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Dyakonov surface magnons and magnon polaritons
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We predicted one Dyakonov surface magnon (DSM) and two Dyakonov magnon polaritons (DSMPs) local-
ized at the antiferromagnet (AF)-air interface. Their concise dispersion equations and necessary conditions of
existence were obtained. The DSM is the magnetostatic limit of the first DSMP, which are situated inside the
AF reststrahlen frequency band. The second DSMP has no magnetostatic limit and lies outside the frequency
band. The specifical frequency ranges occupied by the DSM and DSMPs were analytically found. The DSMPs
are hybrid-polarization surface polaritons and the DSM is a hybrid-polarization surface magnetostatic mode. The
first DSMP possesses large attenuation constants so that it is highly localized at the surface. Compared with it, the
second DSMP exhibits relatively small attenuation constants. According to the features of polarization obtained
for either DSMP, we used the TE and TM radiations incident on the AF surface to calculate attenuated total
reflection (ATR) spectra, respectively. These ATR spectra not only further prove the existence of the DSMPs
but also demonstrate their observability in experiment. However, the DSM should be detected by means of a
light-scattering technique.
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I. INTRODUCTION

It has been well known that there is a hybrid-polarization
surface wave localized at the interface between isotropic and
anisotropic transparent dielectrics, i.e., the Dyakonov surface
wave (DSW) [1–3], where the permittivity principal values
of the anisotropic dielectric are different positive constants.
Dyakonov originally predicted the DSW and obtained the
dispersion relation between the propagation angle and wave
vector in the isotropic-frequency plane. Due to the harsh
condition for the existence of DSW, it can exist only in a
tiny angle domain in the propagation plane so that it was
demonstrated in experiment 20 y later [2]. The DSW theory
has been extended to various interface structures, for example
the free-space/photonic crystal [4], metamaterials [5–8], or
hyperbolic materials [9–12]. The large anisotropy of effective
dielectric permittivity in the artificial structures or hyperbolic
materials leads to a large angle domain of DSW propagation
so that the DSW is easier to be observed. Therefore, a new
window was opened for potential applications of this kind of
surface electromagnetic waves.

Hyperbolic metamaterials and naturally hyperbolic crystals
have a unique permittivity with opposite-sign principal values
and can support various DSWs [5,6,9]. DSWs supported by
metamaterials including noble-metal constituent are surface
plasmon polaritons [5,11], but those supported by hyperbolic
crystals [9,10] or metamaterials including polar-crystal con-
stituent are surface phonon polaritons [6]. From the relevant
works mentioned above, one can recognize that these surface
waves or polaritons originate from the dielectric anisotropy of
materials, i.e., the anisotropy of permittivity.
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One naturally wonders if the anisotropy of magnetic per-
meability in magnetically ordering materials can support
Dyakonov surface magnon polaritons (DSMPs). If it is true,
what are features of DSMPs? We will answer these ques-
tions in this paper. Antiferromagnets (AFs) form a big family,
including transition-metal fluorides and oxides, as well as
metal antiferromagnets. We will focus on a simple insulative
AF, such as transition-metal fluoride FeF2 or MnF2, to seek
DSMPs localized at its surface. It is a magnetic-ordering
crystal under the condition of low temperature [13] and its
magnetic crystal cell contains two mutually staggered mag-
netic sublattices. Either magnetic sublattice is composed of
atoms with the same magnetic moment, whereas the strong
exchange field leads to that the atomic magnetic moments
of the two sublattices are opposite in direction. It is more
interesting that antiferromagnetically anisotropic field holds
the atomic magnetic moments of the two sublattices to be
parallel and antiparallel to the c axis (the easy axis), respec-
tively. This AF is a uniaxial crystal without external magnetic
field, whose permeability is negative in the plane normal to the
easy axis and positive along the easy axis, and meanwhile its
response frequency range is usually situated in the far infrared
or THz-frequency region [14,15]. In the response frequency
range, it supports ordinary surface magnon polaritons with
the TE polarization and magnetostatic modes in the Voigt
geometry [16–19]. As a new kind of naturally hyperbolic
crystals, insulative AFs have been beginning to attract atten-
tion again [20–22]. In addition, we also noticed that another
kind of surface magnon polariton was predicted at the in-
terface between two identical enantiomeric antiferromagnets
with the bianisotropy [23], where the uniaxial permittivity and
permeability were used to determine dispersion properties of
the surface magnon polaritons. These surface magnon polari-
tons were considered as a generalization of the Dyakonov
surface waves.
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FIG. 1. Configurations and coordinate system used in the theo-
retical derivation and calculation, where the AF easy axis lies in the
y-z plane or the AF surface and the space above the surface is filled
with air. (a) For the derivation of dispersion equation, where θ is the
propagating angle of DSMP with respect to the easy axis. (b) For the
ATR calculation, where the AF and prism are separated by the air
spacer, and β is the incident angle.

II. DISPERSION RELATIONS OF MAGNON POLARITONS

The AF permeability is a diagonal matrix in the principal-
axis coordinate system (XYZ) [16,17,24] with the Z axis as the
easy axis, whose diagonal elements are μ0μ1, μ0μ1, and μ0,
where μ0 is the vacuum permeability. For an electromagnetic
wave propagating along any direction, following Ref. [24], we
find

(
k2

X + k2
Y

n2
e

+ k2
Z

n2
o

− ω2

c2

)(
k2

n2
o

− ω2

c2

)
= 0, (1)

where the indexes are determined by n2
e = εa and n2

o = μ1εa

with relative dielectric constant εa, and ω and c are the an-
gular frequency and vacuum light velocity. Equation (1) has
two eigen wave solutions, whose dispersion equations are
k2 = μ1εa f 2 and (k2

X + k2
Y ) + k2

Z/μ1 = εa f 2 with the reduced
frequency f = ω/2πc. In the case of μ1 < 0, the second
dispersion equation exhibits a rotational hyperboloid of two
sheets for a fixed frequency and corresponds to a propagating
mode. It should be noted that the first dispersion equation does
not represent any propagating mode in this case, but is related
to an attenuated wave, or an evanescent wave. As a result, this
AF is a hyperbolic material in this case. For our objective, the
coordinate system and geometry that will be used are shown
Fig. 1(a). We assume that a DSMP propagates along the z axis
and its electromagnetic fields attenuate with the distance away
from the surface. Therefore, the magnetic field of the DSMP
is written as H′ exp(�′x + ikz−iωt ) with �′ = (k2 − ε′ f 2)1/2

above the AF and H exp(−�x + ikz−iωt ) in the AF, where
the vector in either magnetic-field expression is the field am-
plitude and meanwhile Г´ and Г are the attenuation constants
and positive real quantities. However, the AF permeability is
a nondiagonal matrix in the xyz coordinate system with the
z axis along the wave vector (k) and is expressed with the
following matrix (see the Appendix):

↔
μ = μ0

⎛
⎝1 + χ 0 0

0 1 + χcos2θ χ sin θ cos θ

0 χ sin θ cos θ 1 + χsin2θ

⎞
⎠

= μ0

⎛
⎝μ1 0 0

0 μyy μyz

0 μzy μzz

⎞
⎠. (2)

χ = 2ωmωa/(ω2
r − ω2 − iτω) is the susceptibility and the

characteristic frequencies and relevant physical parameters
are connected with ωm = 4πγ M0, ωa = γ Ha and ω2

r =
γ 2Ha(2He + Ha), where Ha and He are the anisotropic and
exchange fields, but M0 is the sublattice magnetization, and
meanwhile τ and γ are the damping constant and the gy-
romagnetic ratio [14,25]. In the AF, the field amplitude of
DSMP satisfies the equations as follows:

−ik�Hz + [k2 − εaμ1 f 2]Hx = 0, (3a)

(k2 − �2 − εaμyy f 2)Hy − εaμyz f 2Hz = 0, (3b)

−ik�Hx + (−�2 − εaμzz f 2)Hz − εaμyz f 2Hy = 0. (3c)

It is obvious that the coefficient determinant must be zero
in Eqs. (3) for nonzero solutions of H. Thus, we find that there
are two evanescent-wave solutions (or two wave branches) in
the AF, which correspond to

�2
± = [−b ± (b2 − 4μ1c)1/2]/2μ1, (4)

with

b = −μzz(k2 − εaμ1 f 2) − μ1(k2 − εaμyy f 2), (5a)

c = (k2 − εaμ1 f 2)[μzz(k2 − εaμyy f 2) + εaμ
2
yz f 2]. (5b)

For convenience of discussion, we ignored the damping
term included in χ , so both �± should be positive real quanti-
ties for a DSMP. We recognize that Eq. (4) should be reduced
into more concise expressions. It has been noticed that

A = b2 − 4μ1c= [μ1(k2 − μyyεa f 2) − μzz(k2 − μ1εa f 2)]2

− 4μ1εa(μyz f )2(k2 − μ1εa f 2), (6)

and substituting μ1 − μzz = χcos2θ and μzz − μyy =
χ (sin2θ−cos2θ ) into (6) leads to

A = [χ (k cos θ )2 + μ1χεa f 2(sin2θ − cos2θ )]2

− 4μ1εa( f χ sin θ cos θ )2(k2 − μ1εa f 2). (7)

Further to simplify this expression, we achieve

A = χ2[(k cos θ )2 − μ1εa f 2]2. (8)

After substituting (8) into (4), the two attenuation constants
are reduced into

�+ = (μzzk
2/μ1 − εa f 2)1/2, (9a)

�− = (k2 − μ1εa f 2)1/2. (9b)

The magnetic field of a DSMP in the AF should be the sum
of the two branch fields corresponding to �+ and �−, i.e.,
[H+ exp(−�+x) + H− exp(−�−x)] exp(ikz−iωt ). The three
field components of either branch are coupled together in the
AF response-frequency range, so we can express the other
components as functions of the z component. According to
Eqs. (3b) and (9b) as well as ∇ · (μ · H ) = 0, we find

H−
y = cgtθH−

z = λ−H−
z , H−

x = ik

μ1�−
(μzz + μyzcgtθ )H−

z

= ikH−
z /�− (10)
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for the �− branch. Also applying Eqs. (3b) and (9b), and
noticing μ1 − μyy = χsin2θ , we achieve

H+
y = εa f 2χ sin θ cos θ

�2− − �2+ + εaχ f 2sin2θ
H+

z = λ+H+
z ,

H+
x = ik

μ1�+
(1+χsin2θ+χsinθcosθλ+)H+

z (11)

for the �+ branch. Solving the dispersion equation of DSMP
must involve the electromagnetic boundary conditions, so
relations between the magnetic fields and relevant electric
fields in the different spaces will be used. Due to E = ∇ ×
H/(−iε0εω), and Eqs. (3a) and (9), it is obvious that

E±
x = k

ε0εaω
H±

y , E±
y = μ1 f 2�±

iε0ω�2−
H±

z , E±
z = �±

iε0εaω
H±

y

(12a)

in the AF. However,

E ′
x = k

ε0ε′ω
H ′

y, E ′
y = f 2

−iε0ω�′ H
′
z, E ′

z = �′

−iε0ε′ω
H ′

y

(12b)

with �′ = (k2 − ε′ f 2)1/2 above the AF. Applying the four
boundary-condition equations (H ′

y = H+
y + H−

y , H ′
z = H+

z +
H−

z , E ′
y = E+

y + E−
y , and E ′

z = E+
z + E−

z ) at the surface, the
two equations are found to be

(εa�
′ + ε′�−)λ−H−

z + (εa�
′ + ε′�+)λ+H+

z = 0, (13a)

(1+��−)H−
z + (1+��+)H+

z = 0, (13b)

where � = μ1�
′/�2

−. The determinant of coefficient matrix
in Eqs. (13) must be equal to 0 for the existence of wave
solution, i.e.,

(1+��+)(εa�
′ + ε′�−)λ− − (1+��−)(εa�

′ + ε′�+)λ+
= 0. (14)

In order to obtain a concise and explicit dispersion relation
like that found by Dyakonov [1], substituting the expressions
of λ± and � into Eq. (14) and then simplifying this equation,
we achieve

(εa�
′ + ε′�−)(�2

− − �2
+)(μ1�

′�+ + �2
−) + εaχ ( f sin θ )2

[ε′�2
−(�− − �+) + εaμ1�

′2(�+ − �−)] = 0. (15)

Finally, an explicit dispersion relation is found to be

(εa�
′ + ε′�−)(�− + �+)(μ1�

′�+ + �2
−)

+ εa(μ1 − 1)(ε′ − εaμ1)(k f sin θ )2 = 0. (16)

It should be noted that either branch in the AF generally is
neither a TE wave nor a TM wave, which is unlike the usual
surface magnon polaritons.

Subsequently, we are going to discuss the dispersion
equation. We first focus on some extreme cases. (1) In the case
of θ → 90◦ (in the Voigt geometry), due to εa f 2(μ1 − 1) =
(�2

+ − �2
−) and k2(ε′ − μ1εa) = (�2

− − μ1εa�
′2) with

�+ =
√

k2 − εa f 2 and �− =
√

k2 − εaμ1 f 2, Eq. (16) is

simplified into

μ1�
′ + �− = 0, (17)

which represents an ordinary surface magnon polariton with
the TE polarization [14,17,18,25,26]. It is proven that this sur-
face magnon polariton with an additional condition (�+ > 0)
is an extreme example of DSMP. (2) In the case of θ → 0◦ (in
the Faraday geometry), Eq. (16) degenerates into

μ1�
′�+ + �2

− = 0, (18)

with �+ = (μ−1
1 k2 − εa f 2)1/2 and �− = (k2 − εaμ1 f 2)1/2

that are positive real quantities. We recognize that Eq. (18)
cannot be satisfied in this case since either �+ is imaginary
for μ1 < 0 or Eq. (18) is invalid for μ1 > 0. As a result,
no DSMP exists in this case. (3) In the case of k → ∞ (or
f → 0, the magnetostatic limit [14,17]), �− → �′ → k and
�+ → k(μzzμ

−1
1 )1/2, so Eq. (16) becomes

1+μzz + (1 + μ1)
√

μzz

μ1
= 0. (19)

It is obvious that there can be a solution for μzz/μ1 > 0
and this solution is situated in the range of μ1 < −1. This
solution should be called a Dyakonov surface magnon or
Dyakonov surface spin wave. Its attenuation constant above
the AF is equal to k and the two constants in the AF are k
and k(μzz/μ1)1/2 that decreases as the propagating angle is
decreased for a fixed value of k. Its magnetic-field amplitude
has three components: H ′

x = −iH ′
z, H ′

y and H ′
z above the

AF. H−
x = iH−

z and H+
x = i(μzz/μ1)1/2H+

z , H−
y = ctgθH−

z

and H+
y = 0, and H−

z and H+
z in the AF. The magnetic-field

amplitude indicates the polarization of DSM.
In normal circumstances, Eq. (16) implies the two possi-

bilities for the existence of DSMP. The first possibility is that
the first term is negative and the second term is positive on the
left side of Eq. (16), but the most elementary condition μ1 < 0
must be satisfied. However, the second term cannot be positive
under this condition, so this possibility should be ruled out.
The second possibility is that the first term is positive and the
second term is negative. It demands (μ1 − 1)(ε′ − εaμ1) < 0.
This demand corresponds to two conditions. The first condi-
tion is

μ1 < 1, or μ1 < ε′ε−1
a , (20)

and the second condition is

μ1 > 1, or μ1 > ε′ε−1
a . (21)

εa > 1 for an insulative AF and ε′ = 1 if the space above
the surface is filled with air, so μ1 < ε−1

a and μ1 > 1 are
more valuable to be discussed in practice. The subsequently
numerical calculation will show that no DSMP exists in the
case of μ1 > 1. Therefore, μ1 < ε′ε−1

a or μ1 < ε−1
a is the

necessary condition for the existence of DSMPs. It will be
proven in the subsequent numerical results.

III. DERIVATION OF ATTENUATED TOTAL REFLECTION

The attenuated total reflection (ATR) method is very us-
able for physicists to observe surface polaritons in experiment
[17,18]. Following this method with the configuration shown
in Fig. 1(b), we can numerically calculate ATR spectra to
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further examine the existence of the surface polaritons since a
complicated dispersion equation may bring about nonphysical
solutions. If a radiation incident on the bottom surface of the
prism is totally reflected, a relevant evanescent wave is pro-
duced in the spacer below the bottom surface. This evanescent
wave can excite DSMPs in the AF, as illustrated Fig. 1(b). The
excitation of DSMPs absorbs the energy of incident radiation,
so the reflective ratio is obviously decreased. We are going
to derive the reflective ratio according to the electromagnetic
boundary conditions. The electric fields in various spaces are

written as follows:

E = eikz−iωt

⎧⎨
⎩

Eieikxx + Ere−ikxx, (in the prism)
Ae�′x + Be−�′x, (in the spacer)

E−e−�−x + E+e−�+x, (in the AF)
, (22)

where superscripts i and r indicate incidence and reflection,
and meanwhile kx = f

√
εpcosβ and k = f

√
εpsinβ with di-

electric constant εp of the prism and incident angle β. The
relevant magnetic fields can be determined with

↔
μ · H = ∇ ×

E/iω. In the prism and spacer,

Hz = eikz−iωt

(
kx

(
Ei

yeikxx − Er
y e−ikxx

)/
μ0ω, (in the prism)

�′(Aye�′x − Bye−�′x )/iμ0ω, (in the spacer)
, (23a)

Hy = eikz−iωt

(−iεp f 2
(
Ei

zeikxx − Er
z e−ikxx

)/
iμ0ωkx, (in the prism)

f 2(Aze�′x − Bze−�′x )/iμ0ω�′, (in the spacer)
. (23b)

In the AF,

Hz = eikz−iωt
j=+∑
j=−

μyz
(
k2 − �2

j

)
E j

z − μyy�
2
j E

j
y

iμ0μ
y
vμyyω� j

e−� j x

= H−
z + H+

z , (24a)

Hy = eikz−iωt
j=+∑
j=−

μzz
(
�2

j − k2
)
E j

z + μyz�
2
j E

j
y

iμ0μz
vμzzω� j

e−� j x

= H−
y + H+

y , (24b)

where μ
y
v = (μyyμzz − μ2

yz )/μyy and μz
v = (μyyμzz −

μ2
yz )/μzz. In addition, H±

y = λ±H±
z with λ± defined

by Eqs. (10) and (11) in the above section. According
to Eqs. (24), the relation between the two electric-field
components in the AF is achieved to be

E±
y = (k2 − �2

±)(μzz + μyzλ±)

�2±(μyz + μyyλ±)
E±

z = ±E±
z . (25)

The electromagnetic boundary conditions at the two sur-
faces of the spacer, the continuity of Ey and Hz, lead to the
following equations:

(
Ay

By

)
= 1

2

(
γ+ γ−
γ− γ+

)(
Ei

y
Er

y

)
,

(
Ay

By

)
= 1

2

↔
T

(
E−

z
E+

z

)
, (26)

with γ± = 1 ± ikx/�
′, in which elements of

↔
T are

T11 =
[
μyz(k2 − �2

−) − μyy�
2
−−

μ
y
vμyy�′�−

+ −

]
e−�′d , (27a)

T12 =
[
μyz(k2 − �2

+) − μyy�
2
++

μ
y
vμyy�′�+

+ +

]
e−�′d , (27b)

T21 =
[
−μyz(k2 − �2

−) − μyy�
2
−−

μ
y
vμyy�′�−

+ −

]
e�′d , (27c)

T22 =
[
−μyz(k2 − �2

+) − μyy�
2
++

μ
y
vμyy�′�+

+ +

]
e�′d . (27d)

Meanwhile, applying the continuity of Ez and Hy at the two
surfaces of the spacer, we find the relations(

Az

Bz

)
= 1

2

(
γ ′− γ ′+
γ ′+ γ ′−

)(
Ei

z
Er

z

)
,

(
Az

Bz

)
= 1

2

↔
S

(
E−

z
E+

z

)
, (28)

with γ ′
± = 1 ± iεp�

′/kx, where elements of
↔
S are shown with

S11 =
{

�′[μzz(�2
− − k2) + μyz�

2
−−]

f 2μz
vμzz�−

+ 1

}
e−�′d , (29a)

S12 =
{

�′[μzz(�2
+ − k2) + μyz�

2
++]

f 2μz
vμzz�+

+ 1

}
e−�′d , (29b)

S21 =
{

�′[μzz(k2 − �2
−) − μyz�

2
−−]

f 2μz
vμzz�−

+ 1

}
e�′d , (29c)

S22 =
{

�′[μzz(k2 − �2
+) − μyz�

2
++]

f 2μz
vμzz�+

+ 1

}
e�′d . (29d)

Eliminating Ay,z, By,z, and E±
z in Eqs. (26) and (28), we

obtain the equation satisfied by the amplitudes of reflective
electric field, i.e.,(

Ei
y

Er
y

)
= ↔

P−1
↔
T

↔
S−1

↔
P′

(
Ei

z
Er

z

)
, (30)

where P is the 2 × 2 matrix in the first equation of Eqs. (26)
and P′ is the 2 × 2 matrix in the first equation of Eqs. (28).
It should be noted that the damping term in the permeability
must be considered for calculating ATR spectra. Therefore, �′
and �± are complex values at present.

IV. NUMERICAL RESULTS AND DISCUSSION

Numerical calculations are based on the FeF2 crys-
tal with dielectric constant εa = 5.5 and the gyromag-
netic ratio γ = 1.97(rad/skG). The other physical pa-
rameters are the sublattice magnetization 4πM0 = 7.04 kG
(ωm = 0.736 cm−1), the exchange field He = 540.0 kG
(ωe = 56.44 cm−1), anisotropic field Ha = 200.0 kG (ωa =
20.9 cm−1) [18,26,27]. The AF resonant frequency is
ωr= 52.877 cm−1 and the zero-point frequency of μ1 is
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FIG. 2. Dispersion curves of DSMPs for various propagating angles, where �θ is the propagating-angle difference between two adjacent
curves and the vertical dashed lines represent the scanning lines for numerical calculating ATR. (a) Dispersion curves of the first DSMP, where
the topmost curve is related to θ = 90◦ and the dotted curve is the left boundary of the area where the first DSMP exists. (b) Dispersion curves
of the second DSMP, where the topmost curve corresponds to θ = 5◦ and the two dotted lines are the left and right boundaries of the region in
which the second DSMP appears.

53.165 cm−1. The AF is a magnetically hyperbolic material
between the two special frequencies, otherwise it is an ellipse
material. We propose that the space above the AF surface is
filled with air, or ε′ = 1.0. The damping constant is taken as
τ = 0.01 cm−1 for ATR numerical calculations.

From dispersion relation (16), we find two DSMPs, as
shown in Fig. 2. Figure 2(a) and Fig. 3(a) show properties
of the first DSMP as follows. It is situated inside the rest-
strahlen frequency band and is a large wave-vector mode. Any
dispersion curve of this DSMP begins from the left endpoint
corresponding to �+ = 0 and infinitely extends rightward, and
meanwhile its frequency increases with k. It is very interesting
that the first DSMP possesses its magnetostatic limit. In this
limit, this DSMP becomes DSM whose dispersion equation
is Eq. (19). Figure 3(b) illustrates the dispersion curve of the
DSM, i.e., its frequency versus its propagating angle. Com-

FIG. 3. (a) The permittivity and frequency regions occupied by
DSMPs, where the first DSMP is situated in the light-gray region
and the second DSMP lies in the gray region. The horizontal solid
line corresponds to ε−1

a , and the two horizontal dashed lines indicate
the 0 line and −1 line. The solid curve shows the permittivity. (b)
The dispersion curve of Dyakonov surface magnon; it occupies the
light-gray region in (a).

bining the discussion about Eq. (19) in the previous section,
we conclude that the DSM and first DSMP occupies only a
part of the reststrahlen frequency band and μ1 < −1 is the
necessary condition for the existence of the DSM and first
DSMP. They are situated in the light-gray region in Fig. 3(a).
The DSM also can be considered as a Dyakonov-like surface
spin wave. Figure 2(b) illustrates the second DSMP. It lies
outside the reststrahlen frequency band and is localized in a
special frequency range where 0 < μ1 < ε−1

a and the AF is
an ellipse material. This frequency range is the gray region
in Fig. 3(a). Any dispersion curve of the second DSMP is
finite. The left endpoint of the dispersion curve corresponds
to �′ = 0 and its right endpoint is related to �+ = 0. Unlike
the first DSMP, the second DSMP has no magnetostatic limit
and its wave vector is much smaller than that of the first
DSMP, and meanwhile it disappears in the Voigt geometry
(θ = 90 ◦).

Subsequently, we discuss the localization of either DSMP
at the AF surface, which is reflected by the attenuation con-
stants. It should be noted that either DSMP involves three
attenuation constants. One is Г´ in the space above the AF
surface, and the other two are �+ and �− attached to the two
wave branches in the AF. In normal circumstances, the two
wave branches are attenuated in desynchrony with distance
away from the AF surface. The larger either attenuation con-
stant in the AF is, the higher the localization of the relevant
branch is. Figure 4 illustrates the attenuation constants of the
two DSMPs. For the first DSMP, Fig. 4(a) shows that curves
of the two attenuation constants in the AF are distributed
above and below the line of �′, respectively. It is obvious that
�− > �′ and �+ < �′. The difference between �+ and �−
increases as θ is decreased. In general, the first DSMP is of
higher localization. For the second DSMP, the curves of two
attenuation constants in the AF cross at a definite point. The
curves of �− are distributed above the line of Г´and the major
part of any �+- curve is situated above the line of �′, as shown
in Fig. 4(b). In general, the second DSMP decays much more
slowly above than below the AF surface.

The polarization of a surface polariton is one of its impor-
tant characteristics. For the DSMPs and DSM, we use their
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FIG. 4. Attenuation constants of DSMPs vs k for various propagating angles. (a) For the first DSMP and (b) for the second DSMP, where
a pair of solid curves with the same color indicates �+ and �− in the AF, but the dotted line represents �′ above the surface.

magnetic fields to uniformly discuss the features of polariza-
tion. The electromagnetic fields on and beneath the AF surface
are coupled with together through the boundary conditions for
any DSMP or DSM. We assume that the magnetic field on the
AF surface is normalized with |H ′

x|2 + |H ′
x|2 + |H ′

z|2 = 1.
For the DSMPs, we can achieve magnetic-amplitude com-

ponents on and beneath the surface. Due to Eqs. (10) and (11),
we have

H ′
y = λ+H+

z + λ−H−
z , (31)

and further using Eq. (13b) and H ′
z = H+

z + H−
z , we obtain

H ′
y = (αλ+ + λ−)H−

z , H ′
z = (α + 1)H−

z , (32)

with α = −(1 + ��−)/(1 + ��+). Thus, we find that

H ′
y = (αλ+ + λ−)H ′

z/(1 + α), H ′
x = −ikH ′

z/�
′. (33)

It is obvious that H ′
z can be written as

H ′
z = {1 + [(λ− + αλ+)/(1 + α)]2 + (k/�′)2}−1/2. (34)

As a result, the magnetic-field amplitudes on and beneath
the surface can be achieved from Eqs. (33) and (34).

For the DSM, simpler expressions of the magnetic-field
amplitude can be obtained. In the magnetostatic limit, λ− =
ctgθ , λ+ = 0, �− = �′ = k, and �+ = k(μzzμ

−1
1 )1/2. In

addition, � = μ1/k and α = −(1 + μ1)/(1 + �+). There-
fore, we find the field-amplitude components on the surface
to be

H ′
z = {2 + [ctgθ/(1 + α)]2}−1/2, H ′

y = ctgθH ′
z/(1 + α),

H ′
x = −iH ′

z, (35)

and those beneath the surface to be

Hz = H ′
z, Hy = H ′

y, Hx = i

{
1

1 + α
+ α

1 + α

√
μ1

μzz

}
H ′

z .

(36)

Based on Sec. II and these formulas, we recognize that the
x component of the magnetic-field amplitude is imaginary but
the y- and z components are real for the DSMPs and DSM.
It is proven that the phase difference between them is π/2.
The magnetic field of the ordinary magnon [19] and magnon
polariton [16–18] is in the x-z plane, but that of the DSMPs
and DSM possesses three components.

We illustrate the polarization or magnetic-field amplitude
of the DSMPs at the AF surface in Figs. 5 and 6. The boundary
conditions mean that the parallel components of the magnetic
field are continual at the surface, but the vertical component

FIG. 5. The magnetic-field amplitude of the first DSMP vs k for various propagating angles. Its x components above and below the surface
are imaginary and are different, and further the imaginary part is negative below the surface and positive above the surface. The y- or z
components above and below the surface are real and the same.
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FIG. 6. The magnetic-field amplitude of the second DSMP vs k for various propagating angles. The x components above and below the
surface are imaginary and different, and further the imaginary parts below and above the surface both are negative. The curves below the break
indicate the amplitude in the AF. The y- or z components above and below the surface are real and the same.

on the surface is different from that beneath the surface. It
should be noted that the x component is the vertical compo-
nent and is imaginary, so its curves show its imaginary part in
figures.

We first discuss the magnetic-field amplitude of the first
DSMP, as illustrated in Fig. 5. Figure 5(a) indicates the x com-
ponent without the real part. It is negative and approximately
equal to −0.7 above the surface; its curves partly overlap for
different propagating angles. However, it is positive below
the surface and evidently changes with the propagating angle.
Figure 5(b) shows that the y component is a small negative
real quantity. Figure 5(c) indicates that the z component is a
positive real quantity and comparable to the imaginary part of
the x component in amplitude. It is obvious that the magnetic
field is approximately situated in the x-z plane. Therefore, this
polariton is a close approximation to a TE wave, especially
for a larger propagating angle. We subsequently discuss the
magnetic amplitude of the second DSMP, as illustrated in
Fig. 6. Comparing the z component with the x- and y com-
ponents, one finds that the field amplitude above the surface
approximately lies in the x-y plane, but the field amplitude
below the surface is approximately not only in the x-y plane
but also further approximately along the x axis. In addition,

the x component of magnetic field is very intense in the AF,
especially for large propagating angles.

We have found the two DSMPs from the dispersion
equation. The first DSMP possesses the magnetostatic limit.
However, it is necessary to further examine the existence of
them since the complicated dispersion equation may include
nonphysical solutions. The attenuated total reflection calcu-
lation is a numerical stimulation of relevant experiment and
the results are believable for one to examine surface polari-
tons. The schematic diagram is shown in Fig. 1(b). In order
to demonstrate the existence of the first DSMP with larger
wave vector, we use the Si prism and a large incident angle
β = 75◦. The critical angle is βc = 19◦ for the total reflection
from the bottom surface of the Si prism. According to the
polarization features of the first DSMP, we use the TE incident
radiation. For the second DSMP with smaller wave vector,
we use the SiO2 prism so that the critical angle βc = 41.1◦
and meanwhile we take the incident angle to be β = 43◦. For
this DSMP, we apply the TM incident radiation. At the two
selected incident angles, the total reflection condition is satis-
fied, but the partial energy of incident radiation is absorbed to
excite magnon polaritons in the AF, so the reflective ratio is
decreased. The bulk polaritons occupy some continua in the

FIG. 7. The attenuated total reflective ratio vs frequency for various propagating angles. (a) is obtained from the transversely electric
incidence. The four sharp dips show the first DSMP for the four propagating angles and correspond to the four intersections of the dispersion
curves and the scanning line in Fig. 2(a), respectively. (b) comes from the transversely magnetic incidence. The five sharp dips demonstrate
the second DSMP for the five propagating angles and correspond to the five intersections between the dispersion curves and the scanning line
in Fig. 2(b), respectively.
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f-k space, but surface polaritons are isolated curves, so the
surface polaritons correspond to sharp dips on the ATR curves.
A sharp dip on an ATR curve corresponds to a fixed frequency
f and a definite wave vector k due to k = f

√
ε′ sin β. The

dip represents the relevant surface polariton if the point (k, f )
is just on the relevant dispersion curve. Figure 7(a) displays
four sharp dips for four propagating angles, respectively. We
recognize that the f and k values of each dip are just situated
on the intersections of the dispersion curves and the scanning
line in Fig. 2(a). It proves the real existence of the first DSMP.
However, the ATR method cannot be used to examine surface
polaritons with very large wave number, including magne-
tostatic modes or magnons. In this case, a light-scattering
technique should be applied. Figure 7(b) exhibits five sharp
dips for five propagating angles, respectively. We also find
that the f and k values of every dip just lie on the intersec-
tion of the corresponding dispersion curve and scanning line
in Fig. 2(b). Therefore, we also prove the existence of the
second DSMP. In addition, the ATR spectra demonstrate the
observability of DSMPs.

V. SUMMARY

We predicted one Dyakonov surface magnon and
two Dyakonov magnon-polaritons supported by an
antiferromagnet-air interface. The DSM is the magnetostatic
limit of the first DSMP, which are situated in the reststrahlen
frequency band of the antiferromagnet, more specifically in
the frequency range of μ1 < −1. The first DSMP possesses
large attenuation constants and a large wave vector so that
it is highly localized at the AF surface. Due to the very
small y component of its magnetic field, it is more similar
to a TE surface wave. The second DSMP lies outside the
reststrahlen band of the antiferromagnet and is specifically
localized in the frequency region of ε′ε−1

a > μ1 > 0. It has no
magnetostatic limit, unlike the first DSMP. In polarization, the
second DSMP is similar to neither a TE wave nor a TM wave.
Compared with the first DSMP, its attenuation constants are
relatively small. Both the DSMPs are hybrid-polarization
surface waves, composed of the two branches with different
polarizations in the AF. For the DSM, we have obtained
the simple analytic expressions of its magnetic field and
its attenuation constants. The DSM is a new magnon, i.e.,
a magnetostatic mode of hybrid polarization. We used the
ATR spectra numerically calculated to examine the DSMPs
obtained from the dispersion equation. According to their
polarization features, the first DSMP was examined by the
ATR spectra with TE incident radiation and the second
DSMP was demonstrated by the ATR spectra with TM
incident radiation. The results have proved the real existence
of the two DSMPs and the observability in experiment. The

DSM should be measured by means of a light-scattering
technique, and will be discussed in next work.
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APPENDIX

In the XYZ coordinate system with the Z axis as the AF
easy axis, the AF permeability without the external magnetic
field is a diagonal sector, and

B′ = ↔
μ′ · H′, (A1)

where B′ is the magnetic induction and H′ is the magnetic
field. According to the geometry in Fig. 1(a), we should trans-
fer Eq. (A1) into the expression in the xyz coordinate system
or

B = ↔
μ · H. (A2)

Therefore, the expression of
↔
μ in the xyz coordinate frame

is achieved with a rotation transferring of the diagonal sector
to be

↔
μ = μ0

⎛
⎝1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞
⎠

⎛
⎝μ1 0 0

0 μ1 0
0 0 1

⎞
⎠

×
⎛
⎝1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎞
⎠, (A3)

and further we find

↔
μ = μ0

⎛
⎝μ1 0 0

0 μ1cos2θ + sin2θ (μ1 − 1) sin θ cos θ

0 (μ1 − 1) sin θ cos θ μ1sin2θ + cos2θ

⎞
⎠,

(A4)

so the nonzero elements of the permeability sector in the xyz
coordinate system are

μxx = μ1, μyy = 1 + χcos2θ, μzz = 1 + χsin2θ, (A5)

μyz = μzy = χ sin θ cos θ, (A6)

where μ1 = 1 + χ and χ is the AF susceptibility defined in
the text.
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Belić, Engineered surface waves in hyperbolic metamaterials,
Opt. Express 21, 19113 (2013).

[12] E. Cojocaru, Comparative analysis of Dyakonov hybrid surface
waves at dielectric–elliptic and dielectric–hyperbolic media in-
terfaces, J. Opt. Soc. Am. B 31, 2558 (2014).

[13] S. V. Vonsovskii, Magnetism (Keter Publishing House
Jerusalem Ltd, Jerusalem, 1974), Vol. 2, Chap. 22.

[14] K. Abraha and D. R. Tilley, Theory of far infrared properties of
magnetic surfaces, films and superlattices, Surf. Sci. Rep. 24,
129 (1996).

[15] R. L. Stamps and R. E. Camley, Green’s function for antifer-
romagnetic polaritons, I. Surface modes and resonances, Phys.
Rev. B 40, 596 (1996).

[16] R. E. Camley and D. L. Mills, Surface-polaritons on uniaxial
antiferromagnets, Phys. Rev. B 26, 1280 (1982).

[17] M. G. Cottam and D. R. Tilley, Introduction to Surface and Su-
perlattice Excitations (IOP Publishing Ltd, Philadelphia, 2005),
Chaps. 6 and 9.

[18] M. R. F. Jensen, T. J. Parker, K. Abraha, and D. R. Tilley,
Experimental Observation of Surface Magnetic Polaritons in
FeF2 by Attenuated Total Reflection (ATR), Phys. Rev. Lett.
75, 3756 (1995).

[19] B. Luthi, D. L. Mills, and R. E. Camley, Surface spin waves in
antiferromagnets, Phys. Rev. B 28, 1475 (1983).

[20] R. Macêdo and R. E. Camley, Engineering terahertz surface
magnon-polaritons in hyperbolic antiferromagnets, Phys. Rev.
B 99, 014437 (2019).

[21] V. B. Silva and T. Dumelow, Surface mode enhancement of the
Goos-Hänchen shift in direct reflection off antiferromagnets,
Phys. Rev. B 97, 235158 (2018).

[22] K. Grishunin, T. Huisman, G. Li, E. Mishina, T. Rasing, A. V.
Kimel, K. Zhang, Z. Jin, S. Cao, W. Ren, G.-H. Ma, and R. V.
Mikhaylovskiy, Terahertz magnon-polaritons in TmFeO3, ACS
Photonics 5, 1375 (2018).

[23] R. H. Tarkhanyan, New class of surface magnon polaritons in
enantiomeric antiferromagnetic structures, Prog. Electromagn.
Res. B 39, 55 (2012).

[24] A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley &
Sons Inc., New York, 1984), Chap. 4.

[25] X.-Z. Wang and D. R. Tilley, Retarded modes of a lateral
antiferromagnetic/nonmagnetic superlattice, Phys. Rev. B 52,
13353 (1995).

[26] C. Jia, X.-Z. Wang, and S.-C. Lu, Effects of eddy currents
on retarded modes of antiferromagnet, Phys. Rev. B 59, 3310
(1999).

[27] X.-Z. Wang and H. Li, Nonlinear polaritons in antiferro-
magnetic/nonmagnetic superlattices, Phys. Rev. B 72, 054403
(2005).

045407-9

https://doi.org/10.1063/1.4997982
https://doi.org/10.1016/j.optcom.2015.06.026
https://doi.org/10.1088/1742-6596/1092/1/012033
https://doi.org/10.1364/OE.395594
https://doi.org/10.1016/j.optlastec.2019.106012
https://doi.org/10.1364/OE.21.019113
https://doi.org/10.1364/JOSAB.31.002558
https://doi.org/10.1016/0167-5729(96)00003-9
https://doi.org/10.1103/PhysRevB.40.596
https://doi.org/10.1103/PhysRevB.26.1280
https://doi.org/10.1103/PhysRevLett.75.3756
https://doi.org/10.1103/PhysRevB.28.1475
https://doi.org/10.1103/PhysRevB.99.014437
https://doi.org/10.1103/PhysRevB.97.235158
https://doi.org/10.1021/acsphotonics.7b01402
https://doi.org/10.2528/PIERB12010705
https://doi.org/10.1103/PhysRevB.52.13353
https://doi.org/10.1103/PhysRevB.59.3310
https://doi.org/10.1103/PhysRevB.72.054403

