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Carrier concentration independent plasmons in biased twisted bilayer graphene
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We calculate the density-density response function of biased twisted bilayer graphene (BTBG) and study its
plasmon dispersion within the random phase approximation (RPA). At long wavelengths (q → 0), plasmon
dispersion shows local classical behavior ω = ω0

√
q. Unlike the situation in conventional two-dimensional

electron gas (2DEG), where the density dependence of the plasmon energy is of the form ω0 ∝ √
n (n is the

carrier concentration), the plasmon energy ω0 is independent of the carrier concentration (n) in biased twisted
bilayer graphene. Furthermore, the plasmon energy (ω0) is also independent of the Fermi energy (μ) which is
decided by the carrier concentration (n).
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I. INTRODUCTION

The dynamical dielectric function and collective density
oscillations (plasmons) of an interacting electron gas are of
fundamental interest from both an experimental and theoreti-
cal perspective. Many theoretical [1–3] and experimental [4,5]
studies on the dielectric function of various two-dimensional
(2D) systems have been made in the past years. The 2D
plasmon dispersion relation was first derived by Ritchie [6]
and by Ferrell [7] who were treating the characteristic energy
loss of electrons in metal foils. In 1967, the response of a two-
dimensional electron gas (2DEG) to a longitudinal electric
field of arbitrary wave vector and frequency was calculated
in the self-consistent-field approximation by Stern [8]. In
1975, 2D plasmons and electron-ripplon scattering in a sheet
of electrons on liquid helium was observed by Grimes and
Adams [9]. The 2D plasmons have also been experimentally
observed in different kinds of 2D systems such as a quantum
well [10,11] and metal film [12–16].

Since the discovery of graphene in 2004, the experimental
fabrication of different atomic monolayers has been a subject
of great interest [17]. The plasmons in 2D monolayer materi-
als have attracted the attention of many researchers. In 2007,
the dynamical dielectric function ε(ω, q) of 2D graphene at an
arbitrary wave vector q and frequency ω was calculated within
the random phase approximation (RPA) by Hwang and Das
Sarma [18]. They concluded that at long wavelengths q → 0,
the plasmon dispersion showed local classical behavior ω =
ω0

√
q, but the density dependence of the plasma frequency

ω0 ∝ n1/4 was different from the usual 2D electron system
ω0 ∝ n1/2 [9]. In 2010, this special density dependence of
the plasmon frequency was confirmed experimentally by Brar
[19].

Although, there are many different 2D systems (quantum
well, graphene, monolayer MoS2, and so on), the long-
wavelength 2D plasmon spectrum can be described by the
same formula ω ∝ √

μ
√

q for different 2D materials [20,21].
Therefore, a higher Fermi energy μ will generate a higher
plasmon energy at the same plasmonic wavelength.

The recent discovery of correlated insulation and seem-
ingly unconventional superconductivity in twisted bilayer
graphene (TBG) has revived interest in TBG [22]. Impor-
tantly, these phenomena are observed in a narrow range of
twist angles near 1.05◦, i.e., the first magic angle where the
isolated and relatively flat bands appear near neutrality [23].
Besides superconductivity, the dielectric property for small
twist angle bilayer graphene has also attracted much attention
from both an experimental [24] and theoretical [25–28] per-
spective. In 2017, Hu and Fei measured the plasmon energy
in TBG and found that the plasmon spectrum under a long-
wavelength limit still depends on the Fermi energy (μ) as a
form ω ∝ √

μ
√

q [24]. In 2019, Lewandowskia and Levitova
theoretically studied the plasmon spectrum for small twist
angle TBG [27]. They obtained that the mode dispersion has a
square-root form characteristic of 2D plasmons ω ∝ √

βq
√

q
with a weak q dependence in βq. However, the leading order
of βq was still determined by the Fermi energy μ.

Here, we investigate the dynamical dielectric function of
biased twisted bilayer graphene (BTBG) in a wide range of
twist angles θ > 2◦. We find that the perpendicular electric
field can remove the degeneration of the graphene Dirac cone
and give rise to a Dirac energy difference �z between the
two Dirac points at the same valley. When the Fermi energy
μ is located in the regime (μ < �z/2), the real part of the
polarization function (Re[�(q → 0, ω)] = q2/(2πω2)�z) is
independent of the specific value of the Fermi energy μ.
Furthermore, this Fermi energy (μ) irrelative polarization
function [�(q → 0, ω)] leads to a carrier concentration (n) in-
dependent plasmon spectrum, ω ∝ ω0

√
q ∝ √

�z
√

q, which
also indicates that the plasmon energy (ω0) is determined by
the Dirac energy deviation (�z).

The rest of this paper is organized as follows. In Sec. II, we
introduce the effective Hamiltonian for BTBG which can well
describe the double Dirac cone band structure. In Sec. III A,
we adopt the Lindhard model to calculate the long-wavelength
polarization function �(q → 0+, ω) of the BTBG by us-
ing our effective Hamiltonian, and obtain the Fermi energy
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FIG. 1. (a) Energy dispersion for the bands closest to the Dirac
point plotted along the k-space trajectory 	 → K → K ′ → 	 for
θ = 3.89◦, under a bias voltage Vb = 12 mV. (b) The enlarged plot of
the Dirac cone in the green box. �z is Dirac energy deviation induced
by bias voltage Vb. μ is the Fermi energy which can be tuned by
electron or hole doping.

independent plasmon spectrum. In Sec. III B, by using RPA,
we calculate the polarization function �(q, ω) in the whole
(q, ω) regime, and reconfirm the Fermi energy independent
plasmon spectrum at a long-wavelength limit. We perform
further calculations to study the energy loss function and
plasmon spectrum of BTBG in the whole regime. In Sec.
III C, we discuss the impact of the finite-range interaction.
The summary and final conclusions are in Sec. IV.

II. EFFECTIVE HAMILTONIAN FOR BIASED TWISTED
BILAYER GRAPHENE

Based on the well-known effective continuum model [29],
we calculate the moiré bands as a function of their Brillouin-
zone momentum k for BTBG by using the plane wave
expansion. The results for the bias voltage Vb = 12 mV, and
twist angle θ = 3.89◦ are shown in Fig. 1(a). Figure 1(b) is the
enlarged plot of the green box region indicated in Fig. 1(a),
where the Dirac cones are deviated about �z eV due to the
bias voltage (Vb). The blue line and red line represent the
the energy bands of ξ = ± valleys, respectively. They are the
time reversal partners of each other. As we can see in Fig. 1,
the Dirac cones of a single-layer graphene remain present
in the bilayer, but with a significant reduction of the Fermi
velocity. It is worth noting that the Dirac cones present in the
bilayer with a twist are essentially the Dirac cones of each
layer perturbed by the admixture of states of the opposing
layer, which are distant in energy. Since there is no coupling
between the red (ξ = +1) and blue (ξ = −1) bands, a bias
voltage Vb should only amount to a relative shift of the ener-
gies of the degeneracy points in each cone. This can be clearly
seen in Fig. 1(b), where the Dirac cones of different valley
index ξ = ± deviate from each other but there is no gap in the
spectrum. Therefore, we define a Dirac cone deviation energy
�z [shown in Fig. 1(b)] to describe the bias voltage effect.

Based on the effective Hamiltonian of BTBG created by
Santos [30], we can numerically fit a Hamiltonian to describe
the bias voltage effect on the electronic structure near the K

FIG. 2. (a) Plane wave expansion calculated band structure near
the K ′ point for different twist angles θ = 6.01◦ (dashed), θ = 3.48◦

(solid), and θ = 2.28◦ (dotted). The bias voltage is Vb = 6 mV for
all different angles. (b) Band structure near the K ′ point for dif-
ferent bias voltages Vb = 2 mV (dashed), Vb = 6 mV (solid), and
Vb = 10 mV (dotted). The twist angle is θ = 5.08◦ for all different
bias voltages. The red (blue) lines represent the ξ = +1 (ξ = −1)
valley contributed band structure.

and K ′ points. We calculate the band structure near the K ′
points of different twist angles and bias voltages, and display
the results in Figs. 2(a) and 2(b). As we can see in Fig. 2(a),
for a specific bias voltage (Vb = 6 mV), the Fermi velocity
and Dirac deviation energy �z increase when the twist angles
increase from 2.28◦ (dotted lines) to 6.01◦ (dashed lines).
Figure 2(b) indicates that, for a specific twist angle, although
the Dirac deviation �z increases, the Fermi velocity does not
change, when the bias voltage increases from 2 to 6 mV.
According to the results shown in Fig. 2, we conclude that
�z is a function of bias voltage Vb and twist angle θ . On the
other hand, the Fermi velocity v(θ ) only relies on the twist
angle. After a tedious and straightforward numerical fitting,
we obtain a low-energy Hamiltonian to describe the deviated
band structure near the K (K ′) points,

H = v(θ )[kxσx + kyσy] + τξ
�z

2
,

�z = [v(θ )α + β]Vb, (1)

where α = 0.6115/Å, β = −0.6409(e), and

v(θ ) = 0.0079θ4 − 0.0943θ3 + 0.4536θ2

− 0.6877θ + 1.8407. (2)

In this model Hamiltonian [Eq. (1)], σx and σy stand for the
Pauli matrix, and τ = +1 (−1) for the K (K ′) valley shown
in Fig. 1(a). The ξ = +1 (−1) represents the corresponding
monolayer graphene valley index. Equation (1) shows that
Dirac deviation energy �z is linearly reliant on the bias volt-
age Vb for a specific twist angle. On the other hand, the relation
between the twist angle and Fermi velocity is complicated.
Here, we obtain Eq. (2) to describe the θ dependent Fermi
velocity v(θ ) by numerical fitting.

At small twist angles θ < 2◦, the relaxed lattice drasti-
cally reduces the area of the AA stacking region and forms
a triangular domain structure with alternating AB and BA
stacking regions [26,31]. Since the bias voltage Vb can open
an electronic gap in the Bernal AB or BA stacked regions, the
bias voltage will generate a band gap when the twist angle is
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small (θ < 2◦). Therefore, we only use Hamiltonian Eq. (1) to
study the dielectric properties of BTBG when the twist angle
is located in the range θ > 2◦.

III. DIELECTRIC FUNCTION AND PLASMON

Many physical properties rely on the dynamical dielectric
function ε(ω, q). This function has been studied extensively in
a variety of 2D systems beyond the usual electron gas. In the
random phase approximation (RPA), the dielectric function
ε(ω, q) is given by [8]

ε(ω, q) = 1 − V (q)�(ω, q). (3)

Here, V (q) = e2

2ε0εr q is the Fourier transform of the Coulomb

potential in two dimensions, V (r) = e2

4πε0εr r , ε0 the vacuum
permittivity, and εr = 1 for the free-standing material. In this
paper all the numerical results are calculated by εr = 1 unless
the εr have been redefined. Equation (3) contains the free po-
larizability given by a two-dimensional integral in momentum
space [20],

�(q, ω) = gs

∑
κκ ′

∫
d2k

(2π )2
|〈 �κ (k) | �κ ′ (k + q) 〉|2

× f [Eκ (k)] − f [Eκ ′ (k + q)]

ω − Eκ ′ (k + q) + Eκ (k) + i 0+ . (4)

|�κ/κ ′ (k)〉 and Eκ/κ ′ (k) are the eigenstates and energies, κ

and κ ′ denote the band indices, and gs = 2 stands for spin
degeneracy. Here, we work at zero temperature so that the
Fermi functions f [Eκ (k)] and f [Eκ ′ (k + q)] can be replaced
by step functions.

A. Lindhard results

When we study the long-wavelength intraband polarization
function �(q → 0, ω), Eq. (4) can be simplified into a Lind-
hard model:

�(q, ω) =
∫

d2k

(2π )2

f [E (k)] − f [E (k + q)]

ω − E (k + q) + E (k) + i 0+ . (5)

By using the Lindhard model Eq. (5), we can analytically
obtain the long-wavelength intraband plasmon spectrum.

Since the band structure of BTBG has particle-hole sym-
metry, the corresponding dielectric properties for the hole
doping case (μ < 0) and the electron doping case (μ > 0)
are identical. Here, we only study the dielectric properties for
the electron doping case (μ > 0). For convenience, we define
μ+ = |μ − �z/2| (μ− = |μ + �/2|) to represent the energy
distance between the Fermi energy and the upper (lower)
deviated Dirac point, as shown in Fig. 1(b). It is worth noting
that there is no coupling between the red (ξ = +1) and blue
(ξ = +1) bands. Therefore, we can respectively obtain the
polarization function of μ+ and μ− as below (details of the

deduced steps are shown in the Appendix):

Re[�(q → 0+, ω)] = q2

4πω2
(μ+ + μ−)

=
⎧⎨
⎩

q2

4πω2 �z : μ <
�z

2 ,

q2

2πω2 μ : μ >
�z

2 .
(6)

The plasmon branch can be obtained by finding the zeros of
the dielectric function ε(q, ω) [Eq. (1)]. In the regime where
Im[�(q, ω)] = 0, it is sufficient to solve

1 = e2

2ε0εrq
Re[�(q, ω)]. (7)

By substituting Eq. (6) into Eq. (7), we obtain the long-
wavelength plasmon branch,

ω = ω0
√

q =

⎧⎪⎨
⎪⎩

√
e2

8πε0εr

√
�z

√
q : μ <

�z

2 ,√
e2

4πε0εr

√
μ

√
q : μ >

�z

2 .

(8)

Based on Eq. (8), we conclude that the plasmon dispersion
does not rely on carrier concentration, when the corre-
sponding Fermi energy μ < �z/2. Since the dependence
between carrier concentration and Fermi energy is of the form
μ =

√
(πv2/2)n − (�z/2)2, the relation between the plas-

mon energy and carrier concentration is ω0 ∝ [(πv2/2)n −
(�z/2)2]1/4, when the Fermi energy is located in the regime
μ > �z/2.

Conventional plasmonics emerged from the early study
of 2DEG, where free electrons oscillate collectively in
resonance with the electromagnetic field. In graphene,
plasmon excitation can be performed by using a radiation
(frequency range from terahertz to midinfrared), where the
wave vector of the incident electromagnetic wave can match
that of the 2D graphene plasmon. Since the electromagnetic
radiation has a frequency ω = ch̄q, for BTBG, the energy of
radiation induced plasmon mode has a simple form:

Eph =
⎧⎨
⎩

e2

8πcε0εr
�z : μ <

�z

2 ,

e2

4πcε0εr
μ : μ >

�z

2 .
(9)

According to Eq. (9), we conclude that the radiation excited
plasmon energy (Eph) linearly relies on �z, when the Fermi
energy is located in the regime μ < �z/2. On the other
hand, the plasmon energy (Eph) linearly relies on the Fermi
energy (μ), when the Fermi energy is located in the regime
(μ > �z/2).

B. Random phase approximation results

The above analysis for BTBG dielectric properties is based
on the Lindhard model without taking the interband contri-
butions into consideration. For a long-wavelength q → 0+
and low-frequency situation, results obtained by using the
Lindhard model can describe the dielectric properties very
well. However, in order to study the dielectric properties in
a shorter-wavelength and higher-frequency regime, we need
to recalculate the polarization function by using the RPA
equation [Eq. (4)]. Since the polarization function depends
on the value of the μ+ = |μ − �z/2| and μ− = |μ + �/2|,
which we have already defined, we present the polarization
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results as a function of μ+ and μ−. Equation (4) can be solved analytically to give

Re[�(q, ω)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
πv2

[
μ+ + μ− + �

[1,1,−1,−1]
1 (q, ω, μ+, μ−) + 4ζ1(q, ω)

]
: 1A

1
πv2 (μ+ + μ−) : 2A

1
πv2

[
μ+ + μ− + �

[1,1,1,−1]
1 (q, ω, μ+, μ−) + 2ζ1(q, ω)

]
: 1B

1
πv2

[
μ+ + μ− + �

[1,1,0,−1]
1 (q, ω, μ+, μ−) + 3ζ1(q, ω)

]
: 2B

1
πv2

[
μ+ + μ− + �

[0,0,1,0]
2 (q, ω, μ+, μ−) + 1

2ζ2(q, ω)
]

: 3B

1
πv2

[
μ+ + μ− + �

[1,0,1,0]
2 (q, ω, μ+, μ−) + ζ2(q, ω)

]
: 4B

1
πv2

[
μ+ + μ− + �

[1,1,1,−1]
1 (q, ω, μ+, μ−)

]
: 1C

1
πv2

[
μ+ + μ− + �

[1,1,1,0]
1 (q, ω, μ+, μ−) + ζ1(q, ω)

]
: 2C

1
πv2

[
μ+ + μ− + �

[1,1,0,0]
1 (q, ω, μ+, μ−) + 2ζ1(q, ω)

]
: 3C

1
πv2

[
μ+ + μ− + �

[0,0,1,1]
2 (q, ω, μ+, μ−) + ζ2(q, ω)

]
: 4C

1
πv2

[
μ+ + μ− + �

[1,0,1,1]
2 (q, ω, μ+, μ−) + 3

2
ζ2(q, ω)

]
: 5C

1
πv2

[
μ+ + μ− + �

[1,1,1,1]
2 (q, ω, μ+, μ−) + 2ζ2(q, ω)

]
: 6C.

(10)

The imaginary part of the polarization function is

Im[�(q, ω)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 : 1A

1
πv2 �

[−1,−1,1,1]
3 (q, ω, μ+, μ−) : 2A

1
πv2 ζ2(q, ω) : 1B

1
πv2

[
�

[0,0,1,0]
2 (q, ω, μ+, μ−) + 1

2ζ2(q, ω)
]

: 2B

1
πv2 �

[−1,−1,0,1]
3 (q, ω, μ+, μ−) : 3B

1
πv2 �

[0,−1,0,1]
3 (q, ω, μ+, μ−) : 4B

1
πv2 2ζ2(q, ω) : 1C

1
πv2

[
�

[0,0,0,1]
2 (q, ω, μ+, μ−) + 3

2ζ2(q, ω)
]

: 2C

1
πv2

[
�

[0,0,1,1]
2 (q, ω, μ+, μ−) + ζ2(q, ω)

]
: 3C

1
πv2 �

[−1,−1,0,0]
3 (q, ω, μ+, μ−) : 4C

1
πv2 �

[0,−1,0,0]
3 (q, ω, μ+, μ−) : 5C

0 : 6C,

(11)

where we have used the definitions

�[m1,m2,m3,m4]
n (q, ω, μ+, μ−)

= − 1

8
√

|ω2 − (vq)2| [m1 fn(q, ω, μ+) + m2 fn(q, ω, μ−)

+ m3 fn(q,−ω,μ+) + m4 fn(q,−ω,μ−)], (12)

where

f1(q, ω, μ) = (2μ + ω)
√

(2μ + ω)2 − (vq)2

− (vq)2 ln

√
(2μ + ω)2 − (vq)2 + 2μ + ω

|
√

ω2 − (vq)2 + ω| ,

f2(q,w, μ) = (2μ + ω)
√

(vq)2 − (2μ + ω)2

+ (vq)2 sin−1 2μ + ω

vq
,

f3(q, ω, μ) = (2μ + ω)
√

(2μ + ω)2 − (vq)2

− (vq)2 ln

√
(2μ + ω)2 − (vq)2 + 2μ + ω

vq
,

(13)
and

ζ1(q, ω) = − 1

8
√

ω2 − (vq)2
(vq)2 ln

ω −
√

ω2 − (vq)2

vq
,

ζ2(q, ω) = π (vq)2

8
√

|ω2 − (vq)2| . (14)
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FIG. 3. Regions for the BTBG bands in which the polarization
function has different expressions. Here, the Fermi energy is located
at μ = �z/12.

The regions specified in Eqs. (10) and (11) are given by

1A : �[v(2k1 − q) − ω]�[ω − vq],

2A : �[v(2k1 − q) − ω]�[vq − ω],

1B : �[ω − v(q + 2k1)]�[v(2k2 − q) − ω],

2B : �[v(q + 2k1) − ω]�[ω − v(2k1 − q)]

×�[v(2k2 − q) − ω]�[ω − vq],

3B : �[ω − v(2k1 − q)]�[v(2k2 − q) − ω]

×�[vq − ω]�[ω − v(q − 2k1)],

4aB : �[v(q − 2k1) − ω]�[v(2k2 − q) − ω],

1C : �[ω − v(q + 2k2)],

2C : �[v(q + 2k2) − ω]�[ω − v(q + 2k1)]

×�[ω − v(2k2 − q)],

3C : �[v(q + 2k1) − ω]�[ω − v(2k2 − q)]

×�[ω − vq],

4C : �[ω − v(2k2 − q)]�[vq − ω]

×�[ω − v(q − 2k1)],

5C : �[ω − v(2k2 − q)]�[v(q − 2k1) − ω]

×�[ω − v(q − 2k2)],

6C : �[v(q − 2k2) − ω],

(15)

where �[· · · ] represent step functions. The regions given by
Eq. (15) are shown in Fig. 3 for the Fermi energy located
at μ = �z/12. As we can see in Eq. (11), the imaginary
part of the polarization function Im[�(q, ω)] == 0, in the
white space of Fig. 3 (region 1A and 6C). The white space
in Fig. 3 corresponds to values of q and ω for which there
is no damping of a collective charge oscillation (undamped

plasmon). The other regions in Fig. 3 (Im[�(q, ω)] 	= 0) cor-
respond to regions in which collective oscillations are damped
(damped plasmon). In Fig. 3, we only plot the regions for a
specific Fermi energy μ = �z/12. When the Fermi energy μ

is increased, the value of μ+ = |μ − �z/2| decreases and the
zero imaginary polarization region (1A white region shown in
Fig. 3) will shrink. When μ increases to �z/2, the 1A white
region shown in Fig. 3 will vanish. As μ further increases to
the regime μ > �z/2, the 1A white region shown in Fig. 3
will reoccur, and the undamped plasmonic wave can be ex-
cited in this white region (Im[�(q, ω)] = 0) again.

As a significant consequence of the dielectric function, we
calculate the long-wavelength plasmon dispersion for BTBG
by using the above results [Eq. (10) (1A)]. In the long-
wavelength limit q → 0+, we have the following limiting
forms in the low-frequency regimes:

Re[�(q → 0+, ω)]

= q2

4πω2

[
μ+ + μ− − ω2

4

(
1

μ+
+ 1

μ−

)]

=
{

q2

4πω2

[
�z − ω2

(
�z

�2
z −4μ2

)]
: μ <

�z

2 ,

q2

4πω2

[
2μ − ω2

(
�z

4μ2−�2
z

)]
: μ >

�z

2 .
(16)

By substituting Eq. (16) into Eq. (7), we get the long-
wavelength (q → 0+) plasmon mode dispersion for BTBG as

q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8πε0εr
e2

1
�z

ω2

1− ω2

�2
z −4μ2

≈ 8πε0εr
e2

1
�z

ω2 : μ <
�z

2 ,

8πε0εr
e2

1
2μ

ω2

1+ ω2

�2
z −4μ2

≈ 8πε0εr
e2

1
2μ

ω2 : μ >
�z

2 .
(17)

In low-frequency (ω � 1 eV) regime, the plasmon branch
obtained by using the RPA model [shown in Eq. (16)] is in
agreement with the plasmon dispersion obtained by using
the Lindhard model [shown in Eq. (17)]. All these results
[Eqs. (8) and (16)] indicate that the long-wavelength plasmon
dispersion is independent of carrier concentration (n) when
the Fermi energy was located in the regime μ < �z/2. This is
very different from the 2D plasmon behavior in conventional
2DEG and graphene, where ω ∝ n1/2√q and ω ∝ n1/4√q.

Re[�(q, ω)] is plotted in Fig. 4(a) for θ = 3.89◦, �z =
0.06 eV, and μ = 0.01 eV (the Fermi energy μ is located in
the regime μ < �z/2). Several frequency cuts of Fig. 4(a)
are shown in Fig. 4(c). Plots of Im[�(q, ω)] can be seen
in Fig. 4(b) with θ , �z, and μ chosen to correspond with
Fig. 4(a). While the imaginary part of the polarization
determines the damping of the plasmon, the real part of
the dynamical polarization comes in to determine the loca-
tion of the plasmon branch in (q, ω) space. The undamped
plasmon branch can be obtained by finding the zeros of
the dielectric function ε(q, ω). In the 1A white zero space
(Im[�(q, ω)] = 0) shown in Figs. 3 and 4(b), it is sufficient
to solve Eq. (7) to get the plasmon branch. Therefore, we
plot the polarization function Re[�(q, ω)] and Im[�(q, ω)]
in Figs. 4(c) and 4(d) for a constant frequency corresponding
to three frequency values, ω = 5 (blue line), 25 (red line),
and 45 (black line) meV shown in Figs. 4(a) and 4(b). The
solutions of Eq. (7) are given by the intersection of the
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FIG. 4. (a) Real part of the polarization function for θ = 3.89◦,
�z = 0.06 eV, and μ = 0.01 eV. (b) Imaginary part of the polariza-
tion function for θ , �z, and μ chosen to correspond to (a). (c) and
(d) are the constant frequency cuts of the real and imaginary parts
of the polarization function as a function of q. The blue, red, and
black lines in (c) and (d) correspond to the constant frequencies
ω = 5 meV, ω = 25 meV, and ω = 45 meV, which are also indicated
by the red, blue, and black lines shown in (a) and (b).

Re[�(q, ω)] vs 2ε0εrq/e2 slope (solid green line) shown in
Fig. 4(c). As we can see in Fig. 4(c), the green slope line
intersects every function (Re[�(q, ω = 5, 25, 45 meV)]) two
times and, therefore, there are two solutions at those frequen-
cies (ω = 5, 25, 45 meV). However, the excited plasmonic
wave is undamped, only when (q, ω) is located in region
1A (Im[�(q, ω)] = 0). Therefore, in Fig. 4(c), only the first
intersection between the green slope with the blue and red
lines corresponds to the undamped plasmon modes.

From an experimental perspective, plasmons appear as
resonance peaks in the momentum-resolved electron energy
loss spectrum, which directly measures the loss function:
−Im[1/�(q, ω)]. Based on the above polarization function
formula [Eqs. (10) and (11)], we calculate the energy loss
function (−Im[1/�(q, ω)]) and display the results in Fig. 5.
As we can see in Fig. 5, the energy loss peak (blue) calculated
by Eqs. (10) and (11) (RPA deduced formula) is in good
agreement with the plasmon spectrum (red solid line) calcu-
lated by using Eq. (8) (the long-wavelength plasmon spectrum
deduced by using the Lindhard model) in the small (q, ω)
regime (q < 10−3/Å, ω < 10 meV). Therefore, the resonance
peaks in the momentum-resolved electron energy loss spec-
trum shown in Figs. 5(a)–5(c) reconfirm the significant result:
When the Fermi energy is located in the regime μ < �z/2,
the long-wavelength plasmon spectrum (ω ∝ √

�z
√

q) is in-
dependent of carrier concentration (n) and also does not rely
on the specific value of the Fermi energy μ.

C. Finite-range interaction effect

The above analysis for BTBG plasmon dispersion is based
on Eq. (3), where we take the electronic interaction V (r) as the
long-range Coulomb form V (r) = e2

4πε0εr r , and V (q) = e2

2ε0εr q

FIG. 5. Energy loss function calculated by RPA results [Eqs. (10)
and (11)] for θ = 3.89◦, �z = 0.06 eV, and Fermi energy located
at (a) μ = 0 meV, (b) μ = 15 meV, (c) μ = 30 meV, and (d) μ =
45 meV. The red solid line is the plasmon spectrum calculated
by using the Lindhard model obtained long-wavelength plasmon
formula [Eq. (8)]. The inset displays the band structure, and the
corresponding Fermi energy indicated by the red dashed line.

is the corresponding Fourier transform. However, in actual
one- [32] or two-dimensional materials [33], the polarizable
background leads to a screened finite-range interaction. In
two-dimensional materials, the impact of a finite-range in-
teraction can be described by replacing the long-range 1/r
Coulomb interaction with the 2D Keldysh potential [34,35]
or Yukawa interaction [36]. Here, for simplicity, we choose
the Yukawa interaction,

V (r) = e2

4πε0εr

e−γ r

r
, V (q) = e2

2ε0εr

1√
q2 + γ 2

, (18)

which has a screening parameter γ , and V (q) is the cor-
responding Fourier transform of V (r). As we can see, in
the γ → 0 limit the interaction reduces to the long-range
Coulomb interaction, while at γ → ∞ it approximates the
properties of a hard-sphere interaction. The finite screening
parameter γ can also be regarded as a Thomas-Fermi wave
vector [36]. In BTBG, we obtain the screening parameter γ

(Thomas-Fermi wave vector) as

γ = e2

2ε0εr
�(q → 0, ω = 0) = e2

2ε0εr

�z

πv2
, (19)

where the polarizability [�(q → 0, ω = 0)] is independent of
carrier concentration (n). Clearly, within this approximation
the impurity potential is completely screened out within a
distance of the order of the inverse of Thomas-Fermi wave
vector γ .

Therefore, the long-wavelength plasmon dispersion under
a finite-range interaction is of the form

ω =
√

e2

2ε0εr

�z

4π

q[
q2 + (

e2

2ε0εr

�z

πv2

)2]1/4
≈ 1√

2
vq. (20)
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As we can see in the equation, although the finite-range in-
teraction leads to a linear plasmon dispersion (ω ∝ q), the
plasmon energy is still independent of the carrier concentra-
tion (n).

IV. CONCLUSION

We investigate the dynamical dielectric function of biased
twisted bilayer graphene (BTBG) within the random phase
approximation (RPA). We find that the perpendicular elec-
tric field can remove the degeneration of the graphene Dirac
cone and give rise to a Dirac energy difference �z between
the two Dirac points at the same valley. When the Fermi
energy μ (which is decided by the carrier concentration n)

is located in the regime μ < �z/2, we surprisingly find that
the long-wavelength plasmon dispersion is independent of
carrier concentration (n) and also does not rely on the specific
value of the Fermi energy (μ). The long-wavelength plas-
mon dispersion in this regime (μ < �z/2) can be described

by a simple formula, ω =
√

e2

8πε0εr

√
�z

√
q. When we take

the finite-range interaction into account, the long-wavelength
plasmon dispersion is still independent of carrier concentra-
tion (n).
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APPENDIX

Here, we use the Lindhard model to derive the long-wavelength polarizability Re �(q → 0+, ω) and plasmon spectrum for
biased twisted bilayer graphene (BTBG).

Since the deviated double Dirac cone [blue and red cone shown in Fig. 1(b)] is decoupled, we can obtain the polarizability for a
different Dirac cone �±(q, ω) separately and the total polarization function can be written as �(q, ω) = �+(q, ω) + �−(q, ω).
Due to the electron-hole symmetry in each Dirac cone system, the polarization function for the Fermi energy located above or
lower than the Dirac points shows the same dynamics. Here, we only deduce one Dirac cone contributed polarizability, which is
a function of μ+ (defined in the main text) for the upper Dirac cone. We can easily get the polarizability for the lower Dirac cone
by substituting μ+ with μ−. Under a long-wavelength limit q → 0+, the Lindhard model shown in Eq. (5) can be simplified to

�+(q → 0+, ω) = 1

4π2

∫
d2k

−q · ∇ f [E (k)]

ω − q · ∇E (k)

= − 1

4π2ω

∫
d2k

{(
qx

∂ f [E (k)]

∂kx
+ qy

∂ f [E (k)]

∂ky

)
+ v

ω

(
qx

kx

k
+ qy

ky

k

)(
qx

∂ f [E (k)]

∂kx
+ qy

∂ f [E (k)]

∂ky

)}
.

(A1)

In above equation, we have∫
d2k . . .

∂ f [E (k)]

∂kx
=

∫
d2k . . .

∂ f [E (k)]

∂E (k)

∂E (k)

∂kx
=

∫
d2k . . . δ[μ+ − vk]

kx

k
=

∫ ∞

0
δ[μ+ − vk]kdk

∫ 2π

0
dθ . . . cos θ (A2)

and ∫
d2k . . .

∂ f [E (k)]

∂ky
=

∫ ∞

0
δ[μ+ − vk]kdk

∫ 2π

0
dθ . . . sin θ. (A3)

By substituting Eqs. (19) and (20) into Eq. (18), we find that the first term shown in Eq. (18) equals zero,
∫

d2k(qx
∂ f [E (k)]

∂kx
+

qy
∂ f [E (k)]

∂ky
) = 0, and the integrate result is

�+(q → 0+, ω) = q2

4πω2
μ+. (A4)

By substituting μ+ with μ−, we get

�(q → 0+, ω) = q2

4πω2
(μ+ + μ−) = q2

4πω2
�z. (A5)
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