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Stacking and gate-tunable topological flat bands, gaps, and anisotropic strip patterns
in twisted trilayer graphene
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Trilayer graphene with a twisted middle layer has recently emerged as a new platform exhibiting correlated
phases and superconductivity near its magic angle. A detailed characterization of its electronic structure in the
parameter space of twist angle 6, interlayer potential difference A, and top-bottom layer stacking 7 reveals that
flat bands with large Coulomb energy versus bandwidth U/W > 1 are expected within a range of 4-0.2° near
6 ~ 1.5° and 6 == 1.2° for Ta top-bottom layer stacking, between a wider 1°—1.7° range for 745 stacking, whose

bands often have finite valley Chern numbers thanks to the opening of primary and secondary band gaps in the
presence of a finite A, and below 6 < 0.6° for all T considered. The largest U /W ratios are expected at the magic
angle ~1.5° when |A| ~ O meV for AA, and slightly below near ~1.4° for finite | A| ~ 25 meV for AB stackings,
and near 6 ~ 0.4° for both stackings. When 7 is the saddle point stacking vector between AB and BA we observe
pronounced anisotropic local density of states (LDOS) strip patterns with broken triangular rotational symmetry.
We present optical conductivity calculations that reflect the changes in the electronic structure introduced by the

stacking and gate tunable system parameters.
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I. INTRODUCTION

Research on the electronic structure of nearly flat bands
in moire materials has seen a recent surge of interest fol-
lowing experimental observation of strongly correlated and
localized Mott-like phases and superconductivity in magic
angle twisted bilayer graphene (tBG) [1-5] discussed by
electronic structure studies [6—8]. Research interests in ver-
tical van der Waals (vdW) heterojunctions [9-11] in search
of strongly correlated flat bands have expanded beyond the
twisted bilayer graphene [1-7,12—14], to include systems like
twisted double bilayer graphene (tDBG) [15-19], and various
forms of twisted trilayer graphene [20-35] including twisted
monolayer-bilayer graphene (tMBG) [20,22,26-34]. Unlike
the systems with a single moire twist interface like tBG,
tDBG, or tMBG, in twisted trilayer graphene with finite suc-
cessive interlayer twist angles we have two interfaces giving
rise to double moire patterns. When these moire patterns are
mutually incommensurate they give rise to supermoire pat-
terns [36-38], also called moire of moire patterns [24,39,40]
that can multiply the features in the electronic structure, while
strongest double moire interference happen for commensurate
patterns, exemplified by the large secondary band gaps in
graphene encapsulated by hexagonal boron nitride [38].

Commensurate double moire trilayer graphene with a mid-
dle layer twist [22,23,25-27,33,35,41-43], called here simply
twisted trilayer graphene (tTG), has emerged as a system of
renewed interest thanks to the observation of moire flat band
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superconductivity with a critical temperature higher than tBG.
[42-44] Earlier studies reported that the first magic angle
of tTG is larger by a factor +/2 than that of tBG [25-27]
and it was shown tight-binding models that nearly flat bands
accompany the linear dispersions at the K point in the moire
Brillouin zone (mBZ) that persists even when out-of-plane
lattice relaxation and perpendicular electric fields are present
[27,41]. Other earlier work based on continuum models have
analyzed the properties of tTG from various perspectives,
including the band topology [22], predominant metallic char-
acter [23], hierarchy of magic angles [25], and symmetry
analysis [35]. It was noted that the band structures vary con-
siderably depending on the relative stacking vector T between
top and bottom layers [26,33] that in the presence of out of
plane relaxations and electric fields shows metallic bands for
AA while a band gap opens for AB stackings [42,43]. Due
to the large parameter space of twist angles, electric fields and
stacking possibilities earlier work have reported the electronic
structure for select system parameters.

In this work, we present new calculations for the band-
widths and valley Chern numbers of the low energy nearly flat
bands in the continuous parameter space of twist angles 8 and
the interlayer potential difference A for different 7 stacking
vectors between top and bottom layers. Our detailed calcula-
tions show that it is possible to achieve nearly flat bands prone
to strong correlations in a relatively wide range +0.2° of twist
angles around the & = 1.5° magic angle and around 6 ~ 1.2°
in the presence of appropriate interlayer potential difference
A for AA top-bottom layer stacking, and in an even broader
1°-1.7° range if the top and bottom layers stacking is AB
(or equivalently BA) where a finite A can isolate the bands
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by opening primary and secondary gaps over a wide range
of parameters often leading to finite valley Chern numbers.
Additionally, we show the impact of stacking and electric
fields in the local density of states (LDOS) maps that can be
measured through scanning tunneling probes, and we present
linear optical conductivity calculations for select stacking
arrangements as a means to distinguish different electronic
structures. Anisotropic moire patterns can be obtained for
top-bottom layer sliding vectors that break the triangular ro-
tational symmetry and the stripe patterns are maximized for
the saddle point (SP) stacking vector suggesting that this type
of stripe phases could be favored when the system is subject
to uniaxial strains or to boundary conditions that alter the
stacking dependent energy landscape.

Our manuscript is organized as follows. In Sec. II,, we
introduce the model Hamiltonian, Sec. III is devoted to the
discussion of the electronic band structures for different in-
terlayer potential difference and stacking configurations, in
Sec. IV we discuss the numerical results of effective Coulomb
interaction for the two different stackings and the valley Chern
numbers, in Sec. V, we discuss the anisotropy of the LDOS for
nonsymmetric stackings, in Sec. VI, we report the numerical
results on the longitudinal linear optical conductivity, and in
Sec VII, we summarize our work.

II. MODEL HAMILTONIAN

The Hamiltonian of tTG with twisted middle layer can
be captured by twisting the top-bottom and middle layers in
opposite senses. The continuum model Hamiltonian for the K
valley is

h,; Ti(r) 0
Hec@) = Ty Kt D) | +V, (1
0 T (r)  h

where V = diag(—A, —A, 0, 0, +A, +A) is a 6 x 6 matrix
that captures the interlayer potential difference due to an ex-
ternal electric field where we assume the interlayer potentials
of A at the top and bottom layers.

In our model, for the bottom (b), the middle (m), and
the top (t) layers, hbi_mJ = h(£0/2) represents a 2 x 2 matrix
describing a Dirac Hamiltonian #(6 = 0) = vpp - o rotated

by 6 /2 which is given as
h(£60/2) = D' (£60/2) h() = 0) D(£60/2). 2)

The system conventions are similar to that in Ref. [15] for
tDBG and we use for the Fermi velocity vy = |to|v/3a/2h ~
10% m/s, which corresponds to an effective nearest neighbor
hopping term of o = —3.1 eV. Here D(¢) = exp(—i¢o,/2)
is in general a rotation operator for spin S = 1/2 and o, is the
z component of the Pauli matrices. The interlayer tunneling at
the ith interface is denoted as a 2 x 2 matrix 7;(r) given by

Try= Y ™9"T],. 3)

j=0,%
where my = (—1)* and q,, q,. are given as q, = 0kp(0, —1),
q. = 0kp(£+/3/2,1/2) when the twist angle 6 is small

enough. Here, kp = 4 /3a is equal to the length of one side
of the first Brillouin zone of single layer of graphene where

a =2.46 A. The interlayer tunneling matrix TYJY was first
formulated for the local-AB stacking in the twisted bilayer
graphene system in Ref. [7] and was generalized for other
initial stackings dictated by 7 in Ref. [8] as
i i @an  w@ape?

fh=e (wB,A’el'w 0): ¥4 @
where Gy = (0,0) and G+ = kp(—3/2, £+/3/2). Here, T =
(tx, Ty) is a relative sliding of the top layer with respect to
the bottom layer, and we define o’ = wa 4 = wpp, and w =
wa.p = wp a4, resulting in

0 o 4 o weT?
T" = (a) w/>7 "= <weii<p ' >v (5)
when 7 = (74, 7,) = (0, 0) for AA-stacking with ¢ = 27 /3.
When 7 = (0, a/ \/§) for AB stacking the 79 matrix remains
the same but 7% acquires a phase factor as follows
" W' e et
T = < w a)/e:Fi(p) ’ (6)
and when t = (0, 2a/«/§) or, equivalently, T = (0, —a/ \/3)
for BA stacking the matrix is conjugate transposed. The inter-
layer tunneling elements use the polynomial parametrization
of Ref. [15] relating inter- and intrasublattice hopping terms
@ = Aw* + Bw + C where A = —0.5506, B = 1.036, and
C = —0.02245 that is fitted to the exact exchange and random
phase approximation (EXX + RPA) interlayer energy minima
and local density approximation (LDA) interlayer tunneling,
and leads to different ' = 0.0939 eV and w = 0.12 eV when
effective out of plane relaxations are considered. Equal tun-
neling parameters ' = @ = 0.12 eV correspond to the rigid
model in the absence of relaxations, which are consistent
with the LDA values for the #; >~ 3w = 0.36 eV perpendicular
interlayer tunneling term in an AB stacked bilayer [45]. The
moire Hamiltonian is expanded in the basis of moire recip-
rocal lattice vectors within within a radius of four times the
nearest neighbor reciprocal lattice vector G, = kp# and we
have diagonalized 486 x 486 size matrices.

In (TG with aligned top and bottom layers we have
two moire interfaces with the same moire length Ly =
a/(2sin (6/2)). The magic angle given as 6 ~ 1.5° ~ V2 x
1.06° is enlarged with respect to the tBG value by a factor of
V2 following the renomalization of the interlayer tunneling
strength when we decompose the interaction of the outer
layers Dirac Hamiltonian with the middle layer [25-27]. The
T top layer sliding vector with respect to bottom layer is a
control knob that alters the electronic structure of our system.
For most cases we choose Tas = (0, 0) where top and bot-
tom layers are exactly on top of each other, Tag = (0, a/+/3)
where the top layer has a Bernal stacking-like displacement,
and the intermediate saddle point stacking Tsp = (0, a+/3/2)
is chosen as the representative broken rotational symmetry
system leading to clearest strip patterns. We interchangeably
refer to the AA and AB stacking of the top-bottom layers in
tTG with the sliding vectors Taa and Tap, see Fig. 1. The
local AAB stacking is generated by sliding the top layer by
T from the AAA stacking where all three layers are exactly
aligned on top of each other. Because the stacking sliding
geometry of the middle layer does not alter the resulting
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FIG. 1. (a) Schematic figure of the moire patterns in tTG where
the middle layer is twisted by an angle 6 and and the top layer
slides by 7 with respect to the bottom layer. (b) Schematic figure
for moire Brillouin zone (mBZ) with its high-symmetry points. The
high-symmetry line for Fig. 2 is plotted by the yellow dashed line.
For 6 = 1.5° we have a moire period of l;y = 9.59 nm. For (c) AA
(r, =0), (d) AB (7, = a/ﬁ), and (e) AS-starting stacking (t, =
av3 /2), Moire patterns (upper row), corresponding commensurate
stackings (middle row), and schematic diagram of atomic configura-
tions at & = 21.8° are shown at the (bottom row).

band structure after it is twisted we use the bottom and top
layer stacking labels to classify the different systems. When
we twist the middle layer by the magic angle 6 ~ 1.5°, see
Fig. 1, we can identify two overlaid patterns with equal period
~9.59 nm where a finite 7 introduces changes in the local
stacking maps. The black letters represent on top of the moire
patterns the local stacking geometries as shown schematically
in the second row. The AA-tTG has mirror symmetry with
respect to the middle layer as illustrated from the AAA, ABA,
and BAB local stacking configurations, while mirror symme-
try is broken in AB-tTG but an inversion center is present
for all twist angles, preserving in both cases the triangular
rotational symmetry of the moire patterns. All these sym-
metries are broken for intermediate T vectors away from the
symmetric stacking configurations, and this is illustrated for a
large commensurate twist angle & = 21.8° and three different
top layer sliding 7 vectors in the third row of Fig. 1.

III. ENERGY BANDS

The electronic structure of tTG strongly depends on sys-
tem parameters such as twist angle 6, the interlayer potential

difference A, and top layer sliding vector t. Here, our band-
width parameter space analysis for tTG shows that in addition
to the magic angle 6 ~ 1.5° the narrowest W are found for
zero or moderate values of A at a smaller twist angle near 6 ~
1.2° for Tpa, and near 6 ~ 1.4° for g, and for all considered
A and 7 when 6 < 0.6°. Sample electronic structure surface
plots and contours are shown in Fig. 2 for & = 1.5° near
the magic angle and in Figs. 3 and 4 we present continuous
parameter space sweeps of electronic structure features as a
function of 9, A and t.

In this work we focus our attention on systems with o’ # @
with @ = 0.0939 eV and w = 0.12 eV in Eq. (5) that accounts
for out of plane relaxations that gaps the Dirac cones at I" for
AA and at K for AB.

‘We begin by illustrating in Fig. 2 the impact of the stacking
type t in the bandwidth W corresponding to the valence
and conduction low energy bands that give rise to the pro-
gressively increasing sequence W (taa) < 2 meV, W(tap) <
15 meV, and W (zsp) < 40 meV as we depart from the initial
Taa = (0, 0) stacking geometry for & = 1.5° and we show
the figures for 6 = 1.2°, 1.4° in Appendix. We will show
that a finite interlayer potential difference A alters the band-
widths giving rise to a roughly linear increase W o< A near
the magic angle for AA and a nonmonotonic behavior for
AB and SP stackings. For the AA case, a finite A shifts the
band touching point at K to proportionally higher positive and
negative energy values without opening a primary band gap
8, nor secondary gaps &, in both the valence and conduction
bands [27,41], while for AB we have positive §, and §; gaps
[42,43] as shown in Fig. 2. The opening of the band gaps
and subsequent isolations possible for AB systems leads to
low energy bands with well defined valley Chern numbers
depending on 6 and A values in contrast to AA bands that
remain metallic.

The bandwidth W for conduction and valence bands and
the associated primary 8, gap and secondary gap J; for differ-
ent system parameters are illustrated in Fig. 3 for continuous
variations of 6 and A for select T values. The bandwidth
and gaps are strongly affected by 7 and the results in Fig. 3
shows that the electron hole asymmetry is generally weaker
in our tTG models where we do not incorporate interactions
with the substrate [46,47] nor the remote hopping terms in-
cluded in a Bernal stacked bilayer graphene [45,48]. This
is manifested in the closely resembling behavior of the dif-
ferent W, §,, 8, for the conduction and valence bands. As
we just noted, for Taa we generally find metallic bands that
have narrowest bandwidths near the magic angle 6 >~ 1.5°, a
slightly lower # =~ 1.2°, and 6 < 0.5°. The presence of inter-
layer potential differences A introduces a mild almost linear
increase in the bandwidths near 6 that follows approximately
the relation W =~ 0.4 A, indicating that narrowest bands are
expected when there are no displacement electric fields. The
bandwidths remain consistently narrow W < 10 meV for all
considered values of A in the small twist angle regime when
6 < 0.6°. The situation is different for Tog where isolated
bands can be found in the presence of a finite A between a
wider 1° ~ 1.7° twist angles range and at islands near ~0.6°
for sufficiently large A, and near ~0.4° for all values of A.
The narrowest bandwidth regions are found in the vicinity
of 6 =~ 1.4° slightly below the magic angle and 6 < 0.6°. A
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FIG. 2. Band structure surface plots of the low energy bands at the magic angle of 8 = 1.5° that show a progressive bandwidth widening
for three different AA, AB, and AS stacking models. The band structure line plots along the high-symmetry lines are plotted right underneath.
The interlayer tunneling terms are modeled for (a) rigid @ = w = 0.12 eV and out of plane relaxed configurations that use unequal tunneling
parameters «’ = 0.0939 eV and w = 0.12 eV for zero (b) and finite interlayer potential difference A = 0.025 eV that introduces qualitative
changes in the band structures and Fermi surface contours. A finite A for AB stacked geometries widens the bandwidths and opens the primary
8, and secondary 8, gaps between the low energy bands. The anisotropic Fermi surface contours for the AS stacking reflects the broken
triangular rotational symmetry noted also in the real space moire patterns.

finite A near 6 ~ 1.5° leads to a nonmonotonic behavior of
W showing an initial decrease for small A before it grows
linearly as W =~ 0.25A beyond A >~ 0.04 eV. Similar to Tax,
the bandwidths remain consistently narrow W ~ 10 meV for
all considered values of A when 6 < 0.6°. Finally, for a third
sliding vector Tsp corresponding to a saddle point stacking,
the bandwidths remain practically constant with a value on
the order of ~40 meV for twist angles between 1.2°-1.7°,
while narrowest bandwidths are expected for small twist an-
gles 6 < 0.5° in the range of explored A values toup to 0.1 eV
like in the other T configurations.

In Fig. 4, we show similar bandwidth and gaps diagrams
that provides further information on the interdependence be-
tween the sliding vector 7, interlayer potential difference A,
and twist angle 6 that allows to further clarify the role of
the stacking vector t in the electronic structure. We carry
out this study by finding the continuous variations of the
electronic structure as a function of the sliding vector 7 for
fixed & = 1.5° and select A values, and for continuous vari-
ations of 6 for select A values. We first explore in Fig. 4(a)
the relationship between A and T where we can generally
observe an enhancement of the bandwidth for large enough A,
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FIG. 3. The bandwidth, secondary gap, primary gap of the conduction and valence bands as a function of the interlayer potential difference
A and twist angle 6 for (a) AA (7, = 0), (b) AB (r, = a/ ﬁ), and (c) SP stacking (7, = a3 /2). The one-dimensional cross sections of the
bandwidths and band gaps at & = 1.5° for variable A shown at the rightmost column evidence the impact that the sliding vector 7 has in the

band structure evolution trends.

showing at times a nonmonotonic evolution for select stacking
configurations. Our calculations show that isolated flat band
regions with simultaneous primary and secondary gaps can
be tuned to happen at different twist angle regions when we
change A, often leading to isolated bands for a wide range
of continuous values of t, when 7, = 0, and showing large

secondary gaps near t, ~ a /+/3 or 7, ~ 2a/ /3 stacking.

IV. EFFECTIVE COULOMB INTERACTION
AND VALLEY CHERN NUMBERS

In this section, we provide measures on the relative
dominance of the Coulomb interaction energies versus
the bandwidth W by calculating the ratios U/W of the bare
Coulomb energy versus bandwidth, and the screened effective
Coulomb energy versus bandwidth Ugs/W that provides a
more reliable measure for the onset of gaps and insulating
phases when the bands are not overlapping. Typically we con-
sider to be in the strong correlation regime when these ratios
are larger than 1. The effective screened Coulomb energy is
given by [15]

2

Ueit = exp (=lu/Ap), @)

dre eoly
where the moire length is given by Iy = a/(2sin(6/2)) ~
a/0. The effective screening Debye length Xp is expressed as
Ap = 2¢€0/ ezD(Sp, d5), where D(8,,, d;) is the two-dimensional

DOS defined as
[8plu(—=38,) + [85lu(—=3d;)
W2Ay,

where u(x) is the Heaviside step function. Thus, D(§,, &) is
proportional to the bands overlap |8, | represented by neg-
ative gap values §, < 0 (8, < 0). Here, Ay = ﬁl}%,,/Z is the
area of a moire unit cell in real space, and we use €, = 4 for
the dielectric constant of graphene.

The first two rows in Fig. 5 show U/W and U/W as
a function of twist angle and interlayer potential difference
A for the valence and conduction flat bands, which gen-
erally show a weak electron-hole asymmetry regardless of
the different top-botoom layer sliding geometries considered,
namely, Taa = (0, 0), the intermediate Tpw = (0, a/(2V/3)),
and Tog = (0, a/«/§).

The first row showing U /W plots resembles the bandwidth
W in the parameter space diagrams in Fig. 3 manifesting a
strong dependence with respect to . We indicate the contours
of U/W =1 with black solid lines to help distinguish the
regions where we expect strong correlations. For taa, the
large Coulomb energy regions are found at the aforemen-
tioned bandwidth minima angles of 6 ~ 1.5°,1.2° and for
angles below ~0.6°. Sliding to an intermediate stacking Tpw
has the effect of reducing the overall strength of the U/W
ratio seen in Taa, and further sliding until Tpp achieves a
wider region of large U/W ratios in the parameter space of

D3y, 8,) =4 , 8)
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FIG. 4. Bandwidths, secondary, and primary band gaps of the valence (V) and the conduction (C) bands at the magic angle 1.5° (a) as a
function of the interlayer potential difference (A) and the sliding of the top G layer in y direction t,, (b) as a function of the sliding of the top G
layer in x and y directions, t,, 7, for A = 0.05 eV (upper row) and for A = 0.10 eV (lower row), and (c) as a function of the twist angle 6 and
the sliding of the top G layer in the y direction, 7, for A = 0.05 eV (upper row) and for A = 0.10 eV (lower row). Our calculations show that
different A values lead to different twist angle 0 regions where both primary and secondary gaps open for a wide range of stacking vectors 7.
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FIG. 5. The ratio of the bare Coulomb interaction U to the bandwidth W (upper), the ratio of the screened Coulomb interaction U to
the bandwidth W (middle), and the valley Chern numbers (lower) for the valence and conduction bands for (a) AA T = (0, 0)], (b) DW
[t=(0,a/ 24/3)], and (c) AB-starting stacking [t = (0, a/ /3)] in tTG for the o’ # o model as a function of gate voltage A and twist angle

0 at the magic angle 6 = 1.5°.

6 and A where peak maxima are shifted to a lower 6 ~ 1.4°
and for angles below ~0.8°. The second row showing Usg /W
includes suppression of the Coulomb energy due to screening
effects proportional to the overlap of the flat bands with the
neighboring bands. Similar to the first row, we indicate the
contours of Ugr/W = 1 with black solid lines. This quantity
allows to define the regions where the bands are isolated and
we have a higher likelihood of developing insulating gapped
phases. For all stacking geometries considered, we observe
that twist angles around 6 ~ 1.5° within 0.2° can develop
Uer/W = 1 regions when we add a sufficiently large A.

The valley Chern numbers corresponding to the flat bands
are represented in the third row of Fig. 5 and they will be well
defined when the band are not crossing each other. The valley
Chern number of the n'" energy band C, is defined as

1
; / P 2, (k).
21 Jmpz

®

where 2,(k) is the Berry curvature given by Ref. [49] as

follows:
(n] 22 |n') ('] HI )
nl g In) (0| 5 ni| (10

(En’ - En)2

Q, k) = —ZZIm[

n'#n

The K valley Chern numbers of both the valence and the
conduction low energy bands are shown in the lower row in
Fig. 5. For taa they are found to be topologically trivial for
finite electric fields and twist angles less than 2.5°, while for
twist angles larger than 3° the valley Chern numbers are not
well-defined due to the strongly metallic character of the sys-
tem (not shown). On the other hand, the valley Chern numbers
of Tpw and Tap cases show diverse topologically nontrivial
phases. One general observation is that the valley Chern num-
ber signs can be reversed with the perpendicular electric field
direction, and the valley Chern numbers of the valence and
conduction bands are opposite to each other adding up to a
zero sum. For Tpw, we expect trivial Chern numbers for strong
correlation regions for 6 ~ 1.5° and finite A, and %2 valley
Chern numbers for twist angles that are below and above in
twist angle. For Tap, the parameter space of isolated bands
and finite valley Chern numbers are expanded thanks to the
easier opening of band gaps §, and §,. Near the magic angle
6 ~ 1.5° the valley Chern numbers are finite C = £1, becom-
ing C = =£3 for smaller angles, and becoming C = =£2 larger
angles. The valley Chern numbers become again mostly trivial
for the saddle point AS stacking with tsp = (0, aG«/§/2)
when the system behaves like a metal. Our calculations show
that a variety of finite valley Chern numbers can be tailored
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depending on the specific top-bottom layer sliding configura-
tion 7.

V. LOCAL DENSITY OF STATES

We have just noted that the electronic structure undergo
important changes depending on the sliding vector t follow-
ing variations of the real space moire patterns, which in turn
impacts the local density of states (LDOS) associated to the
nearly flat bands. Here we show that LDOS maxima locations
in tTG follow closely the same rule of thumb applicable in
tBG that concentrates the charge at the AA local stacking
regions of a tBG interface. Because in tTG we have two tBG
interfaces the AA local stacking centers at each interface will
distribute in different manners depending on the t vector, as
we illustrate in Fig. 6 for five selected cases of top layer sliding
in the y direction.

For the Taa case the reinforced LDOS profiles at the AAA
local stacking regions give rise to a triangular lattice much
like what we find in tBG. The LDOS patterns progressively
split into two displaced triangular lattices and thus breaks the
triangular rotational symmetry as we introduce a small sliding
in the top graphene layer by a 7 = (0, a/2+/3) vector along
the y-direction in Fig. 6(b). The triangular rotational sym-
metry is recovered for Tap = (0, a/«/g), see Fig. 6(c), and
the LDOS maxima forming a honeycomb lattice consisting of
AA local interfaces between bottom-middle and middle-top
layers. When we continue sliding the top layer further the
double moire pattern start forming stripe shapes for the LDOS

J

in Figs. 6(d) and 6(e) which break maximally the rotational
symmetry at the so called saddle point Tsp = (0, av/3/2).
These LDOS charge anisotropy patterns in Figs. 6(d) and 6(e)
resemble the scanning tunneling spectroscopy (STS) results in
Ref. [21] of twisted trilayer graphene.

Application of a positive interlayer potential difference A
has the effect of redistributing the carrier densities of the
valence bands towards the bottom-middle interface as it tends
to lower the bottom layer energy following the definition in
Eq. (1). Thus, for the honeycomb pattern resulting from the
Tap Stacking, we see a brightened bottom-middle interface
and dimmed middle-top interface upon application of A. For
similar reasons, a finite A distorts the straight stripe patterns
seen in Fig. 6(e) turning them into snake like shapes by pop-
ulating the bottom interface and depleting the top interface
charge densities near the respective AA stacking regions. In
general an interlayer potential difference has the effect of
broadening the DOS in energy pushing the states to higher
energy values away from neutrality, and for the T5p stacking
case we see the opening of a band gap at charge neutrality
from the DOS profile.

VI. LONGITUDINAL OPTICAL CONDUCTIVITY

In this section, we present the numerical analysis of the
longitudinal linear optical conductivity of tTG at the magic
twist angle 6 = 1.5° for select values of the displacement
field for the three stacking arrangements Taa, Tag, and Tas
in Figs. 7(a), 7(b) and 7(c), respectively. The real part of the
longitudinal linear optical conductivity is given by [50-54]

16 d’k . "2
Re[ow(w)l/oo = — | ——5 Z[f(ék,;) — fex DIk, ilJclk, j)I"8[w + (ek,j — €x,i)/ R, (11
o ] 2m) ¥
[
where J, = —dH/dk, is the general current operator, f(¢) is from the high-symmetry point for A = 0.05 and 0.10 eV.

the Fermi-Dirac distribution function, € ; is the it eigenen-
ergy atk = (ky, ky), and oy = e®/2h is the universal optical
conductivity of the single layer of graphene.

In Fig. 7, we illustrate the energy bands for select band
structures together with the real part of the linear optical con-
ductivity at zero chemical potential. We have not considered
the Drude term in order to present more clearly the contri-
butions of interband optical transitions. In the band structure
figures, the lowest electron- and hole-bands are highlighted
by the red lines. We indicated the prominent contributions to
the optical transitions with blue arrows in the band structures
and with the corresponding high-symmetry point labels in the
optical conductivity.

The locations of each transition peak in momentum space
are also illustrated in the band structure figures by the blue
arrows. For Taa stacking cases, the largest contributions of
the optical transitions occur at I' or K points when the dis-
placement fields are A = 0.0 and 0.05 eV. On the other hand,
the biggest portion of the transition takes place at K’ when
A = 0.10 eV. In 743 stacking, the biggest contribution of the
transitions happens at I" when A = 0 eV. On the other hand,
the transitions mostly occur at an intermediate point away

For the Tags-stacking case, the largest optical contributions
are mostly coming from K point and it is noteworthy that the
contribution in the mBZ map is anisotropic, which reflects the
triangular rotational symmetry in keeping with the anisotropic
Fermi surface as well as the real-space stripe patterns.

VII. SUMMARY

Trilayer graphene with middle layer twist (tTG) gives rise
to the simplest form of commensurate double moire pattern
formed by two twisted graphene interfaces and has become
a new system of interest following recent observations of
superconductivity with higher critical temperatures than in
twisted bilayer graphene (tBG). We have presented a detailed
electronic structure calculations and associated bandwidth,
gaps and valley Chern numbers for continuous variations of
the twist angle # and interlayer potential difference A for
selected T top-bottom layer sliding vectors. We have aimed
at providing a more comprehensive description of the sys-
tem behavior in a wider range of system parameters than in
earlier work to predict new system parameters where strong
correlations and finite valley Chern numbers are expected,
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FIG. 6. Electronic density of states (DOS) and the corresponding local density of states (LDOS) of tTG for the o’ # » model with gate
voltage A = 0.0eV and 0.1 eV for five different starting stackings, (a) T = (0, 0) [AA], (b) (0, a/2«/§), (c) (0, a/«/’g) [AB], (d) (O, a\/§/2.2),
and (e) (0, av/3/2) [AS]. The first row: Schematic diagrams for each starting stacking with the slid top graphene layer denoted by a red dashed
hexagon and the rotation axis indicated by a green filled circle. Second & fourth rows: DOS (left) and LDOS (right) along a blue dashed straight
line (¢ — b — a — ¢ — b) indicated on the third and fifth rows. (a, b, c) letters label respectively the (AA, AB, AC) local stacking between the
bottom and middle layer atoms and they are equal to (AAA, ABA, ACA) for taa top-bottom layers stacking in (a), (AAB, ABB, ACB) for

Tap stacking in (c), (AAS, ABS, ACS) for tas stacking in (e). Third and fifth rows: LDOS in a two-dimensional real space at the van Hove
singularity (vHs) (lower row).
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FIG. 7. Electronic band structures of tTG at its magic angle 6 = 1.5° and the corresponding longitudinal linear optical conductivity o,
at zero chemical potential for (a) AA, (b) AB, and (c) AS-starting stackings for different displacement fields A = 0.0, 0.05, and 0.1 eV. The
prominent contributions of the optical transitions are denoted by the blue arrows in the band structures and the respective high-symmetry point

labels in the optical conductivity when identifiable.

and paid particular attention to the role of the 7 interlayer
sliding that can either preserve or break the triangular ro-
tational symmetry to create anisotropic strip patterns. While
the bandwidths of the low energy states generally follow the
W(tan) < W(tas) < W(zsp) sequence they are modified by
A which alters the twist angle dependent bandwidths. Our
calculations predict narrowest bandwidths on the order of
~10 meV around # >~ 1.5° and 1.2° in the limit of small A for
Taa stacking, and around 6 >~ 1.4° for Tap stacking. Applica-
tion of a finite A generally widens the bandwidth of the low
energy flat bands and in the case of Top the low energy bands
can be isolated to generate finite valley Chern numbers in a
wide range of twist angles 6 and interlayer potential difference
A. We have also analyzed the impact of stacking and electric
fields in the local density of states (LDOS) maps that can
be measured through scanning tunneling probes, and showed
that the anisotropic stripe patterns can be maximized when
the top-bottom layers have a saddle point stacking geometry.
The specific stacking vector 7 favored in the system might
be modifiable through different device preparation conditions,
for example in the presence of strains introduced by bound-
ary condition stresses, that would in turn lead to observable
changes in charge transport or through optical experiments.
The linear optical conductivity calculations we have carried
out provide information about the changes expected in the
interband transition peaks that can be introduced by varying
the system parameters and suggests its usefulness as a system
characterization tool.

ACKNOWLEDGMENTS

We gratefully acknowledge Y. J. Park’s help in the
preparation of some figures. This work was supported by
Samsung Science and Technology Foundation under Project
No. SSTF-BA1802-06 for J.S., the Korean National Research
Foundation Grant No. NRF-2020R1A2C3009142 for B.L.C.,
and NRF-2020R1A5A1016518 for J.J. We acknowledge
computational support from KISTI through Grant No. KSC-
2020-CRE-0072 and by the computing resources of Urban
Big data and Al Institute (UBAI) at the University of Seoul.

APPENDIX: BAND STRUCTURES
FOR SELECT CASES

In this Appendix, we additionally present in Fig. 8 the
band structures for the cases of having the local minima in
the conduction and valence bandwidths for 1.2° and 1.4° in
addition to the 1.5° case that we showed in Figs. 2(a) and
2(b). When the top and the bottom layers have a relative dis-
placement by a4, the valence bandwidth at & ~ 1.2° has the
local minimum W ~ 8 meV, and the conduction bandwidth
at 6 ~ 1.2° has the local minimum W ~ 6 meV. For the top-
bottom layer displacement t5p, both valence and conduction
bandwidths have the local minima W ~ 5 meV at 6 ~ 1.4°,
The corresponding band structures for the rigid (o' = w =
0.12 eV), the out-of-plane relaxed lattice («’' = 0.0939 eV
and w = 0.12 eV), and with finite displacement field A =
0.025 eV are shown on the left (right) column for tas (TaB)
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FIG. 8. Electronic band structures of tTG with tas at @ = 1.2° and with tap at 0 = 1.4° for (a) rigid lattice (0’ = w = 0.12 eV), (b) unequal
tunneling ' = 0.0939 eV and w = 0.12 eV that flattens the bands by suppressing the bandwidth at the moire Brillouin zone corners, and (c)
with the finite interlayer potential difference = 0.025 eV. The Fermi surface contours of the conduction and valence bands are plotted together

with the band structures.

in Figs. 8(a)-8(c), respectively. We note that unequal inter-
layer tunneling @ # ' helps to flatten the low energy bands

by reducing the band dispersion at the moire Brillouin zone
corners.
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