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Topological metal phases in irradiated graphene sandwiched by asymmetric ferromagnets
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The ill-defined Chern number and disappearing topological edge states make it difficult to characterize the
topological properties of a metal. In this work, we investigate the abundant topological phases of monolayer
graphene, which is sandwiched by asymmetric ferromagnets and irradiated by off-resonant light. In this system,
there exist some rarely noticed metal phases, which are spin-valley polarized metal, topological spin metal
(TSM), spin half metal, and topological spin half metal (TSHM). Particularly, for the TSM, the subband with
spin up or spin down is topological, but the whole state becomes a metal. For the TSHM, a subband with
one spin is topological, while the other subband with the opposite spin is insulated, and the whole state is
a spin half metal. As a consequence, one topological protected spin current flows on the edge and the other
spin propagates in the bulk. Further calculations indicate that the Berry curvatures for the metal phases are
nonzero. We propose to probe the topological properties of the metal states with the anomalous Nernst effect.
For these topological phases, spin and valley splitting and flip can be obtained by modulating the Fermi level. An
electrically or magnetically controlled switch is designed by a two-terminal TSHM junction. It is expected that
these topological metal phases can broaden the band engineering in monolayer graphene and support a promising
platform for the studies of spin and valley caloritronics.
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I. INTRODUCTION

Since the first fabrication of monolayer graphene in
2004, there have been endless investigations focused on
Dirac electrons [1,2]. The results cover topics from me-
chanics, transport, etc., to topology in both theory and
experiment [3–6]. In particular, the novel electronic properties
in graphene have promoted the development of other low-
dimensional materials such as heavy group-IV monolayers,
molybdenum disulfide, and van der Waals heterojunctions
composed of different materials [7–12]. Except for mod-
ern electronics and spintronics [13,14], the valley degree of
freedom in graphene has resulted in a new discipline, i.e.,
valleytronics [15,16]. For a long time, due to the very tiny
spin-orbit coupling strength, which is about 10−3 meV, the
topological properties in graphene have been difficult to ob-
serve. Most research on external field modulated topological
phases has concentrated on graphenelike materials, such as
silicene, germanene, and stanene, which have sizable spin-
orbit couplings of about 3.9, 43, and 100 meV, respectively
[10,17–19]. How to realize abundant topological phases in
monolayer graphene remains an interesting topic.

For the topological phases of two-dimensional materials,
the most familiar and attractive topological states are quantum
spin Hall (QSH) phases, quantum valley Hall (QVH) phases,
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and the quantum anomalous Hall (QAH) phase [3,10,17–20].
The most common methods to characterize these topologi-
cal phases are to either find the edge states in nanoribbons
or calculate the Chern numbers of these systems [21,22].
However, for the metal state, there are no topological edge
states and the Chern number is ill defined. Whether a metal
state has topological properties is usually ignored, and how
to characterize a topological metal state seems difficult. It has
been known that the transverse current, which is related to
the Berry curvature, is also a sign of a topological transition
[23–25]. In addition, the intrinsic multidegrees of freedom
in graphene, including charge, spin, and valley, contribute to
many fascinating phenomena, such as the bipolar spin-valley
diode effect, spin and valley Seebeck effect, etc. [26–28]. How
to conveniently control these degrees of freedom and design
applications in quantum information and low consumption
circuits are still challenging issues [29].

In this work, we investigate the topological phases and
peculiar spin- and valley-dependent anomalous thermoelectric
transport properties of monolayer graphene, which is sand-
wiched by asymmetric ferromagnets and irradiated by an
off-resonant light. In the process of band evolution by ex-
ternal parameters, a controllable phase diagram is presented.
There exist abundant topological phases, such as spin-valley
polarized metal (SVPM), topological spin metal (TSM), spin
half metal (SHM), topological spin half metal (TSHM),
and quantum valley Hall–quantum anomalous Hall insulator
(QVH-QAHI), which are special and rarely researched in
monolayer graphene. For the TSM, the two subbands with
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FIG. 1. Schematic of our proposed model, where the graphene
monolayer on a BN/SiC substrate is irradiated by an off-resonant
light and sandwiched by two asymmetric ferromagnetic layers (FM-
1 and FM-2). A temperature gradient ∇T is applied along the x
direction.

opposite spins are all topological, but the bulk state is a metal.
For the TSHM, a subband with one spin is topological, but
the other subband with the opposite spin is insulated, and
the bulk state of the whole band is a spin half metal. More
different, when the Fermi level lies in the gap of one spin
subband, the currents with different spins are separated spa-
tially. Moreover, it is found that although the edge states and
Chern number can only poorly characterize the topological
metal and half metal, the Berry curvatures are still nonzero.
We further investigate the anomalous Nernst effect under the
modulation of the Fermi level. The deflection of the Nernst
current is dependent on the Berry curvature and the index
of the conduction or valence band. Taking advantage of the
various topological phases, the spin and valley splitting, spin
flip, and electrically or magnetically controlled on-off switch
can be flexibly realized.

The paper is organized as follows. In Sec. II, we con-
struct the model and introduce the system Hamiltonian. In
Sec. III, we present the phase diagram, determine the phase
boundaries, and concentrate on several particular topological
metal phases. In Sec. IV, we consider the Berry curvature and
anomalous thermoelectric transport properties. In Sec. V, a
possible application about the topological phase in spin and
valley caloritronics is designed. Finally, in Sec. VI, a summary
is given of the whole work.

II. MODEL HAMILTONIAN

We consider an epitaxial monolayer graphene in the xy
plane; a schematic is shown in Fig. 1. Under the modulation of
external fields, including the substrate potential, light irradia-
tion, and magnetic interaction, the tight-binding Hamiltonian
of monolayer graphene is written as

H = −t
∑

〈m,n〉σ
c†

mσ cnσ + λz

∑
mσ

μmc†
mσ cmσ

+ i
λ�

3
√

3

∑
〈〈m,n〉〉σ

σνmnc†
mσ cnσ + M

∑
mσ

c†
mσ τχσzcmσ , (1)

where the operator c†
mσ (cmσ ) represents the creation (annihi-

lation) of one electron with spin σ at site m, and 〈m, n〉 and
〈〈m, n〉〉 run over all the nearest- and next-nearest-neighbor

hopping sites, respectively. In Eq. (1), the first term is
the nearest-neighbor hopping with the hopping energy t =
2.97 eV. The second term is the staggered sublattice potential,
which can be induced by a hexagonal boron nitride (hBN) or
SiC substrate. It should be noted that due to the 1.8% mis-
match of lattice constants between graphene and hBN, a long
wavelength moiré pattern can appear in a large size. Consider-
ing the finite size of graphene nanoribbons and the low-energy
transport at the Dirac cones, the zero relative rotation is as-
sumed and lattice mismatch is neglected. In experiment, it has
been realized that graphene can align with the underlying hBN
lattice within an error of less than 0.05◦ [30,31]. μm = ±1
indicates that the site m lies on the A or B sublattices. The
third term is the Haldane term, which can be induced by the
off-resonant irradiation [19,25,32]. The irradiation parameter
λ� = ξe2A2v2

F/h̄� with e the electron charge, A the ampli-
tude, � the frequency of the light, and ξ = +1(−1) the right
(left) circulation of light. νmn = +1(−1) represents that the
next-nearest-neighbor hopping is anticlockwise (clockwise).
The fourth term represents the exchange magnetization com-
ing from two asymmetric ferromagnets, and the monolayer
graphene is intercalated between them [27,33]. Some ex-
perimental proposals indicate that the ferromagnetic Co/Ni
or the EuS and YIG films can be used as good candidates
[34–36]. Except for the sandwiched structure, another method
of absorbing two different transition metals to the A and B
sublattices is also proposed to realize the exchange fields [17].
M is the strength of the exchange field. σz is the z component
of the Pauli matrix in spin subspace. The 2 × 2 matrix τχ

describes the asymmetry of the ferromagnets. It can be written
as

τχ =
(

1 0
0 χ

)
. (2)

When χ = 1(−1), it is a ferromagnetic (antiferromagnetic)
exchange field. Otherwise, it is mixed by both cases.

The next-nearest-neighbor tight-binding model is usually
used to calculate the band structure of a nanoribbon and to
exhibit the edge states. In order to further analyze the physics
of the electronic behavior near the Dirac cones, the effective
four-band low-energy Hamiltonian can be written as

H = h̄vF(ητxkx + τyky) + λzτz + ηλ�τz + Mτχσz, (3)

where vF = 106 m/s is the Fermi velocity of graphene, and
h̄vF = √

3at/2, with a the lattice constant, τx,y,z and σz are
the Pauli matrices of the sublattice pseudospin and real spin,
k = (kx, ky) is the wave vector, and η = 1(−1) denotes the
index of the K (K ′) valley.

By solving the Schrödinger equation, eight spin- and
valley-dependent bands in the energy spectrum can be ob-
tained as

En(k) = 1

2

[
σM(1 + χ ) + n

√

2

σ,η + 4h̄2v2
Fk2

]
, (4)

where n = +(−) denotes the conduction(valence) band, and
σ = +(−) denotes spin up (spin down). The term 
σ,η can
be viewed as the spin- and valley-dependent band gap at the
Dirac cone, which is given as


σ,η = σM(1 − χ ) + 2(λz + ηλ�). (5)
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For each spin-resolved subband, the size of the band gap is
given by |
σ,η|. It is located at the K and K ′ valleys and
closed when 
σ,η = 0. However, for the whole energy band,
the conductive property depends on Eq. (4), where the term
M(1 + χ ) breaks the electron-hole symmetry of each spin
subband.

Before proceeding with the above results, we should
present a more detailed description of the off-resonant light.
When the light frequency is off resonant, it does not excite
electrons directly and instead modifies the band structure
effectively by virtual photon processes. The off-resonant
condition requires that the frequency is high, and h̄� � t .
Compared with the effective Hamiltonian of a periodically
driven system in the Brillouin-Wigner expansion, the strength
of the next-nearest-neighbor hopping term should written as

− t̃2

�

∑
n �=0

J 2
n (A)
n sin 2πn

3 , where t̃ = tJ0(A) is the renormal-
ized hopping energy, Jn(A) is the nth Bessel function of
the first kind, and A = eaA/h̄ is a dimensionless number
[37]. It describes the multiphoton processes. In the weak field
and high-frequency regime, it just corresponds to the single-
photon process (n = 1) proposed by Kitagawa et al., and the
higher-order terms are suppressed by A2 [32]. To simplify,
in our model we consider the low-intensity limit, A2 	 1.
The effective Hamiltonian of off-resonant light in this case
is simply the Hamiltonian proposed by Haldane [32,38].

In addition, it can be understood that the effective mass
term from the exchange field M and inversion symmetry
breaking term λz actually should be renormalized under an
off-resonant electromagnetic field [39]. In the case of high-
frequency light irradiation, the effective band gap can be
renormalized into


̃σ,η = σM(1 − χ )+2λz√
1 + ( 2evFA

h̄�

)2
+ηξ h̄�

⎡
⎣

√
1 +

(
2evFA

h̄�

)2

−1

⎤
⎦,

(6)
where the first term comes from the exchange field and stag-
gered potential, and the second term is a light-induced band
gap. 1/

√
1 + (2evFA/h̄�)2 can be viewed as the renormalized

factor of the exchange field and staggered potential. Com-
pared with Eq. (5), when (2evFA/h̄�)2 is much less than 1,
i.e., the laser light has low amplitude and high frequency,
the band gap can be approximated by 
̃σ,η = 
σ,η. For the
sake of the requirement of off-resonant light in graphene, the
frequency needs to satisfy h̄� � t , and the frequency is not
less than 3500 THz. If we adopt the lowest frequency � ≈
3500 THz in the soft x-ray regime, the amplitude of the vector
potential A = 2.4 × 103 V s/m, the gap induced by the off-
resonant light can reach about 50 meV, and (2evFA/h̄�)2 ≈
0.04 is smaller than 1 by about two orders of magnitude.
Hence, the renormalized effect on the exchange field and
staggered potential is ignored in our case. From Eq. (6),
we can find that if the term evFA/h̄� is large, the effective
mass term from the exchange field and staggered potential
becomes small, the light field plays the main role, and some
topological metal phases will disappear. For exhibiting the
abundant topological phases, we choose the approximation
A2 	 1 and high frequency h̄� � t for the off-resonant light.
In this approximation, we obtain the Hamiltonian of Eqs. (1)

and (3), where the exchange field and inversion symmetry
breaking term are not affected by the light.

III. PHASE DIAGRAMS AND TOPOLOGICAL PHASES

By applying different fields to monolayer graphene, vari-
ous topological phases are found, and the phase diagrams in
the λ�-M plane are summarized in Fig. 2. We fix the staggered
potential λz = 0.1 eV, and tune the irradiation parameter λ�

and exchange-field strength M in three different cases: χ = 1,
χ = 0, and χ = −1. For actual parameters of the staggered
potential, previous investigations show that a band gap about
53 meV can be opened in graphene on hBN [40,41]. When
graphene is epitaxially grown on a SiC substrate, a band gap of
about 0.26 eV can be reached [42]. Edge states can be clearly
shown in the energy structure, when the staggered potential
is reasonably chosen as λz = 0.1 eV. It can be verified that if
we reduce the staggered potential and modulate other external
fields correspondingly, the phase diagrams are maintained.
The heavy lines in the phase diagrams are the phase bound-
aries, which could be derived based on the low-energy Dirac
theory.

Considering the topological properties, the phase bound-
aries are partly determined by the spin-resolved subband gap.
They are given as

M(1 − χ ) + 2σ (λz + ηλ�) = 0. (7)

For the bulk state, when the band gaps from the same valley
but different spins are closed, an insulating and metallic phase
transition occurs. The phase boundaries depend on the equa-
tion, which can be analytically written as

M(1 + χ ) + 2σ (λz + ηλ�) = 0. (8)

In addition, if the conduction and valence bands from different
valleys are mixed, the metal state can also appear, and the
boundaries are given as

M(1 + σ ) + Mχ (σ − 1) = −2σλz

if 
σ,1 � 0 and 
−σ,−1 � 0, (9a)

M(σ − 1) + Mχ (σ + 1) = 2σλz

if 
σ,1 � 0 and 
−σ,−1 � 0, (9b)

M(1 + χ ) = −2λ�

if 
σ,1 � 0 and 
−σ,−1 � 0, (9c)

M(1 + χ ) = 2λ�

if 
σ,1 � 0 and 
−σ,−1 � 0. (9d)

It could be noted that when χ = 0, the dashed lines M =
±2λz in the purple region of Fig. 2 distinguish the valley-
locked TSHM and valley-mixed TSHM. Between the two
lines, they are the valley-locked TSHMs. Above M = 2λz and
below M = −2λz, they are the valley-mixed TSHMs.

To show the topological phases, some typical band struc-
tures of graphene nanoribbons with zigzag edges are shown
in Fig. 3, where the band structures in Figs. 3(a) to 3(i) cor-
respond to the marked points in Fig. 2. The characteristics of
the various topological phases are summarized in Table I. For
a topological insulator, the spin- and valley-dependent Chern
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FIG. 2. The phase diagrams with different χ in the λ�-M plane. The staggered potential λz is fixed as 0.1 eV. The heavy lines denote the
phase boundaries.

number Cσ,η can be derived as

Cσ,η = −η

2
sgn(
σ,η ). (10)

Four independent Chern numbers are used to characterize
the topological phases, which are the charge Chern num-
ber Cc, spin Chern number Cs, valley Chern number Cv,
and spin-valley Chern number Csv. They can be defined
as Cc = ∑

σ,η Cσ,η, Cs = ∑
σ,η σCσ,η, Cv = ∑

σ,η ηCσ,η, and
Csv = ∑

σ,η σηCσ,η, respectively.
For Figs. 3(a) and 3(d), they are quantum valley Hall

insulators (QVHIs) [17,18], whose Chern numbers are
[0, 0,−2, 0]. In these phases, the staggered potential λz,
which breaks the inversion symmetry, plays a significant role

FIG. 3. The band structures of a zigzag graphene nanoribbon in
different external fields corresponding to the points (a)–(i) labeled in
the phase diagrams of Fig. 2. The width of the nanoribbon is 512
atoms. The blue (fuchsia) color denotes spin up (down).

on the QVHI. In order to check the effect of the staggered
potential on the QVHI clearly, we plot the band structures
when λz = 0 in Fig. 4 as a contrast. Comparing their band
structures, the QVHI phases are violated and turn into the
SVPM, SHM, and QAHI, respectively. Differently, the spin
polarization is modulated by χ . When the Fermi level lies
in the gap, neither edge nor bulk currents appears, but a
transverse valley current exists. Compared with the quantum
spin-valley Hall insulator (QSVHI) in Fig. 3(g), whose Chern
numbers are [0, 0, 0,−2], although the band structures are
similar, the spin- and valley-dependent transverse currents are
different. The QSVHI has not been extensively investigated in
monolayer graphene, but the topological properties are akin
to those in silicene [17]. In the right and left (the parts with
pale-turquoise color) of each phase diagram in Fig. 2, the
off-resonant light plays the main role; they are the QAHIs
with the Chern numbers being [−2, 0, 0, 0] [19,25]. It can
be seen from Fig. 3(h) that topological edge states exist. For
Figs. 3(b) and 3(c), from their bulk band structures, both are
a SVPM state. However, with regard to the latter, the bands
for each spin are a topological insulator, which is called the
TSM state. When χ = 0, it is a critical case. The subband
of one spin is in contact with the subband of the opposite
spin, and the gap is closed. As shown in Figs. 3(e) and 3(f),
they are SHM and TSHM. Different from the traditional half

TABLE I. Topological phases and their characteristics. Yes (No)
means that the corresponding topological phase has (has not) been
mentioned before.

Topological Chern numbers Edge and/or
phases [Cc, Cs, Cv, Csv] bulk state Silicene Graphene

QVHI [0,0,−2,0] Neither Yes Yes
QAHI [−2,0,0,0] Edge Yes Yes
QSVHI [0,0,0,−2] Neither Yes No
QVH-QAHI [−1, −1, 1, −1] Edge Yes No
SVPM None Bulk Yes No
TSM None Bulk No No
SHM None Bulk Yes No
TSHM None Both No No
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FIG. 4. The band structures of a zigzag graphene nanoribbon
when the staggered potential λz = 0. The other parameters in the
three subgraphs are the same as those in the QVHI phases in Fig. 2,
which are marked by points (a), (d), and (j), respectively.

metal where the gap is closed with the same spin, the gap
in spin half metal is closed with different spins [43]. When
χ = −1 in Fig. 2, there is no metal state, and all the half metal
states when χ = 1 are transited into insulating states. One
special state is the QVH-QAHI, whose Chern numbers are
[−1,−1, 1,−1]. From the band structure in Fig. 3(i), it can be
seen that the subband with one spin is a topological insulator,
and the subband with the opposite spin is a band insulator.
It is different from the edge states in the QAHI of Fig. 3(h),
where the subbands with both spins are the QAHIs. For these
topological phases, we do a survey to see whether they have
been found in monolayer graphene before, and compare the
results with those in silicene. It should be noted that although
the SVPM and SHM have been mentioned in silicene [18,27],
the topological properties and anomalous Nernst transport
have not been investigated. Some topological metal states will
be impeded by the Rashba spin-orbit coupling [18].

Aiming at some specific cases, we further investigate the
edge and bulk modes. The schematics of the edge and bulk
states are illustrated in Figs. 5(a)– 5(f), where the directions
of the arrows denote the current moving directions. The Fermi
levels are marked in Figs. 3(b), 3(c), 3(e)–3(g), and 3(i). For
the SVPM in Fig. 3(b) and TSM in Fig. 3(c), both of the bulk
states are valley-polarized metal. Considering the position of
the Fermi level, the contributions of the currents are from two
valleys for the SVPM, and only the K ′ valley for the TSM, as
shown in Figs. 5(a) and 5(b). The current from the bulk state

FIG. 5. Schematics of the edge and bulk states for some special
phases corresponding to those in Figs. 3(b), 3(c) 3(e)–3(g), and 3(i).
The thick solid arrows represent the currents flowing in the bulk,
while the thin dashed arrows represent the edge states propagating
at the edge. The arrows labeled on the balls denote the spin up and
down.

is completely valley polarized in the TSM. Since the electrons
participating in the transport come from the conduction band
with spin up and valance band with spin down, the currents
with spin up and spin down are reversed, and a pure spin cur-
rent can be realized. With regard to the SHM in Fig. 3(e), the
bulk currents are 100% spin polarized, as shown in Fig. 5(c).
When the system lies in the TSHM phase, such as in Fig. 3(f),
the subband with spin down is a topological insulator. When
the Fermi level is located in the gap, there exist topological
edge states with spin down. Hence, the current with spin down
flows on the edge; the current with spin up contributes to the
bulk transport. The schematic is shown in Fig. 5(d), where the
spins are spatially isolated. For the QAHI and QVH-QAHI in
Figs. 3(g) and 3(i), when the Fermi level lies in the gap, there
is no current from the bulk state and only an edge current
appears. For the QAHI, they are chiral and spin degenerate,
which is shown in Fig. 5(e). The edge state for QVH-QAHI
is completely spin polarized, which can be clearly seen in
Fig. 5(f).

IV. BERRY CURVATURE AND ANOMALOUS
NERNST EFFECT

For topological insulators, the topological Chern numbers
(Cc,Cs,Cv,Csv) or edge states can be used to characterize
them. However, because of no gap in the metal state, the Chern
number is ill defined and the edge states disappear. We fur-
ther study the Berry curvature and anomalous Nernst effect,
which can also be viewed as a characteristic of topological
properties. Because the spin is a good quantum number in
this system, the four normalized spinor wave functions can
be written as

�1,2(x) = 1/
√

C2 + 1(Ce−iηθ , 0, 1, 0)Teik·r, (11a)

�3,4(x) = 1/
√

C2 + 1(0,Ce−iηθ , 0, 1)Teik·r, (11b)

where

C =

σ,η ±

√

2

σ,η + 4k2

2ηk
, (12)

θ = arctan(ky/kx ) is the azimuthal angle of wave vector k,
and r = (x, y) is the position vector. It can be seen from the
eigenstates in Eqs. (11a) and (11b) that the wave functions
depend on the spin- and valley-dependent effective mass 
σ,η.

The Berry curvature is defined by �n(k) = ∇k ×
〈un(k)|i∇k|un(k)〉 = �n(k)z, where |un(k)〉 is the periodic am-
plitude of the wave function of the nth band, and z is the unit
vector in the perpendicular direction. The Berry curvature can
be obtained as

�n(k) = −nη
2h̄2v2

F
σ,η(
4h̄2v2

Fk2 + 
2
σ,η

)3/2 . (13)

From the above equation, one can find that the Berry curvature
also depends on the band gap of the spin-resolved subband,
but is robust against the term σM(1 + χ ) in Eq. (4), which
moves the bands upward or downward.

The Berry curvatures of several topological phases corre-
sponding to Figs. 3(b), 3(c) 3(e), 3(f), and 3(i) are shown in
Fig. 6. Obviously, even though the system is a metal, the Berry

045416-5



YAFANG XU, JUNSHU MA, AND GUOJUN JIN PHYSICAL REVIEW B 104, 045416 (2021)

FIG. 6. Berry curvatures of the conduction band electrons for
different topological phases. The Berry curvature in the vertical axis
is in units of 3a2/4; the wave vector in the horizontal axis is in
units of 2/

√
3a. The parameters in (a)–(e) correspond to those in

Figs. 3(b), 3(c) 3(e), 3(f), and 3(i), respectively. The left (right)
column represents the Berry curvature of the K (K ′) valley. The blue
solid (red dashed) line denotes the Berry curvature with spin up
(down).

curvature is nonzero. For the SVPM and SHM states, the
Berry curvatures in different valleys are reversed. For the TSM
state, all the Berry curvatures with different valleys and spins
are homodromous. For the TSHM state, the Berry curvature
with spin up at the K valley is reversed. The finite Berry
curvatures in the TSM and TSHM are obviously distinct from
conventional metal, where the Berry curvature is zero [20].
For the QVH-QAHI state, the Berry curvatures with same
spin at the K and K ′ valleys have the same sign, while those
with opposite spins at different valleys have opposite signs.
For same spin, it is a QVHI. For opposite spins, it is a QAHI.

To exhibit the measurable properties, we further investi-
gate the anomalous Nernst effect, where a transverse electric
current is generated by applying a longitudinal temperature
gradient. It has been known that if a nonzero Berry curvature

exists, the group velocity of a Bloch electron will obtain
a transverse velocity component, ṙ = ∂En(k)

h̄∂k + e
h̄ E × �n(k),

where En(k) is the nth band energy and E is the external
longitudinal electric field [23]. The Berry curvature �, which
plays an analogous role of a real magnetic field, is the origin
of the anomalous Nernst effect. Considering the self-rotation
of the wave packet and the topological effect of the Berry
curvature, the transverse Nernst current Jn in the presence of
a temperature gradient can be written as

Jn = −∇T

T

∑
n

e

h̄

∫
dk

(2π )2
�n{[En(k) − EF] fk

+ kBT ln(1 + e− En (k)−EF
kBT )}. (14)

Here, fk = 1/[1 + e[En(k)−EF]/kBT ] is the Fermi distribution
function, EF is the Fermi energy, and the sum is taken over
the conduction and valence bands.

According to the relation Jn = αn(−∇T ), the anomalous
Nernst conductivity can be extracted. After some derivations,
it can be written into a more simplified form,

αn = − ekB

4h̄π2

∑
n

∫
[ fk ln fk + (1 − fk ) ln(1 − fk )]�ndk.

(15)

In the numerical calculations, we set the temperature kBT =
2.5 meV, and the unit of the Nernst conductivity is ekB/h =
3.33 nA/K. We plot the Nernst conductivity in Figs. 7(a)–
7(e), which correspond to the five particular topological
phases. The irradiated off-resonant light is right circularly
polarized. The range of the Fermi level is selected in
[−0.1, 0.1] eV. When the energy is larger than the Fermi level
by several kBT , the opportunity of the states contributing to
the transport is very small. The electrons near the Fermi level
play the main role for the Nernst conductivity.

The spin-valley-dependent and total Nernst conductivities
in different topological phases are shown in Fig. 7. The total
Nernst conductivity is the sum of all the spin and valley
components. In experiment, the total Nernst conductivity can
be directly observed by transverse measurement, while the
spin- or valley-resolved Nernst currents can be detected by a
Hall bar geometry via the inverse spin or valley Hall effect in
accordance with the recent experimental results [44–46]. For
the SVPM and TSM states, part of the particles contributing to
the transport comes from the conduction band with spin down,
and the other part comes from the valence band with spin up.
It is different from the traditional topological insulator, where
the electrons contributing to the transport are from the conduc-
tion or valence band simultaneously. Although the bulk states
are similar, a remarkable difference exists in the Berry curva-
ture, as can be seen in Figs. 6(a) and 6(b). As a consequence,
the Nernst conductivities in the SVPM are spin and valley
polarized, while the Nernst conductivities in the TSM with
spin down and spin up are reversed, as shown in Figs. 7(a) and
7(b). To be noticed, the total Nernst conductivity in Fig. 7(a)
is spin and valley mixed, while in Fig. 7(b), the total Nernst
conductivity is 100% valley polarized. The Nernst conductiv-
ities in the TSM are from the K ′ valley. The valley-locked
spin splitting is realized. If the system situates in the SHM,
the directions of the Berry curvatures in different valleys are
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FIG. 7. Anomalous Nernst conductivity as a function of the Fermi level. The parameters in (a)–(e) correspond to those in the topological
phases SVPM, TSM, SHM, TSHM, and QVH-QAHI in Figs. 3(b), 3(c) 3(e), 3(f), and 3(i).

opposite, but the bulk state with spin down contributes to the
transport. The Nernst conductivity with spin up is zero, and
the ones with spin down in different valleys are reversed; the
total Nernst conductivity in Fig. 7(c) is zero, but spin-locked
valley splitting can be achieved. For the single-valley TSHM,
the state with spin up is a band insulator, while the state with
spin down is a topological insulator. As plotted in Fig. 6(d), for
the conduction band, the Berry curvatures with different spins
at the K ′ valley are inverted. When the Fermi level locates
near the zero energy, the contributions to the Nernst conduc-
tivity are from the electrons in the conduction band with spin
down and the valence band with spin up. Hence, the Nernst
conductivities are homodromous. Interestingly, the spins of
the Nernst current are flipped as a function of the Fermi level,
and the total Nernst conductivity are 100% spin and valley
polarized when the absolute value of the Fermi level is large,
which can be seen in Fig. 7(d). For the QVH-QAHI, the elec-
trons referred to the anomalous Nernst conductivity are from
the conduction or valence bands simultaneously. The sign of
the Nernst conductivity is the same as the Berry curvature.
As shown in Fig. 7(e), spin-locked K and K ′ valley electrons
contribute to the Nernst conductivities, and the total Nernst
conductivity is fully spin polarized. When the Fermi level is
larger (smaller) than the zero energy, the Nernst conductivity
is negative (positive). The spin and valley can be selected
by changing the external fields. Moreover, it can be found
although the signs of the Berry curvatures in the TSHM and
QVH-QAHI are the same in Fig. 6, the anomalous transverse
transport properties are very different due to the insulating or
metallic bulk states.

V. EXTERNAL FIELD MODULATED SWITCH

As an application, for the specific band structure of the
single-valley TSHM, we propose to realize an electrically or
magnetically modulated switch with a two-terminal junction,
which is schematically shown in Fig. 8(a). The junction is
composed of TSHM1 and TSHM2, where the parameters of
the external fields in regions I and II are different. The source-
drain device can be driven by a temperature or electric bias.
When the two parts of the junction are the same, the electrons
can be transmitted obviously. The matched band structures are
illustrated in Fig. 8(b) and the switch remains on state.

Three methods can be designed to obtain the off state by
utilizing the TSHM flexibly. For the first one, one can attach
a gate voltage on region II, and then the potential barrier of

the height is V . Once the potential barrier V > EF, the Fermi
level (dashed line) lies in the conduction band outside the
barrier and the valence band inside it. As a result of spin
mismatching, the transmission is low (off state), which can be
seen from Fig. 8(c). For the second one, without gate voltage,
the off state can be realized by reversing the magnetization
of the ferromagnetic substrates. The energy spectrum has the
relation E (σ, M ) = E (−σ,−M ). When the magnetization in
region II M2 = −M1, the spins in the band exchange with
each other, and the transmission is also blocked, which can be
seen schematically in Fig. 8(d). At last, when the irradiation
parameter in region II λ�2 = −λ�1 by tuning the polarization
of the off-resonant light, the other parameters have no change,
E (η, λ�) = E (−η,−λ�), and the bands at different valleys
are exchanged, as shown in Fig. 8(e). Due to the valley mis-
matching, the electrons cannot be transmitted. By using of the
special energy spectrum of the TSHM, the on-off state can be
easily switched by tuning one of the external fields.

VI. CONCLUSIONS

In summary, we have investigated the various topological
phases in irradiated graphene with asymmetric ferromagnetic
fields. Particularly, we have concentrated on the often over-

FIG. 8. (a) Schematic of a two-terminal device composed of
TSHM1 and TSHM2 connecting to the source and drain as the ends.
(b)–(e) Band alignments of the junction. (b) The parameters in the
two regions of the junction are the same. (c) M1 = M2, λ�1 = λ�2,
the gate voltage in region II V > EF. (d) M1 = −M2, λ�1 = λ�2. (e)
M1 = M2, λ�1 = −λ�2. Dashed lines denote the Fermi levels; the
energy at the Dirac cone is set as the zero energy level. The on (off)
state represents that the electrons can be transmitted (blocked).
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looked topological properties of some special metal phases,
which are the SVPM, SHM, TSM, and TSHM. Different
from the traditional metal, the Berry curvatures in the topo-
logical metal phases are found to be nonzero. Because the
disappearing topological edge states in nanoribbons and ill-
defined Chern numbers make it difficult to characterize the
topological properties of a metal state, we study the anoma-
lous Nernst effect to distinguish them. The deflection of the
Nernst currents depends on the sign of the Berry curvature and
the bulk states of the metal phases. Furthermore, in this sys-
tem, valley-resolved spin splitting and flip, and spin-resolved
valley splitting, can be obtained. By utilizing some pecu-
liar topological phases, we have designed an electrically or
magnetically controlled on/off switch. These findings provide

another view to control the transport properties of spin and
valley in graphene with a specific metallic state, and they are
expected to be applied in future spin-valley caloritronics.
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