fi

dominates. Such a regime occurs when the potential depth
is small, and as specified below the small potential depth is
related to the angular momentum and the magnetic field.

For the approximate method we start by defining the two
functions f ± = f1 ± f2. Using the equations for fi derived in
Appendix A [Eqs. (A1a) and (A1b)] it can be easily shown
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FIG. 5. Energies as a function of the potential well for different
magnetic fields B and τ = 1, � = 40 meV. All the levels are shifted
by �/2; E → E + �/2, thus E = 0 for V0 = 0. Only energy levels
in the first Landau gap are shown, thus V0 cannot be taken arbitrarily
large; (a) at B = 1 T and 3 T. The angular momentum number m is
indicated in each frame.

that f ± satisfy the two coupled first-order differential equa-
tions

(V + U ) f + + τ�

2
f − − γ

df −

dr
= E f +,

(V − U ) f − + τ�

2
f + + γ

df +

dr
= E f −.

To proceed with the approximate method it is more conve-
nient to work with the second-order equations

d2 f +

dr2
+

(
(E − V )2

γ 2
− U 2

γ 2
− �2

4γ 2

)
f + − (U − V )′

γ
f − = 0,

d2 f −

dr2
+

(
(E − V )2

γ 2
− U 2

γ 2
− �2

4γ 2

)
f − − (U + V )′

γ
f + = 0,

with (τ�)2 = �2. If the two functions f1, f2 are localised in
identical regions, or with strong overlap, and a regime can
be found satisfying f2 � f1 then f ± ≈ ± f2 and to a good
approximation the two equations above decouple. For � = 0

this condition is exact for the zeroth Landau level because
when V = 0 then f1 = 0 and only f2 �= 0. Consequently, if
V �= 0 but small enough then we expect the inequality f2 �
f1 to be approximately satisfied. In this case, the exact second-
order equations lead to the following approximate equation
for the dominant component f2

d2 f2

dr2
+ K2

± f2 = 0, (5)

and the energy-dependent coefficient is

K2
±(r, E ) = (E − V )2

γ 2
− U 2

γ 2
− �2

4γ 2
+ (U ± V )′

γ
. (6)

The differential Eq. (5) is useful because it has a Schrödinger
form. An interesting feature, which simplifies the analysis is
that K2

± has no singular point; unlike the coefficient Q2
i , which

appears in the exact Eq. (2) and at R0 Q2
i (R0) → −∞ with

V∓(R0) = 0. Therefore, a confined state f2 that is a solution
to Eq. (5) has an oscillatory amplitude in the spatial region
[35] where K2

± > 0, and a decaying amplitude where K2
± <

0. The latter inequality indicates that for a potential V that
rises asymptotically the existence of a confined state depends
on the strength of V and Aθ , in agreement with a previous
work [14].

Considering the quantum dot system, K2
± as a function of

the radial distance r has a positive maximum (dK2
±/dr = 0)

for all m but zero for which K2
± diverges at r = 0. The position

of the maximum is sensitive not only to the dot parameters B,
V0, L, m but also the dot energy-solution of Eq. (5). When
� = 0 this energy satisfies the physical requirement E → 0
for V → 0, i.e., it converges to the zeroth Landau level. The
two exact equations satisfied by f ± have also been applied
to potentials V that increase as power laws, and quantum
states with large positive values of m. Then to a very good
approximation [36] f1 ≈ ± f2. This regime is very different
from the one examined here resulting in a markedly different
energy spectrum.

The solution of Eq. (5) is only slightly sensitive to the sign
of the V ′ term, provided (U ± V )′ ≈ U ′ in the region where f2

is localised. This condition can, for example, be satisfied when
B is high and simultaneously V is small. The term (U ± V )′
however cannot be completely discarded because it can lead
to K2

± < 0 for all r failing to predict the dot energy. For clarity
we consider only (U − V )′, and to quantify the approximate
results we plot in Fig. 6 some approximate energy levels to-
gether with the exact ones as a function of the potential depth
V0. The agreement is very good and the correct V0 dependence
of the energies is predicted.

The approximation is somewhat better for larger negative
values of m, but when the absolute energy is very small
numerical errors in the computations can change this trend.
The error [37] for the approximate energies plotted in Fig. 6
is about 1 − 2%, and even better agreement is achieved for
specific values of V0 and m. From Fig. 6 we can also extract
that the error slightly increases with V0, and specifically, in the
chosen V0 range the increase is about 1%. All these trends are
consistent with the fact that as V0 increases the component f1

acquires a larger amplitude so the basic assumption f2 � f1

becomes gradually less accurate especially when |m| is small.
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FIG. 6. Exact and approximate energies as a function of the
potential well at B = 5 T, � = 0 and different angular momentum
numbers m.

The agreement with the exact numerical energies is better
when the effective width L of the quantum well increases,
and as a result the term V ′ decreases in the well region. For√

2L = 80 nm the maximum error for the same parameter
values shown in Fig. 6 is less than 1%, and small errors of
the order of 0.1% can be achieved. The key idea behind the
approximation is that the two components fi are localised
in nearly the same regions but one of the two components
dominates. The latter condition is well satisfied at high B,
small V0 and large L.

The position of the singular point that appears in the exact
Eq. (2) but not in the approximate Eq. (6) deserves some
further investigation. The fact that there is no singular point
in the approximate Eq. (6) does not necessarily imply that the
singular point is located (far) away from the region where f2

is localised, and can be ignored. To quantify this argument we
plot in Fig. 7(a) the coefficient K2

±(r) versus the radial coor-
dinate for the parameters B = 5 T, � = 0, and V0 = 37 meV.
The function f2 is localised in the region where K2

±(r) > 0,
and this region shifts away from the origin for larger values
of m, in agreement with the behavior exhibited by the Landau
states. Because K2

+(r) is not very different from K2
−(r), we

consider for simplicity only K2
−(r) and define the two “turn-

ing” points Ra, Rb with K2
−(Ra) = K2

−(Rb) = 0, Rb > Ra. In
Figs. 7(b) and 7(c) we plot Ra, Rb together with the singular
point R0 of Eq. (2) satisfying E = V (R0). For each value of
V0 the condition Ra < R0 < Rb is satisfied, indicating that R0

occurs within the region where f2 is localised and has large
amplitude. The conclusion from the two examples illustrated
in Figs. 7(b) and 7(c) is that the approximate method is appli-
cable to the regime where R0 cannot be ignored in the exact
Eq. (2). The occurrence of R0 is needed to give rise to a
nonzero f1, when V0 �= 0, in approximately the same region
as that where f2 is localised. The fact that R0 depends only
weakly on V0 [Figs. 7(b) and 7(c)] indicates that some further
approximations can be made. Investigation of the numerically
exact values of R0 shows that R0 ≈ R for some values of m,
where R = √

(2|m| + 1)h̄/eB is the peak position of f2 when
V0 = 0. Then E can be determined analytically, E ≈ V (R),
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FIG. 7. (a) Energy-dependent coefficients K2
−, K2

+ defined in
Eq. (6) in the main text, as a function of the radial coordinate for
B = 5 T, � = 0, V0 = 37 meV and two values of m. The curves
shown in black (red) correspond to K2

− (K2
+). [(b), (c)] Turning

points Ra, Rb satisfying K2
−(Ra) = K2

−(Rb) = 0, and singular point
R0 satisfying E = V (R0) for m = −3 and m = −12, respectively. On
the length scale shown the variation of R0 is vanishingly small.

but quantifying this approximation is beyond the scope of this
paper.

Finally, based on the assumptions behind the approximate
method, it can be easily demonstrated that the method can be
applied equally well to quantum dot potentials, which con-
tinuously increase, e.g., V (r) = Vgrn, with n > 0 and Vg > 0.
However, in this case the physics is different from a potential
that is asymptotically constant. The reason is that the energy
deviation from the zeroth Landau level increases with |m|, as
the Landau states, which are localised away from the origin
are affected more by the potential V (r). For completeness, one
example for this case is presented in Appendix C.
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V. CONCLUSIONS

In summary, we considered a graphene sheet in a
perpendicular magnetic field and explored the energy
spectrum of a quantum dot formed in the first Landau gap.
The discrete levels of the quantum dot emerge from the
Landau levels using a potential well, which can be ex-
perimentally realized and efficiently tuned with an STM
tip [1,2].

In our graphene system the valley degeneracy is broken and
as a result the dot energy spectrum can be rather complex
exhibiting many irregular level crossings and small energy
spacings, which are sensitive to the applied fields. However, as
demonstrated in this paper in the first Landau gap and for the
appropriate potential well, magnetic field, and mass-induced
gap the dot energy spectrum can have a simple pattern with
discrete energies coming from one of the two valleys only. In
this part of the spectrum there are no energy crossings and the
lowest energy level corresponds to m = 0 angular momentum,
while m successively decreases by −1 for each higher energy
level.

The magnetic field dependence of the energy levels and
the effect of the mass term were examined. It was shown
that the discrete energies of the dot in the first Landau gap
lie away from the bulk Landau levels and the typical energy
spacing can be large enough, of a few meV, when the magnetic
field is 3 − 5 T, and the mass-induced gap is about 50 meV.
It was demonstrated that in the regime where one of the
two components of the Dirac state dominates an approximate
method can be developed. Within this method a Schrödinger
equation was derived, which can predict the region where the
dominant component is localised. The approximate energies
for states with negative angular momentum exhibit the correct
general trends and are in a good agreement with the exact
energies.

The graphene system studied here is experimentally re-
alizable and the simple energy patterns that were identified
arise in a realistic range of fields. The results of this paper
could guide further investigations of confined states in two
dimensional materials.

APPENDIX A: QUANTUM DOT EQUATIONS

The equations describing a graphene quantum dot in the
continuum approximation have been derived in various previ-
ous works [15,23]. In brief, the eigenvalue problem defined in
Eq. (1) in the main text can be reduced to two equations for the
radial functions fi. This is done with the substitution [15,23]
�(r, θ ) = ( f1(r) exp[i(m − 1)θ ], i f2(r) exp[imθ ])/

√
r, which

leads to

(V + τ�/2) f1 +
(

U + γ
d

dr

)
f2 = E f1, (A1a)

(
U − γ

d

dr

)
f1 + (V − τ�/2) f2 = E f2, (A1b)

where

U = γ
2m − 1

2r
+ γ

eAθ

h̄
,
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includes the terms due to the angular motion and the mag-
netic vector potential. For convenience we set V± = V − E ±
τ�/2 and use these two equations to derive the decoupled
equations for each radial envelope function fi

d2 f1

dr2
− V ′

V−

df1

dr
+

(
−U 2

γ 2
− U ′

γ
+ U

γ

V ′

V−
+ V−V+

γ 2

)
f1 = 0,

d2 f2

dr2
− V ′

V+

df2

dr
+

(
−U 2

γ 2
+ U ′

γ
− U

γ

V ′

V+
+ V−V+

γ 2

)
f2 = 0,

where prime denotes differentiation with respect to r. These
two equations have the general compact form

d2 fi

dr2
+ ai

dfi

dr
+ bi fi = 0,

with i = 1, 2, and the coefficients ai, bi can be inferred. We
assume [23] fi = giyi and derive that

gi
d2yi

dr2
+ (2g′

i + aigi )
dyi

dr
+ (g′′

i + aig
′
i + bigi )yi = 0.

We choose g′
i/gi = −ai/2 to derive the final equation for

yi: d2yi/dr2 + Q2
i yi = 0. The coefficient Q2

i (r, E ) is given in
Eq. (2) in the main text.

APPENDIX B: EFFECT OF MASS TERM ON DOT LEVELS

In the main text, it was shown that in the appropriate range
of parameters the m = 0, −1 energy levels for τ = 1 can
define the two lowest levels of the quantum dot in the first
Landau gap. Figure 8 shows the effect of the mass term �

on these levels for different magnetic fields. At low magnetic
fields the value of � is important, especially at large V0 val-
ues, which approach the Landau gap. However, as the field
increases the two levels exhibit a smaller � dependence, until
eventually a shift of around �/2 is observed. These trends
are in agreement with the change in the corresponding energy
spacing versus � shown in Fig. 4 in the main text.

APPENDIX C: MODEL QUANTUM DOT POTENTIAL

To demonstrate the efficacy of the approximate method
described in the main text, we here study a model quantum
dot potential. This is defined by the potential well V (r) =
Vgr/x, with x = 800 nm. Figure 9 illustrates the exact and
approximate energies as a function of Vg for different angular
momentum m. The overall agreement is excellent and the error
is less than 0.1%; depending on the parameters it can be even
an order of magnitude smaller. Similar to Figs. 7(b) and 7(c)
in the main text, the condition Ra < R0 < Rb is again satisfied.
This demonstrates the importance of the singular point R0

when Vg �= 0.
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