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Broadband frequency filters with quantum dot chains
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Two-terminal electronic transport systems with a rectangular transmission can violate standard thermo-
dynamic uncertainty relations. This is possible beyond the linear response regime and for parameters that
are not accessible with rate equations obeying detailed balance. Looser bounds originating from fluctuation
theorem symmetries alone remain respected. We demonstrate that optimal finite-sized quantum dot chains can
implement rectangular transmission functions with high accuracy and discuss the resulting violations of standard
thermodynamic uncertainty relations as well as heat engine performance.
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I. INTRODUCTION

In the macroscale, thermal machines have been beneficially
used for centuries by now. All of them have to obey the
second law of thermodynamics [1], which practically bounds
the efficiency of such machines, most prominent being the
Carnot efficiency for heat engines. In the last decades, with the
on-going progress in the construction of nanoscale systems
and machines [2], the laws of thermodynamics have been
revisited from the quantum perspective [3]. Also quantum
systems can be considered as heat engines by regarding their
working fluid as an open quantum system [4]. Since for the
study of open systems many established methods exist [5–7],
one can study the conversion of energies by considering, e.g.,
alternating [8] or simultaneous [9] couplings to reservoirs
held at different local equilibrium states. Undoubtedly, there is
significant practical relevance for thermal quantum machines,
including, e.g., absorption refrigerators [10] to cool electronic
components or electric power generators driven by thermal
gradients [11]. Beyond the direct applications however, also
paradigmatic shifts were induced by this quest for miniatur-
ization.

First, while for macroscale theories, only average quan-
tities were relevant, among the notable contributions in the
study of nanoscale systems was stochastic thermodynamics
[12], where an entropy production can be associated even
to individual trajectories. This is quantified by the fluctua-
tion theorem (FT) [13–16], which relates the probabilities
for trajectories with positive entropy production with those
for the reversed trajectories with negative entropy production.
While on average this merely implies that the average entropy
production is positive, the FT also bounds the ratio of currents
and their fluctuations, thus having practical relevance also for
the reliability of nanomachines [17]. Such thermodynamic un-
certainty relations (TURs) have been universally established
for rate equations obeying detailed balance [18–20], in the
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linear-response regime [21,22], for harmonic systems [23],
generalized Langevin equations [24,25], and for driven sys-
tems [26–29]. Their predictions are accessible in simulated
[30] or real experiments [31,32] and their finite-time versions
[33] are, for example, useful to estimate the entropy produc-
tion [34]. Recently, it has been shown that looser versions of
them only rely on the existence of an FT symmetry [35,36].
Thus we consider this class of uncertainty relations as most
general, since it includes the other limits. This also implies
that the other bounds can be broken in regimes that they are
not intended for.

Second, while in classical thermodynamics the energy con-
tent of the wall can in many circumstances be neglected, this
is seldom true for open quantum systems. Only in the extreme
weak-coupling limit, one can neglect the energy contained in
the interaction, such that energy changes in the reservoirs are
accompanied by corresponding negative energy changes in the
system and vice versa, leading to Pauli-type rate equations
[37]. Beyond the weak-coupling limit, the required methods
are more involved and the proper definition of heat and work
is often more subtle [38–40]. However, for stationary elec-
tronic transport a consistent thermodynamic picture can be
established also beyond the weak-coupling regime.

This paper tries to address the quantum fluctuations
in noninteracting electronic transport. Specifically, we will
demonstrate that in this scenario various uncertainty relations
can be violated away from linear response and detailed-
balance regimes, while still respecting the ones originating
from the FT symmetry. We will for simplicity constrain
ourselves to two-terminal systems operating at steady state.
We will make use of reaction-coordinate mapping techniques
[41], which can equally well be applied to more general and
also time-dependent setups. These allow to reorganize the
reservoir into a reaction coordinate and a residual reservoir in
a way that the original system is coupled only to the reaction
coordinate and then the reaction coordinate is coupled to the
residual reservoir. Traditionally, this is used to shift the bound-
ary between system and reservoir, allowing to obtain some
results for, e.g., the strong coupling or non-Markovian regime
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using weak-coupling approaches on the enlarged supersystem
[42–45]. In contrast to this, we will use a reverted reaction-
coordinate mapping [46] to simplify the exact computation of
the transmission, on which many stationary transport quan-
tities are based. While normally it can be obtained, using,
e.g., nonequilibrium Greens functions [47], the sequential
character of the reverse mapping allows us to perform simple
optimizations. Our essential result is that a rectangular trans-
mission minimizes fluctuations and maximizes the thermal
performance of a nano heat engine. We will demonstrate that
finite-size quantum dot chains can be tuned to approximate
rectangular transmissions and moreover that thermodynamic
uncertainty relations provide suitable cost functions that can
be minimized in an experiment, requiring only the measure-
ment of current and its noise.

This paper is organized as follows. We begin with revisit-
ing some required central quantities in Sec. II by discussing
the Levitov-Lesovik formula and the thermodynamic un-
certainty relation, which allow us to reformulate our main
motivation for this paper in technical terms. Afterwards, we
explain various ways of obtaining a rectangular transmission
function in quantum dot chains in Sec. III. We present our
results on low-noise transport and maximal heat engine per-
formance in Sec. IV, before concluding with a summary. In
the Appendix, we provide details on the reverse reaction-
coordinate mapping, its benchmarking with nonequilibrium
Greens function results, and on heat engine performance in
the ideal limit of a rectangular transmission.

II. ELECTRONIC TRANSPORT THEORY
AND CENTRAL QUANTITIES

Transport is a genuine nonequilibrium phenomenon and in
principle requires nonequilibrium thermodynamic approaches
that go beyond weak-coupling or linear-response scenarios
[48]. Even in the simplest two-terminal case, where a central
system is coupled to a left and to a right reservoir, initially
prepared in local thermal equilibrium states, the mere defini-
tion of currents may require some thought. For example, the
time-dependent particle current entering the system from the
left reservoir is not the same as the time-dependent particle
current leaving the system to the right reservoir. This is triv-
ially so as the system has its own capacity to store particles.
When it comes to energy currents, one has to be more careful:
Even for a single junction, the time-dependent energy current
entering the system with Hamiltonian HS from reservoir ν—
defined by the corresponding balance term in d

dt 〈HS〉—is in
general not the same as the time-dependent energy current
leaving the reservoir ν with Hamiltonian Hν

B —defined by
− d

dt 〈H ν
B 〉. This is the case as the interaction Hamiltonian may

carry some energy as well. For exactly solvable systems, such
time-dependent currents can for example be obtained with
nonequilibrium Greens functions [47], the Feynman-Vernon
influence functional approach [49,50], or by simply solving
the Heisenberg equations of motion for quadratic operators
[51,52]. However, when defining such general time-dependent
currents, one has to carefully specify the interface it goes
through or the observable it changes. Fortunately, things are
a lot simpler in two-terminal setups that in the long-term limit
evolve towards a stationary nonequilibrium state. In this limit,

the stationary currents leaving the left reservoir are the same
as the stationary currents entering the right reservoir, since
globally the matter and energy are conserved. Then, a simpler
analysis is applicable that only specifies the charge and energy
transfers going from left to right through the system, which we
outline below.

A. Levitov-Lesovik formula

The Levitov-Lesovik formula [53,54] provides the long-
term cumulant-generating function for independent electronic
transfers through a two-terminal junction with left (L) and
right (R) leads in equilibrium described by Fermi functions
fν (ω) = [eβν (ω−μν ) + 1]−1, where βν and μν denote inverse
temperature and chemical potential of lead ν ∈ {L, R}, respec-
tively. When we consider particle transfers from left to right,
it can be written as (unless noted, we use units with h̄ = 1 and
kB = 1 throughout)

C(χ ) =
∫

dω

2π
ln{1 + T (ω)[ fLR(ω)(e+iχ − 1)

+ fRL(ω)(e−iχ − 1)]}, (1)

where 0 � T (ω) � 1 denotes the transmission probability
for transfers through the system at energy ω and fνν̄ (ω) ≡
fν (ω)[1 − fν̄ (ω)]. The formula above holds beyond linear-
response or weak-coupling regimes. It captures the long-term
dynamics exactly in the large-deviation sense: The contribu-
tion to cumulants of reservoir particle changes that grows
linearly in time is included, but any constant contributions
are missed. The full counting statistics of particle transfers
through the system is thus fully determined by a specific
transmission function T (ω), and from the above formula, one
is able to evaluate the cumulants of the current distribution
by computing suitable derivatives with respect to the particle
counting field χ . In particular, the first two derivatives yield
the stationary matter current (Landauer formula [55]) and its
noise, respectively,

IM = (−i∂χ )1C(χ )|χ=0

= 1

2π

∫
T (ω)[ fL(ω) − fR(ω)]dω,

SM = (−i∂χ )2C(χ )|χ=0

= 1

2π

∫
T (ω)[ fLL(ω) + fRR(ω)]dω

+ 1

2π

∫
T (ω)[1 − T (ω)][ fL(ω) − fR(ω)]2dω. (2)

The current above is the exact stationary limit of the
time derivative of reservoir particle number operators IM =
− limt→∞ d

dt 〈NL
B 〉 = + limt→∞ d

dt 〈NR
B 〉.

Since the transmission describes ballistic energy transfers
at energy ω, the cumulant-generating function can be straight-
forwardly extended to a version with an energy counting
field ξ

C(χ, ξ ) =
∫

dω

2π
ln{1 + T (ω)[ fLR(ω)(e+i(χ+ωξ ) − 1)

+ fRL(ω)(e−i(χ+ωξ ) − 1)]}, (3)
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from which also the energy current from left to right

IE = (−i∂ξ )1C(χ, ξ )|χ=ξ=0

= 1

2π

∫
ωT (ω)[ fL(ω) − fR(ω)]dω (4)

and its noise can be obtained analogously by performing
derivatives. Here, the energy current above can also be ex-
pressed as exact steady-state limit of the reservoir energy
changes IE = − limt→∞ d

dt 〈HL
B 〉 = + limt→∞ d

dt 〈HR
B 〉.

We note that the term in square brackets in (3) and thus
also the generalized cumulant-generating function obeys the
fluctuation theorem symmetry

C(χ, ξ ) = C(−χ + i(βLμL − βRμR),−ξ + i(βR − βL )),
(5)

which implies the (long-term) fluctuation theorem [13,56,57]
for the probability of observing trajectories with n particles
and total energy E transferred from left to right

lim
t→∞

P+n,+E (t )

P−n,−E (t )
= en(βLμL−βRμR )+E (βR−βL ). (6)

The term in the exponent approximates in the long-term limit
the (total) entropy production 	 of such trajectories. In this
limit, for systems admitting stationary currents, both 〈n〉t and
〈E〉t will rise linearly in time, such that the exponent captures
the (dominant) long-term contribution to the entropy produc-
tion by the reservoirs, but misses the (finite) contribution by
the system and also any finite contributions by the reservoirs.
The above formula implies that this dominant contribution
to the average entropy production 〈	〉 is always positive.
Additionally, it has been shown [51,58] that the associated
long-term entropy production rate is also positive

σ = IM (βLμL − βRμR) + IE (βR − βL ) � 0, (7)

where the currents relate to the expectation values of
the stochastic variables via IM = limt→∞ 〈n〉t

t and IE =
limt→∞ 〈E〉t

t . Notably, these relations hold without any prior
assumption on the system-reservoir coupling strength.

B. Thermodynamic uncertainty relations

TURs are a consequence of the second law of thermo-
dynamics in presence of multiple reservoirs. They relate
the fluctuations and average values of stochastic quantities
(currents) with the overall entropy production (rate). For
systems coupled to Markovian reservoirs satisfying detailed
balance, it has been generally shown [18–20,33] that [〈 j2

i 〉 −
〈 ji〉2]/〈 ji〉2 � 2/σ , where the entropy production rate σ =∑

i jiAi is decomposed into fluxes ji and corresponding affini-
ties Ai as in Eq. (7). For heat engines, such a bound imposes
limits, e.g., on their efficiency [17]. To simplify this standard
TUR (STUR) a bit, we consider a system with two termi-
nals held at equal temperatures βL = βR = β and chemical
potential difference V = μL − μR. Then, the stationary en-
tropy production rate (7) is proportional to the matter current
σ = βIMV , and the STUR inequality reads [59]

βV
SM

IM
� 2. (8)

It can be rigorously proven that this relation holds for Marko-
vian rate equations satisfying detailed balance [20] but also
for harmonic systems [23]. It can be broken for parameter
regimes that do not admit a rate-equation description with
detailed balance, which, e.g., happens in stationary electronic
transport setups [46,60], for systems subject to feedback loops
[61], and for driven systems [62].

In the linear response regime, a looser bound has been
derived also for quantum systems that are not necessarily
subject to a Markovian evolution [22]. For the isothermal two-
terminal setup, the linear-response TUR (LTUR) inequality
reads

βV
SM

IM
� 1. (9)

Only based on a fluctuation theorem symmetry (5) one can
derive fluctuation theorem TURs (FTURs) such as [35,36]〈

Q2
i

〉 − 〈Qi〉2

〈Qi〉2
� 1

sinh2
[
g
( 〈	〉

2

)] � 2

e〈	〉 − 1
, (10)

where Qi is an integrated current (such as transferred par-
ticle number) and 	 the total entropy production. In the
first inequality the function g(x) is defined implicitly by
g(x) tanh(g(x)) = x. Thus, for small x, we can write g(x) ≈√

x, whereas for large x we have g(x) ≈ x. Now, considering
the particle transfers with Qi = n, we have in the long-term
limit (neglecting constant contributions) 〈Qi〉 ≈ IMt , 〈Q2

i 〉 −
〈Qi〉2 ≈ SMt , and in particular the entropy production rises
linearly in time 〈	〉 ≈ σ t = IMβV t . Inserting this in the
above equation, we thus see that both expressions on the right-
hand side (r.h.s.) tend to zero faster than 1/t . Multiplying the
above by IMβV t and performing the limit t → ∞ we obtain
a trivial bound on the ratio of noise and current (or the Fano
factor F ≡ SM/|IM |)

βV
SM

IM
� 0. (11)

Thus one may conjecture that STUR and LTUR relations (8)
and (9) can be broken for systems that do not obey simple rate
equations and beyond the linear response regime.

C. Motivation: minimizing uncertainty

It is in fact quite simple to see that for a box-shaped
rectangular transmission [46]

T (ω) = �(ω − ωmin)�(ωmax − ω) (12)

that allows perfect energy transfers in the transmission win-
dow [ωmin, ωmax] and blocks transfers anywhere else, one may
reach a situation yielding a finite matter current IM with neg-
ligible noise SM (note that we only discuss the contributions
rising linearly in time and thereby neglect features such as
bound states [52,63] or any constant finite contributions) that
saturates the FTUR bound (11). In the current and noise inte-
grals (2), the integration boundary will then be limited to the
interval [ωmin, ωmax] for a rectangular transmission function.
Now, for a sufficiently large bias voltage with the transport
window enclosing the transmission window μL 
 ωmax and
μR � ωmin and sufficiently low temperatures |βνμν | 
 1, we
will thus have fL(ω) ≈ 1 ∀ω ∈ [ωmin, ωmax] and likewise
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fR(ω) ≈ 0 ∀ω ∈ [ωmin, ωmax], such that IM → (ωmax −
ωmin)/(2π ) and SM → 0 in Eq. (2). This clearly breaks the
STUR (8). Additionally, we also see that the LTUR (9) is
broken, which is also demonstrated by the dashed brown curve
in Fig. 3. One may object that such a rectangular transmission
is reached by an infinitely long and homogeneous chain of
quantum dots (see, e.g., Ref. [64] for explicit examples), and
so far only violations of the STUR bound (8) have been
demonstrated with finite quantum dot chains. Our founda-
tional interest in this paper is therefore to investigate whether
it is possible to overcome the LTUR bound (9) with a chain
composed of a finite number of dots.

D. Motivation: optimal energy filters

In the construction of continuous heat engines [9], i.e.,
multiterminal open quantum systems designed to control the
flow of heat in nonequilibrium environments, it may be partic-
ularly useful to filter energies, e.g., via an energy-dependent
spectral coupling density. Using a broadband energy filter for
example may help to construct an absorption refrigerator as
follows. An electronic quantum system is weakly coupled to
a source reservoir (with a high chemical potential) via a low-
energy filter. Additionally, it is (weakly) coupled to a drain
reservoir (with low chemical potential) via a high-energy fil-
ter. If the frequency intervals of the filters do not overlap,
transport will be blocked for the two-terminal setup, since the
system will be filled by electrons from the source, which due
to the energy filtering cannot leave through the high-energy
filter to the drain. If in contrast we couple the system addition-
ally to a third phonon reservoir, transport becomes possible,
but only by absorbing energy from the third reservoir. Then,
low-energy electrons can enter the system from the source,
absorb energy from the third reservoir, and leave the system
again to the drain at a higher energy, which effectively cools
the third terminal by investing chemical work.

In this paper, however, we focus on two-terminal sys-
tems, where rectangular transmission functions may be used
as energy filters not between system and reservoir, but be-
tween the two reservoirs. For simplicity, we will constrain our
discussion on electronic transport systems with energy and
matter conservation, where matter and energy currents from
left to right are given by the Landauer formulas (2) and (4),
respectively. From this, we can construct the heat currents
leaving the left or right reservoirs via JL = IE − μLIM and
JR = −(IE − μRIM ). Applying only a potential bias would
drive particles from high chemical potential to low chemical
potential. Likewise, a simple temperature bias would drive
a heat flow from hot to cold reservoir. Interesting dynamics
may however arise in the case where thermal and potential
gradients are tilted. Without loss of generality we consider
here the case of a cold left reservoir at high chemical potential
and a hot right reservoir at lower chemical potential

βL > βR, μL > μR. (13)

Then, the cold reservoir may be cooled by investing chem-
ical work and suitably positioning the transmission window.
As one can see from constructing the heat current via (4)
and (2), the positive contributions to the cooling current are
maximized when the transmission covers the interval where

FIG. 1. Energy sketch of left and right Fermi functions for βL >

βR and μL > μR. Both Fermi functions are equal at ω̄ = βLμL−βRμR
βL−βR

.
Above this threshold, we have fL (ω) < fR(ω), and below we have
fL (ω) > fR(ω). By appropriately placing a rectangular transmission
window as depicted, we can achieve optimal heat engine (red trans-
mission) or refrigerator performance (blue transmission) at fixed
thermal parameters. To maximize the electric power, the transmission
window should range in [ω̄,∞], which can be approximated with a
wide rectangular transmission (red). To maximize the cooling energy
current, the transmission window should range in [μL, ω̄]. Deviations
from the perfect rectangular shape and position will then reduce
performance.

(ω − μL )[ fL(ω) − fR(ω)] > 0. Similarly, one may generate
chemical work (in this case electric power by driving electrons
against the bias) by using heat from the hot (right) reservoir
as is depicted in Fig. 1. To understand the direction of matter
and energy flows, it is sufficient to realize that at one particular
energy

ω̄ = βLμL − βRμR

βL − βR
= μL + βR

βL − βR
(μL − μR) (14)

the two Fermi functions are equal fL(ω̄) = fR(ω̄). Hence, with
a rectangular transmission we can select energy intervals to
control the flow of heat.

In Appendixes D 1 and D 2, we explore how the maximum
heat current and the associated coefficient of performance for
cooling the cold (left) reservoir by investing chemical work
and similarly the power and efficiency of generating electric
power from heat of the hot (right) reservoir behave in case
of a perfectly rectangular transmission. Our second—more
applied—motivation in this paper is therefore how thermo-
dynamic performance of a device with a nearly rectangular
transmission is improved.

III. GENERATING RECTANGULAR TRANSMISSIONS

A. Transmission formula for a single dot

The transmission of a single quantum dot that is coupled
via general energy-dependent tunnel rates (spectral coupling
densities) �ν (ω) to two leads is given by [47,51]

T (ω) = �L(ω)�R(ω)

[ω − ε − �(ω)]2 + [
�L (ω)+�R (ω)

2

]2 ,

�(ω) ≡ 1

2π
P

∫
�L(ω′) + �R(ω′)

ω − ω′ dω′. (15)
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The functions �ν (ω) can be defined microscopically.
For a multisite system, where the i-th site (with
annihilation/creation operators di/d†

i ) is coupled by a
tunnel Hamiltonian Htunnel = (di

∑
k tkνc†

kν
+ H.c.) to a

fermionic reservoir Hres = ∑
k εkνc†

kν
ckν , they are given

by �ν (ω) = 2π
∑

k |tkν |2δ(ω − εkν ). From the above
formula, a way to generate a rectangular transmission
is to consider a universe Hamiltonian given by an
infinitely long and homogeneous chain of quantum dots
H = ε

∑
i d†

i di + T
∑

i[d
†
i di+1 + d†

i+1di]. Considering
one of these qantum dots as the system, this leads
to identical semicircular spectral coupling densities
�ν (ω) = 2T

√
1 − (ω − ε)2/(4T 2), from which one would

obtain a perfectly rectangular transmission function with
ωmin = ε − 2T and ωmax = ε + 2T . This however would
require experimental control over an infinitely large number
of degrees of freedom, which appears unrealistic. Therefore,
in this paper, we will address the question whether it is
possible to achieve sharp frequency filters by using a finite
number of fine-tuned quantum dots that are coupled to
reservoirs characterized by a structureless (flat) spectral
coupling density.

B. Mapping relation

In principle, the transmission of a chain of quantum dots
can be obtained by nonequilibrium Greens function tech-
niques [47,65–67]. This requires some matrix inversions
(which for longer chains can only be performed numerically)
and also the knowledge of the free Greens function, which is
e.g. known for infinitely long tight-binding chains [68].

Conventionally, the coupling between system and reservoir
assumes the form of a star connecting a mode of the system
(the outer dots of the chain) with all modes of the reservoir.
Such configurations generally arise as intermediate configura-
tions of Bogoliubov-transformed system-reservoir scenarios
[69,70]. Knowing that we can directly compute the transmis-
sion for a single dot via (15), we may as well revert such
schemes and successively map a chain coupled to wide-band
reservoirs (i.e., with constant tunnel rates) to a single quantum
dot that is coupled to highly structured reservoirs, see Fig. 2.
For a chain where the dot at the end has on-site energy ε̄ and
is tunnel-coupled to its neighbor in the chain via amplitude
λ̄ and additionally to its reservoir ν via the energy-dependent
tunnel rate (spectral coupling density) �̄ν (ω) (central part of
the figure), we can perform an inverse reaction-coordinate
mapping [46] yielding the spectral coupling density of the
chain shortened by the external dot

¯̄�ν (ω) = λ̄2�̄ν (ω)(
ω − ε̄ − P

∫
�̄ν (ω′ )
ω−ω′

dω′
2π

)2 + (
�̄ν (ω)

2

)2 . (16)

Spectral coupling densities obey a scaling relation. If the
global Hamiltonian (system, interaction, and reservoir) is
scaled by a constant α, this also scales the spectral coupling
density by α. As a sanity check, we note that the mapping
above preserves this scaling property. Applying the mapping
recursively to both ends of the chain, this will eventually lead
to a single dot remaining for which we can directly apply
the transmission formula (15). While at first the evaluation

FIG. 2. Sketch of the mapping procedure. A chain with varying
(but symmetric) tunnel amplitudes λn and coupled to wide-band
reservoirs [with constant spectral coupling density �ν (ω) = �0, red]
is mapped by sequential reverse reaction coordinate mappings to
a single quantum dot coupled to two highly structured reservoirs
[with energy-dependent spectral coupling density �fin

ν (ω), orange].
Blue and green symbols illustrate Eq. (16) when used to effectively
transfer the system-reservoir boundary (dark and light orange) by
one dot. To approach a rectangular transmission function, we adjust
accessible parameters (such as the innermost tunnel amplitude λ̄) to
minimize a suitable cost function at each step. With the resulting
optimal spectral coupling density, we insert two new dots left and
right to the central one and optimize again, such that a chain with 13
dots (parameters given in Table I) and wide-band reservoirs has the
same transmission as a single-dot with highly structured reservoirs.
Intermediate spectral coupling densities are exposed in Appendix B.

of the principal-value integral in the above equation may
seem challenging, we note that this can be at least partially
performed analytically. Obvious examples are flat spectral
coupling densities �̄ν (ω) = �0, for which the first mapping
just yields a Lorentzian function characterized by two poles.
If the original spectral coupling density has L known poles zn

i
in the upper complex half-plane

�̄ν (ω) = γ̄ν∏L
j=1(ω − z̄ j )(ω − z̄∗

j )
, (17)

then the transformed spectral coupling density will have
(L + 1) poles ¯̄zi in the upper complex half-plane, which can
be found numerically [46] as detailed in Appendix A. The
formula for the transmission (15) is formally equivalent to the
transformation (16), such that if �L(ω) and �R(ω) are both
of the form (17) with L and R poles, respectively, then also
the transmission resulting from this formula can be written as
T (ω) = t0∏L+R+1

j=1 (ω−z̃ j )(ω−z̃∗
j )

with L + R + 1 complex conjugate

pole pairs z̃ j that can be found numerically as well.

C. Optimization procedure

Various optimization schemes are conceivable. For exam-
ple, considering a target (Tg) rectangular transmission with
ωmin = εTg − 2TTg and ωmax = εTg + 2TTg, we may numeri-
cally minimize a cost function

C1({εn}, {λn}) =
∫

[TTg(ω) − T ({εn}, {λn})]2dω (18)

with respect to all chain parameters such as on-site ener-
gies εn and tunnel amplitudes λn simultaneously. Since the
transmission has to be calculated with nonequilibrium Greens
function techniques [47,68,71] or via nested applications of
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TABLE I. The 12 symmetric optimal tunnel amplitudes minimizing (20) for a chain of 13 quantum dots from outside (λ6 = λ−6) to inside
(λ1 = λ−1) (five digits shown).

parameter λ6/�0 λ5/�0 λ4/�0 λ3/�0 λ2/�0 λ1/�0

value 0.5 0.3907 0.37254 0.36632 0.36348 0.36195

the previously described mapping procedure, such an opti-
mization is numerically challenging due to the large number
of parameters that are varied simultaneously.

Alternatively, knowing that a rectangular transmission
(15) is generated by identical semicircular spectral coupling
densities covering the same frequency interval �Tg(ω) =
2Ttg

√
1 − ( ω−εTg

2TTg
)2

�(4T 2
tg−(ω−εTg )2 ), another suitable cost func-

tion can be obtained by a distance measure between target
and actual spectral coupling density instead. One could pick
the central dot of the chain as the remaining one and then
optimize the remaining chain parameters to approximate the
desired spectral coupling density felt by the central dot. Such
a minimization procedure would require only half the param-
eters, and an additional advantage would be that the resulting
spectral coupling density could also serve as an energy filter
for other (e.g., multiterminal) setups. Trading the quality of
the optimization for some numerical speedup however, we can
also vary just the parameters at the system-reservoir boundary
from Eq. (16) by considering the cost function

C2(ε̄, λ̄) =
∫

[�Tg(ω) − ¯̄�(ε̄, λ̄, ω)]2dω, (19)

which we can numerically minimize with respect to ε̄ and
λ̄, such that the spectral coupling density of the internal dot
approaches a semicircle one. Although this works and is
numerically rather efficient, it does not converge very fast.
Additionally, the cost function above is not directly linked to
observables and could not be directly followed in an experi-
mental setup.

Therefore we followed a slightly different procedure and
considered the left-hand side of the thermodynamic uncer-
tainty relations (8), (9), and (11) instead. We considered a
symmetric triple dot chain with structured spectral coupling
densities �̄ν (ω) of the form (17) and vanishing on-site en-
ergies ε̄ = 0 throughout and minimized the experimentally
accessible cost function

C3(V, λ̄) = βV
SM (V, λ̄)

IM (V, λ̄)
(20)

with respect to the symmetric tunnel coupling between central
and external dots λ̄ and the voltage V = μL − μR at some
constant temperature β. Numerically, the above cost function
is evaluated by analytically computing the spectral coupling
density ¯̄�ν (ω) via the mapping (16) and then via the derived
transmission (15) noise and current (2). We kept the optimal
chain parameter λ̄ to update the spectral coupling density as
¯̄�ν (ω) → �̄ν (ω) in each iteration. In the first step, we just
considered constant spectral coupling densities �0 instead and
optimized λ6 and the voltage. In the second step, we used (16)
with a Lorentzian spectral coupling density and optimized λ5

and the voltage, and so on. That way, after six iterations of this
procedure for every terminal, we obtain a low-noise device

that can either be seen as a single quantum dot coupled to
highly structured reservoirs or a chain of 13 quantum dots that
is coupled to wide-band reservoirs at its end as sketched in
Fig. 2. We provide the optimal tunneling amplitudes in units
of the initial system reservoir coupling �0 in Table I.

IV. RESULTS

A. Breaking the isothermal (S/L)TUR

With this minimization, we thus also investigate the valid-
ity of the thermodynamic uncertainty relations for our system.
We find that the current through the resulting chains violates
the STUR bound (8) already for a chain with three dots and
wide-band reservoirs (using amplitude λ6 from Table I) and
the LTUR bound (9) for a chain with five dots (improving
on Ref. [46]) and wide-band reservoirs (using amplitudes
λ5 and λ6 from Table I). Adding further dots allows to fur-
ther increase the violation as shown in Fig. 3. We see that
the LTUR bound is broken beyond the nonlinear response
regime, where the entropy production rate of the 13-dot chain
is no longer approximated by a parabola (upper panel) and
that the resulting optimized chain transmissions approach a
near rectangular form (inset). The STUR bound (8) is al-
ways exactly matched in equilibrium, where it just reflects

FIG. 3. Plot of the uncertainty quantity βV SM/IM versus bias
voltage for different chain lengths. Whereas for a single dot with
wide-band reservoirs (red) the STUR bound (grey region) cannot be
broken, optimized triple dot chains can break it (green), and longer
chains (blue, black) can even break the LTUR bound (orange). This is
possible in regions where the entropy production rate (top panel, 13
dot chain only) is not well approximated by a parabola, i.e., beyond
the linear response regime (fit obtained between vertical dashed lines
only). The inset shows the corresponding transmission functions
which indeed approximate the ideal rectangular limit (dashed brown)
for longer chains. Other parameters: β�0 = 0.02.
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the Johnson-Nyquist relation for the current, see Appendix
C. We conjecture that by improving the optimization (e.g.
via optimizing the chain parameters independently for every
chain length) one may achieve faster convergence to the ideal
rectangular transmission limit. We have confirmed the result-
ing transmissions also with an independent calculation based
on nonequilibrium Greens functions [71], which we expose in
Appendix B. Additionally, we remark that optimization using
the other cost functions (18) and (19) yielded qualitatively
similar (but less drastic) violations of the STUR and LTUR
bounds (not shown).

B. Maximal power and maximal cooling

For a generic tunnel amplitude tkν and reservoir energies
εkν , the spectral coupling density �ν (ω) = 2π

∑
k |tkν |2δ(ω −

εkν ) will increase if one raises the system-reservoir coupling
strength. One might naively think that this would also always
increase the currents and thereby also the power and cooling
performance. However, already when we consider a single dot
with energy ε and wide-band reservoirs described by constant
spectral coupling densities �L(ω) = �R(ω) = �0 (we take the
parameter �0 as coupling strength below), this growth of
currents is only observed for small couplings �0. For this
setup, the transmission (15) becomes a Lorentzian T (ω) =
�2

0/[(ω − ε)2 + �2
0], and when we plot the power or cooling

current—in parameter regimes that leave them positive for
small couplings �0—as a function of the coupling strength
�0, we observe a turnover, such that power or cooling current
decrease again beyond a certain coupling strength. A similar
turnover behavior is found in many different setups and using
various methods suitable to treat the strong-coupling regime,
see, e.g., Refs. [44,72,73]. In our picture, the reason for this
is that for stronger couplings the transmission windows widen
(compare Fig. 1) and thereby unfavorable contributions to the
power or cooling current arise. We will demonstrate that one
may partially compensate for this by sharpening the transmis-
sion window.

We assume that one has a chain with a few carefully tuned
quantum dots that approximate a rectangular transmission to
a certain extent (compare the inset of Fig. 3). By increasing
the coupling strength to the reservoirs �0 (and scaling all
internal parameters of the chain accordingly as in Table I), one
stretches the width of the transmission window. Additionally,
for a given transmission window, one can vary the temper-
atures and chemical potentials of the reservoirs to approach
the optimal situation depicted in Fig. 1. We parametrize the
chemical potentials as μL = μ̄ + V/2 and μR = μ̄ − V/2 and
consider V > 0 and fixed temperatures βL > βR. Then, the
frequency at which both Fermi functions coincide will vary
according to ω̄ = μ̄ + 1

2
βL+βR

βL−βR
V . If μ̄ is chosen properly, one

will extract the maximum power at some voltage. The same
holds true for a different μ̄ for the current cooling the cold
reservoir.

The power is displayed in Fig. 4. We do now consider
with βν�0 
 1 a strong-coupling scenario here. Whereas in
the weak-coupling regime, power increases with the coupling
strength, this growth is halted and reversed beyond some
coupling strength, and indeed we see that a single quantum
dot strongly coupled to the two reservoirs produces negligible
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FIG. 4. Plot of the generated power versus bias voltage (color
coding analogous to Fig. 3). By increasing the chain length, the
quality of the energy filter is improved as the transmission functions
become more rectangular, nearly reaching the theoretical bound from
Eq. (D8). For comparison, the power originating from a perfectly
rectangular but similar width transmission with βRωmin = −3.607
and βRωmax = βRωmin + 7.5 is also shown (dashed brown). Chain
parameters as in Table I, other parameters βL = 10βR, βR�0 = 5.0,
and βRμ̄ = −4.23667.

power in this regime (red curve). The reason for this is that
with increasing coupling, the energy filtering function of a
single quantum dot fails. By using fine-tuned chains as energy
filters, we can compensate for this, these chains harvest sig-
nificantly more power (green, blue, and black curves), nearly
reaching the optimal limit for a rectangular transmission with
ωmin = ω̄ and ωmax → ∞, see Eq. (D8).

The heat current from the cold reservoir is displayed in
Fig. 5. Again we see a significant improvement when the
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FIG. 5. Plot of the heat current from the left reservoir versus
bias voltage. At this coupling strength, cooling is not attainable
for chains with 1, 3, and 5 dots but can be achieved with longer
chains. By increasing the chain length, we nearly reach half Pendry’s
quantum bound from Eq. (D2), which is reached for the same
rectangular transmission as in Fig. 4 (dashed brown). Parameters
βRμ̄ = −19.27397, others as in Fig. 4.
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length of the chain (and thus the filtering quality) is increased.
In contrast to the extracted power, we observe that at this
coupling strength, cooling function is not even attainable with
chains composed of 1, 3, and 5 dots (at smaller coupling
strengths �0 it would work though). With a better filtering
function, we can approach the quantum limit detailed in
Eq. (D2) for a rectangular transmission with ωmin = μL and
ωmax = ω̄ (dashed brown). Similar cooling performance has
been observed for quantum spin hall devices [74].

V. SUMMARY AND CONCLUSION

We considered stationary transport of noninteracting elec-
trons in a two-terminal setup through optimized chains of
quantum dots coupled to wide-band reservoirs at their ends.
Our method did not rely on weak-coupling assumptions and
thus in principle allows to investigate non-Markovian and
strong-coupling features. A reverse reaction-coordinate map-
ping was employed to map such quantum dot chains with
wide-band reservoirs onto a single quantum dot coupled to
structured reservoirs. The structure of the mapping allowed to
adapt the chain parameters with the goal to achieve an optimal
rectangular transmission, which we then used to analyze ther-
modynamic uncertainty relations and thermodynamic device
performance. Admittedly, we considered the simple scenario
of fully symmetric chains with vanishing on-site energies, but
deviations from this can be easily taken into account with the
existing method. More challenging would be the derivation of
similar mapping relations beyond one-dimensional structures.

We found that the STUR and also the LTUR bounds can
be broken for our setup. The STUR relation can be bro-
ken in a regime that is not accessible with Markovian rate
equations (e.g., where the secular approximation fails). The
LTUR relation can also be broken beyond the linear response
regime, where often the entropy production rate grows slower
with the bias than in the linear response regimes. It would
be interesting to investigate such relations in NEMS systems
such as the electron shuttle, where a similar reduction in the
growth of entropy production can be observed [75].

The thermodynamic performance of the optimized chains
did approach theoretical quantum limits well. In particular,
we remark that this was achieved in a rather strong-coupling
limit between system and reservoir. In our case, the frequency
filter quality of optimized chains did partially compensate
for the broadening observed normally at stronger couplings,
thereby opening a door to gain larger power from quantum
heat engines at stronger couplings.

Thus, electronic transport setups beyond weak-coupling
and linear response offer interesting options in the design of
continuously operating engines. We hope that the engineering
of frequency filters by chains or other geometric configura-
tions will find additional applications.
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APPENDIX A: EXPLICIT CALCULATION OF THE
REVERSE MAPPING

Applying the reverse mapping (16) once for initially flat
spectral coupling densities, we obtain simple Lorentzian spec-
tral coupling densities that can be parametrized like (17). For
this class of spectral coupling densities, the reverse reaction-
coordinate mapping (16) can be evaluated with functional
calculus (we assume first order poles only). Using that the zi

are in the upper complex plane, we can appropriately excise
the singularity at ω on the real axis in the principal-value inte-
gral. The net effect of this procedure is that it only contributes
half compared to the residues of the poles zi. Absorbing the
residues of the spectral coupling density in the quantities

Kj ≡ γ̄
i

(z̄ j − z̄∗
j )

∏
i �= j (z̄ j − z̄i )(z̄ j − z̄∗

i )
, (A1)

the transformed spectral coupling density becomes

¯̄�(ω) = λ̄2γ̄∣∣(ω − ε̄)
∏L

j=1(ω − z̄ j ) − ∑L
j=1 Kj

∏
i �= j (ω − z̄i )

∣∣2

≡ ¯̄γ∏L+1
i=1 (ω − ¯̄zi)(ω − ¯̄z∗

i )
, (A2)

where the poles of the transformed spectral coupling density
¯̄zi are given by the roots of the polynomial in the absolute
value, which can be found numerically by using a suitable
numerical algorithm. Thus, with each mapping, the spectral
coupling density is equipped with an additional pole.

APPENDIX B: BENCHMARK OF THE REVERSE RC
MAPPING

The transmission can alternatively be computed via the
nonequilibrium Greens function technique [47], which re-
quires the knowledge of a free Greens function. In particular
for reservoirs modeled by homogeneous tight-binding chains
characterized by on-site energy E and hopping amplitude T ,
one may choose the homogeneous tight-binding chain Greens
function as the free one, which is well-known [68]. If the
coupling between system and such a reservoir is described by
tunnel amplitude τ , such reservoirs lead to spectral coupling
densities of semicircular (sc) form [71]

�sc(ω) = 2τ 2

T

√
1 − (ω − E )2

4T 2
�(4T 2 − (ω − E )2), (B1)

which obviously are not of wide-band shape. However,
sending both T → ∞ and τ → ∞ while keeping 2τ 2

T ≡
�0 constant, which can be achieved by scaling τL = τR =√

α/2�0 = τ and T = α�0 with dimensionless parameter
α, we see that the wide-band limit can be approached
also by semicircular spectral coupling densities in the limit
α → ∞. Consequently, the chain transmission derived from
the nonequilibrium Greens function formalism must converge
to the transmission derived from the reverse reaction-
coordinate mapping and Eq. (15) in this limit. This is precisely
what is seen in Fig. 6. For very flat reservoirs (large α), the
nonequilibrium Greens function transmission (orange) nearly
fully agrees with the transmission obtained from the reverse
mapping (black), and by further increasing α the curves would
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FIG. 6. Plot of the (symmetric) transmission function T (ω)
through the optimized chain of 13 quantum dots as given in Table I
and also shown in the inset of Fig. 3, derived from the reverse
mapping (black, see main text for explanations), and those derived
for the same chain from a nonequilibrium Greens function approach
(NEGF, dotted brown, dashed grey and solid orange) for spectral
coupling densities shaped as (B1). For flat external spectral coupling
densities (α → ∞), they coincide. (Inset) Plot of the corresponding
mapped spectral coupling densities (shifted for clarity) after one
reverse mapping (grey, bottom), two reverse mappings (red) and so
on up to six reverse mappings (black, top) of a wide-band reservoir.
For the 13-dot chain discussed, the central quantum dot will then
effectively see the black spectral coupling density for both reservoirs,
yielding via Eq. (15) the black transmission in the main plot.

fully coincide (not shown). This agreement for near-wide-
band reservoirs also indicates that our findings should also
apply to more general initial reservoirs, as long as their band-
width is large compared to the energy scales of the system.

The inset displays the sequence of mapped spectral cou-
pling densities for either left or right wide-band reservoir.
After the first mapping, the spectral coupling density is
Lorentzian and with each mapping, it acquires an additional
pole. An alternative perspective on the transformation of the
spectral densities is that the boundary dots, i.e., the outermost
dot (grey), the two outermost dots (red) and so on up to the six
outermost dots (black) screen the remaining system from the
wide-band reservoir, leading to the observed structured spec-
tral densities, compare also the bottom part of Fig. 2. As the
parameters in Table I all scale with �0, the system-reservoir
interaction is not just a small perturbation to the Hamiltonian
of the boundary dots, and therefore the peaks of the spectral
densities do not fully coincide with the single-particle spec-
trum of the boundary dots (symbols of like color in inset).

APPENDIX C: EQUILIBRIUM LIMIT OF THE TUR

The equilibrium limit can be recovered from the isothermal
case β = βL = βR in the limit V → 0. Writing the Fermi
functions as fL(ω) = [eβ(ω−(μ̄+V/2)) + 1]−1 and fR(ω) =
[eβ(ω−(μ̄−V/2)) + 1]−1 with average chemical potential μ̄, we

obtain from Eq. (2)

lim
V →0

SM = 2
∫

T (ω)
eβ(ω+μ̄)

(eβω + eβμ̄)2

dω

2π
,

lim
V →0

IM

βV
= lim

V →0

1

β

dIM

dV
=

∫
T (ω)

eβ(ω+μ̄)

(eβω + eβμ̄)2

dω

2π
, (C1)

where we used l’Hospitals rule in the second line. From this
it follows that in equilibrium the STUR relation (8) reaches
equality limV →0 βV SM

IM
= 2, regardless of the particular form

of the transmission, as visible in Fig. 3. This just reflects
the Johnson-Nyquist (fluctuation-dissipation) relation for the
current [76]

lim
V →0

SM = 2

β
lim
V →0

dIM

dV
. (C2)

APPENDIX D: COOLING AND HEATING PERFORMANCE
WITH IDEAL RECTANGULAR TRANSMISSION

FUNCTIONS

1. Cooling

It has been noted before that rectangular transmission func-
tions can be beneficial for cooling applications [77]. The
optimal cooling performance is reached when the transmis-
sion is maximal where the integrand in the heat current is
positive

JL,1 = 1

2π

∫ ω̄

μL

(ω − μL )[ fL(ω) − fR(ω)]dω. (D1)

When furthermore μR � μL such that fR(ω) → 0 in the inte-
gration interval and ω̄ → ∞, we obtain the upper bound

JL,1 � π

24
T 2

L , (D2)

which after inserting appropriate units via JL,1 → h̄JSI
L,1 and

TL → kBT SI
L is just half [77] Pendrys quantum bound [78].

The corresponding coefficient of performance is obtained
by dividing the cooling current by the chemical work invested

κ = IE − μLIM

(μL − μR)IM
�(IE − μLIM ) � TL

TR − TL
, (D3)

where the Carnot bound can be generally seen from the pos-
itivity of the entropy production rate [58] and we use the
Heaviside-� function to mind the range of applicability. For
the considered ideal limit (compare the blue transmission bar
in Fig. 1), we can simplify this as

κ =
∫ ω̄

μL
(ω − μL )[ fL(ω) − fR(ω)]dω∫ ω̄

μL
(μL − μR)[ fL(ω) − fR(ω)]dω

=
∫ ω̄

μL
(ω̄ − μL )[ fL(ω) − fR(ω)]dω∫ ω̄

μL
(μL − μR)[ fL(ω) − fR(ω)]dω

−
∫ ω̄

μL
(ω̄ − ω)[ fL(ω) − fR(ω)]dω∫ ω̄

μL
(μL − μR)[ fL(ω) − fR(ω)]dω

= βR

βL − βR
−

∫ ω̄

μL
(ω̄ − ω)[ fL(ω) − fR(ω)]dω∫ ω̄

μL
(μL − μR)[ fL(ω) − fR(ω)]dω

. (D4)
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The first term in the last line implements the upper bound
by the Carnot limit κCa = TL

TR−TL
, which is attained when the

second term (which is detrimental to the coefficient of per-
formance) is negligible. We remark that analytic but lengthy
results may be obtained and omit their explicit discussion
here.

2. Heat engine

The chemical work (electric power) extracted by the heat
engine is generally given by

P = − IM (μL − μR)

= 1

2π

∫
(μL − μR)T (ω)[ fR(ω) − fL(ω)]dω. (D5)

Since T (ω) � 0 and by assumption μL > μR, the power is
maximized (for given thermal and potential biases) when
the transmission is maximal T (ω) → 1 in the region where
fL(ω) < fR(ω), i.e., for ω > ω̄, and vanishes elsewhere. In
regions where the power is positive, the energy to maintain
it comes in as heat from the hot (right) reservoir JR = −(IE −
μRIM ), such that we can generally write for the efficiency (the
Heaviside-� function is again merely used to mind the range
of applicability)

η = (μL − μR)IM

IE − μRIM
�(−(μL − μR)IM ) � 1 − TL

TR
, (D6)

and again the Carnot bound can be seen from the positivity
of the entropy production rate [58]. Inserting a rectangular
transmission with ideal bounds, we specify

η =
∫

(μL − μR)T (ω)[ fR(ω) − fL(ω)]dω∫
(ω − μR)T (ω)[ fR(ω) − fL(ω)]dω

= 1

1 +
∫

(ω−μL )T (ω)[ fR (ω)− fL (ω)]dω∫
(μL−μR )T (ω)[ fR (ω)− fL (ω)]dω

, (D7)

where we have used ω − μR = (ω − μL ) + (μL − μR) in the
denominator of the first line to split the integral. One can see
that Carnot efficiency ηCa = 1 − βR

βL
can be approached for

a very narrow transmission with effectively zero power out-

put. Therefore we rather focus on the efficiency at maximum
power, where we first maximize the power with respect to
position and width of the transmission window

P1 = (μL − μR)

2π

∫ ∞

ω̄

[ fR(ω) − fL(ω)]dω

= (μL − μR)

2π

∫ ∞

0
[ fR(ω + ω̄) − fL(ω + ω̄)]dω

= 1

2π

(
βL − βR

βLβR

)2

x ln (1 + e−x ) : x ≡ βLβR

βL − βR
V

� 1

2π

(
βL − βR

βLβR

)2

(0.31635), (D8)

where the last bound is obtained numerically by maximizing
with respect to the voltage V = μL − μR, which is saturated
at x ≈ 1.14455. In the proper units (P → PSI h̄ and Tν →
kBT SI

ν ), this reproduces the bound in Ref. [77]). Therefore the
efficiency for optimal transmission becomes

η1 = 1

1 +
∫ ∞
ω̄

(ω−μL )[ fR (ω)− fL (ω)]dω∫ ∞
ω̄

(μL−μR )[ fR (ω)− fL (ω)]dω

= 1

1 +
∫ ∞

0 (ω+ω̄−μL )[ fR (ω+ω̄)− fL (ω+ω̄)]dω∫ ∞
0 (μL−μR )[ fR (ω+ω̄)− fL (ω+ω̄)]dω

= 1

1 + βR

βL−βR
+

∫ ∞
0 ω[ fR (ω+ω̄)− fL (ω+ω̄)]dω∫ ∞

0 (μL−μR )[ fR (ω+ω̄)− fL (ω+ω̄)]dω

= 1

1 + βR

βL−βR
+ βL+βR

βL−βR

[−Li2(−e−x )]
x ln[1+e−x]

= ηCa
1

1 + (
1 + βR

βL

) [−Li2(−e−x )]
x ln[1+e−x]

, (D9)

where Li2(y) denotes the dilogarithm and x is defined as
before. At the voltage that maximizes the power, we thus have
η1 = ηCa

1+0.93593(1+ βR
βL

)
, which is well below the Chambadal-

Novikov-Curzon-Ahlborn [79–81] efficiency as expected at
maximum power [82].
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