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Recent progress in manipulating individual quantum systems has led to the development of quantum thermal
transistors, which control the thermal conductivity between two of its terminals according to an input signal on
its third terminal. With several models for individual thermal transistors already developed, the next natural step
is to investigate how multiple thermal transistors can interconnect to build useful composite devices. In elec-
tronics literature, the Darlington pair is a two-transistor configuration commonly used to construct electronic
amplifiers with higher gain than is possible with a single transistor. We create the electronic Darlington pair’s
thermal equivalent using two individual thermal transistors in a similar configuration. Unlike previously studied
models, multitransistor configurations like this contain internal transistor interconnections whose temperatures
cannot be biased externally but are determined by the individual transistors’ internal dynamics. We refine previ-
ous models to incorporate these transistor-transistor interactions and introduce an intermediate thermal bath to
facilitate the thermal energy exchange between the Darlington pair transistors. We investigate temperature-based
and optical field-based control strategies of the Darlington pair in terms of both steady-state and transient thermal
flow characteristics through numerical simulations. Under both control strategies, the thermal Darlington pair’s
steady-state performance exhibits superior thermal amplification, sensitivity, and thermodynamic efficiency
than an equivalent single thermal transistor. Our results closely mirror those expected from the corresponding
electronic Darlington pair. Hence, we envision that we may readily adapt the intermediate bath formalism we
developed in this work to translate a wide variety of useful electronic multitransistor configurations to their
thermal equivalents.
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I. INTRODUCTION

Recent years have witnessed significant developments
in engineering individual quantum systems that manipulate
optical, electrical, and thermal energy in the nanoscale.
These technologies have found wide-ranging applications
and are currently revolutionizing a variety of fields including
electronics [1,2], plasmonics [3–8], photonics [9–11], and
medicine [12].

Quantum thermal management involves nanoscale devices
and materials which transport, amplify, and control the flow
of thermal energy [13]. Strong interest in this area in the last
decade has seen the development of thermal rectifiers [14–16],
thermal transistors [16–24], optically controlled thermal gates
[25,26], and refrigerators [27,28], all fundamentally based
on quantum phenomena. Many experimental realizations of
these devices have been proposed using quantum dots, metal
nanoparticles, and superconducting circuits [17,29,30].

The thermal rectifiers and transistors mentioned above
are similar in behavior to their analogous electronic coun-
terparts, with temperatures replacing voltages and thermal
energy flows replacing electric currents. Accordingly, a
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thermal rectifier conducts heat under a particular temperature
gradient but acts like a thermal insulator when the gradient is
reversed. Similarly, a thermal transistor regulates the heat flow
between two of its terminals in response to the temperature of
its third terminal.

Over the years, a wide variety of simple quantum ther-
mal systems exhibiting transistor-action have been identified.
For instance, Joulain et al. [17] and Mandarino et al. [23]
demonstrated such behaviors in three strongly coupled two-
level systems (TLSs) interacting with three external thermal
baths. Guo et al. [20] identified transistor-action in a similar
three-qubit system under trilinear qubit interactions. Zhang
et al. [21,22] demonstrated that a system of three Coulomb
coupled quantum dots can also manifest these behaviors. A
different device made of a coupled qubit and qutrit has been
shown to also exhibit transistor-action in the thermal domain
in Ref. [19]. Majland et al. [29] further developed this abstract
theoretical model towards a concrete realization using super-
conducting circuits. The recent work in Wijesekara et al. [25]
expanded and improved the device in Ref. [17] to allow an
external optical field to control the transistor-action. Similar
optical control of thermal flows was achieved in Ref. [26]
using only a single qubit coupled to two thermal baths, albeit
with a significantly reduced control range and efficiency.

The electronic transistor has managed to revolutionize al-
most all areas of modern technology in a few short decades.
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FIG. 1. The system consists of two quantum thermal transistors
[17] S1 and S2 interconnected in a Darlington configuration. Each
thermal bath BP (where P = {H, N, I,C}) is characterized by its
temperature TP. The external optical field F on S1 allows for optical
control of the heat flows if necessary [25]. The energy flow rates
between the baths BP (or optical field F ) and the quantum transistors
are represented by the Js in the directions specified. (Inset) Block
diagram of an electronic Darlington pair built using BJTs.

A principal reason for this success was the capability of
multiple transistors when combined appropriately, to form
composite structures with enhanced transistor-action or even
entirely different behaviors. For instance, connecting two
electronic transistors as shown in the inset of Fig. 1 creates
a configuration commonly known as the Darlington pair [31].
This arrangement multiplies the individual transistors’ current
gains and builds a composite amplifier with a far superior
current gain than either of the constituent devices. Alterna-
tive configurations of two transistors can create various other
useful devices like logic gates, oscillators, and latches [32].
Integrating many transistors in different configurations has led
to the development of arithmetic elements, memory elements,
and many other devices that modern electronics thrive on.

It is not immediately obvious whether the above integra-
tion capability of electronic transistors is still present in their
thermal counterparts. That is, whether a thermal multitran-
sistor system built imitating a particular electronic transistor
configuration will have the same behaviors as expected from
the original design. The primary reason for this doubt is that
handling transistor-transistor interactions in quantum thermal
systems is not as simple as in electronics. To elaborate, all

previous models for individual thermal transistors had as-
sumed that their terminals’ temperatures are held constant
despite the thermal flows through the device. However, in a
multitransistor system, the temperature of internal transistor
interconnects depend mainly on the thermal flow characteris-
tics of the individual transistors and cannot be similarly fixed.
Hence, to properly handle these systems, we need to refine and
upgrade previous models to allow for varying temperatures
and identify mechanisms that properly mediate the thermal
energy exchange through internal transistor interconnects.
Subsequently, we must verify through numerical simulations
whether these systems perform similarly to their electronic
counterparts.

In this work, as a first step towards building multitransistor
thermal systems, we investigate the Darlington configuration
of two quantum thermal transistors. We choose this particular
configuration because it showcases the crucial interactions
at the internal transistor interconnects well while also being
simple enough to analyze and understand quickly.

This paper is organized as follows. In Sec. II, we introduce
our Darlington transistor system and review the two models
[17,25] we employ to characterize the individual transistors.
These two models allow each transistor to be controlled either
by a temperature or by an external optical field. We then
introduce our model for the internal interconnect between
the transistors and further discuss our method’s limitations,
advantages, and disadvantages. We conclude this section by
presenting a unified model for the whole Darlington system.
In Sec. III, we numerically simulate both our temperature-
controlled and optically controlled Darlington systems using
MATHEMATICATM. We provide codes for these simulations
in Ref. [33]. We compare the energy flow behaviors of our
Darlington pairs with those of corresponding single transistor
devices. We thereby demonstrate that the thermal Darlington
pairs are analogous to their electronic counterparts under our
intermediate bath method. In Sec. IV, we discuss the under-
lying mechanisms that generate these transistor behaviors and
the role our intermediate bath plays in facilitating the ther-
mal energy exchange between the two transistors. Finally, we
summarize our results and present our conclusions in Sec. V.

II. MODEL

In this work, we analyze the thermal flow control action of
a pair of quantum thermal transistors arranged in a Darlington
configuration [31]. In electronics literature, this configuration
is used ubiquitously to achieve greater amplification factors
and higher input impedances than is possible with a single
transistor.

In an electronic Darlington pair built using two NPN bipo-
lar junction transistors (BJTs), the emitter of the first transistor
is directly connected to the base of the second transistor, while
the collectors of both transistors are connected to the same
fixed voltage source as shown in the inset of Fig. 1. The elec-
tric current that needs amplification is fed into the base ter-
minal of the first transistor, while the output current is taken
out from the emitter terminal of the second transistor. This
configuration ensures that the current amplification of the first
transistor is compounded with that of the second. The whole
two transistor setup is typically grouped and analyzed together
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as a single three terminal device, which performs similarly to
a single transistor with far superior current gain.

Drawing inspiration from the electronic Darlington pair,
our quantum thermal system is arranged as shown in Fig. 1.
The three external thermal baths BH , BN , and BC performs
analogously to the collector, base, and emitter terminals
respectively of the electronic Darlington pair. The tempera-
tures TP and energy flow rates JP correspond respectively to
voltages and currents in the electronic case. Naturally, the
quantum thermal transistors S1 and S2 then map to the cor-
responding electronic transistor pair.

We employ models developed by Joulain et al. [17] and
Wijesekara et al. [25] to calculate the thermal flow rates
in each of these individual transistors. We shall discuss the
details of these devices extensively in the next section. For
now, it suffices to say that these three-terminal devices enable
controlling the heat flow rate through their top and bottom (as
in Fig. 1) terminals, in response to either the temperature of
the middle terminal [17], or the intensity of a properly tuned
optical field F incident upon the device [25].

The expected functionality of this composite system would
be to control the heat flow rate between BH and BC , in re-
sponse to either the temperature of the control thermal bath
BN , or the strength of the control optical field F . Naturally,
the temperature TH of the bath BH has to be higher than that
of BC , so that the thermodynamic tendency is for energy to
flow from BH to BC . However, the magnitude of that heat
flow depends upon the effective conductivity of the interme-
diate device, which we control using one of the mechanisms
mentioned above.

In the electronic case, the two transistors can be coupled
directly to each other by simply using an electrically conduct-
ing wire to connect the two terminals. However, we found that
directly coupling the two quantum thermal transistors with a
simple interaction Hamiltonian will not achieve the expected
result. As we shall see in Sec. IV, the energy flow between
the two transistors would be significantly attenuated under
a direct coupling because the energy levels associated with
the quantum energy exchange between the donor system S1

and the recipient system S2 is completely off-resonant. To
facilitate an efficient thermal energy transport through this
intermediate connection, it is hence necessary to have another
quantum system between the two transistors to bridge this gap
in energy levels.

In this work, we model this intermediate quantum system
as another thermal bath BI . We will discuss the consequences
of this choice, as well as other viable alternatives in Sec. II B.
Clearly, the temperature TI of this intermediate bath is deter-
mined by the internal dynamics of the individual transistors,
and is therefore not a free parameter of the model. This is
analogous to how the voltage of the intermediate terminal of
an electronic Darlington pair is not solely set by the external
bias, but depends also on the internal electric currents through
the individual transistors.

A. Modelling individual thermal transistors

The quantum thermal transistor model we use in this work
was first developed by Joulain et al. [17], and was subse-
quently extended by Wijesekara et al. [25]. The basic model in

[17] introduced a quantum device made up of three strongly-
coupled TLSs, denoted L, M, and R. These TLSs respectively
interacted with three thermal baths BL, BM , and BR with
temperatures TL, TM , and TR. Once the quantum system param-
eters were properly set and the temperatures biased such that
TL > TR, the device was capable of controlling the heat flow
rate from BL to BR based on the temperature TM of the middle
thermal bath. Increasing this temperature drastically increased
the heat flow rate through the device, effectively exhibiting a
transistor-action on the thermal flows.

The extension by Wijesekara et al. [25] added an external
coherent optical field F with frequency ωF incident upon
the device. By properly tuning the frequency and intensity
of the field, the optical interaction between the field and the
TLSs could be made to closely emulate the action of a high
temperature at BM . This modified the previous temperature-
controlled device into an optically controlled device, in that
the thermal flow rate from BL to BR was now regulated
in response to the strength of the optical field F . Follow-
ing electronics terminology, this new device was named an
optically controlled quantum thermal gate. The maximum
possible heat flows of the new device was several times larger
than that of the previous, though the energy efficiency was
considerably lower.

In this work, we employ the model developed in Ref. [25]
to characterize our individual transistors S1 and S2, since the
former model in Ref. [17] happens to be just a special case
of this when the optical field driving strength is set to zero.
That aside, we do note that there are other quantum thermal
transistor models developed in literature using different base
components [19,29] or different interactions [16,20–22,26].
Nevertheless, we believe that the intermediate bath method
we employ here can be easily adapted for those models too to
obtain similar results.

1. Deriving the Hamiltonian

Following Wijesekara et al. [25], each transistor is built
from three quantum TLSs, each of which can have one of
two possible quantum states, |↑S

Q〉 or |↓S
Q〉 for Q = {L, M, R}

and S = {S1, S2}. The full Hilbert space of each device is
spanned by the tensor product space of these three individual
TLSs, resulting in a combined quantum system with eight
eigenstates. These states are given by the eight possible kets
of the form

|�1�2�3
S〉 = ∣∣�1

S
L

〉 ⊗ ∣∣�2
S
M

〉 ⊗ ∣∣�3
S
R

〉
, (1)

where �= {↑,↓}. For ease of notation we enumerate these
eight states

|1S〉 = |↑↑↑S〉, |5S〉 = |↓↑↑S〉,
|2S〉 = |↑↑↓S〉, |6S〉 = |↓↑↓S〉,
|3S〉 = |↑↓↑S〉, |7S〉 = |↓↓↑S〉,
|4S〉 = |↑↓↓S〉, |8S〉 = |↓↓↓S〉. (2)
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The system Hamiltonian ĤS
sys of the transistor S is modelled

as

ĤS
sys = h̄

2

(
ωS

Lσ̂ L
z + ωS

M σ̂ M
z + ωS

Rσ̂ R
z

+ ωS
LM σ̂ L

z σ̂ M
z + ωS

MRσ̂ M
z σ̂ R

z + ωS
RLσ̂ R

z σ̂ L
z

)
, (3)

where h̄ is the reduced Planck constant, σ̂ Qs are the ap-
propriately expanded Pauli matrices [34], h̄ωS

Q is the energy
difference between the two eigenstates of the TLS Q, and
h̄ωS

Q1Q2
is the interaction energy between the TLSs Q1 and

Q2 for Q1, Q2 = {L, M, R}. For efficient operation, the sys-
tem parameters are usually chosen such that ωS

L ≈ 0, ωS
R ≈ 0,

ωS
RL ≈ 0, and ωS

LM ≈ ωS
MR � ωM � 0.

In Eq. (3), the qubit-qubit interactions of the transistor are
modelled under an Ising-type σz − σz coupling. Under this
type of coupling, the system Hamiltonian ĤS

sys is diagonal
in the basis made by the tensor product states in Eq. (1).
This ensures that the tensor product states are in fact the
energy eigenstates of the quantum transistor. Alternatively,
using an Ising-type σx − σx coupling would have introduced
off-diagonal elements into ĤS

sys, and the eight energy eigen-
states would have been superpositions of the tensor product
states. However, the transistor-action was demonstrated to
persist even under this type of coupling in Mandarino et al.
[23]. We preferred to employ the σz − σz model in this work
for its relative mathematical simplicity and intuitive appeal.

The Hamiltonians of the three baths and their interactions
with the TLSs of the quantum transistor are characterized ac-
cording to the Caldeira-Legett model [35] and are respectively
given by

ĤS,Q
bath =

∑
k

h̄ω
S,Q
k âS,Q

k

†
âS,Q

k (4)

and

ĤS,Q
sys-bath = h̄σ̂ Q

x

∑
k

gS,Q
k

(
âS,Q

k + âS,Q
k

†)
, (5)

where k enumerates a large number of thermal bath modes,
âS,Q

k is the annihilation operator on the bath mode with
frequency ω

S,Q
k , and gS,Q

k represents the coupling strength be-
tween this kth bath mode and the appropriate TLS. Note how
these thermal interactions allow each bath to only change the
quantum state of the TLS directly linked to it.

The external optical field F is modelled classically with its
electric field 	ES (t ) at the device S for time t given by

	ES (t ) = 	ES
0 cos ωS

F t, (6)

where | 	ES
0 | and ωS

F are respectively its amplitude and fre-
quency. Following the procedure outlined in Ref. [25], we set
ωS

F = ωS
M + ωS

LM − ωS
MR = ωS

M − ωS
LM + ωS

MR, and use the
dipole approximation to characterize the field-system interac-
tion and the rotating wave approximation (RWA) to further
simplify it. We thereby obtain the interaction Hamiltonian
between the optical field and the device as

ĤS
sys-field(t ) = −h̄

�S

2

(∣∣2S〉〈4S
∣∣ + ∣∣4S〉〈2S

∣∣
+ ∣∣5S〉〈7S

∣∣ + ∣∣7S〉〈5S
∣∣) (7)

in the interaction picture. Here �S = 	ES
0 · 	d
h̄ is the Rabi fre-

quency of the optical interaction while 	d is the dipole moment
of the TLS used for the dipole approximation above [36].
Because �S ∝ | 	ES

0 | and 	ES
0 represents the strength of the op-

tical field, we identify �S as a measure of the external field’s
influence on the internal dynamics of the quantum system S.
The total Hamiltonian ĤS of the transistor and its environment
now reads

ĤS =
(

ĤS
sys +

∑
Q

ĤS,Q
bath

)
+

(
ĤS

sys-field +
∑

Q

ĤS,Q
sys-bath

)
(8)

in the Schrödinger picture. In all subsequent derivations, we
work in the interaction picture defined in terms of the first and
second terms of the above Hamiltonian.

2. Lindblad formalism

Using the well-known Lindblad formalism [34], we can
now derive a quantum master equation for the reduced dynam-
ics of the 8 × 8 density matrix ρ̂S (t ) of the thermal transistor
device as

d ρ̂S (t )

dt
= − i

h̄

[
ĤS

sys-field(t ), ρ̂S (t )
] +

∑
Q=L,M,R

LS
Q[ρ̂S (t )] (9)

in the interaction picture. The Lindblad superoperator LS
Q[ρ̂]

which models the influence of bath Q on the transistor S takes
the form

LS
Q[ρ̂] =

∑
ω>0

[
J S

Q (ω)
(
1 + nS

Q(ω)
)(

ÂS
Q(ω)ρ̂ÂS†

Q (ω)

−1

2

{
ÂS†

Q (ω)ÂS
Q(ω), ρ̂

}) + J S
Q (ω)nS

Q(ω)

×
(

ÂS†
Q (ω)ρ̂ÂS

Q(ω) − 1

2

{
ÂS

Q(ω)ÂS†
Q (ω), ρ̂

})]
,

where ω runs through all allowed positive energy transitions
of the eight-level quantum system and

ÂS
Q(ω) =

∑
ε′−ε=h̄ω

�̂S (ε)σ̂ Q
x �̂S (ε′) (10)

with �̂S (ε) being the projection of ĤS
sys towards the eigenvalue

ε. Note how the ĤS
sys-field term is not included when defining

the projection operators �̂S (ε). The reasons for this choice
will become clearer in the next section when we discuss the
underlying assumptions in our models.

The temperature T S
Q of each thermal bath influences the

system dynamics via the distribution function

nS
Q(ω) = 1

exp
(

h̄ω

kBT S
Q

) − 1
, (11)

where kB is the Boltzmann constant. The nature of the ther-
mal bath is further characterized through its spectral density
function J S

Q (ω). In this work, we consider all baths to be
Ohmic with a Lorrentz-Drude cutoff [34,37–39], with the
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spectral density

J S
Q (ω) = κS

Qω
ω2

LD

ω2
LD + ω2

(12)

where ωLD is the cutoff frequency. Assuming the frequencies
of the individual transistors are much smaller than ωLD, we
ignore the Lorrentz-Drude cutoff factor and obtain

J S
Q (ω) = κS

Qω. (13)

The parameter κS
Q then directly modulates the strength of the

external thermal bath’s influence on the internal dynamics of
the quantum transistor S.

3. Model limitations

In deriving the quantum master equation in Eq. (9) we
invoked the Born, Markov and rotating wave approximations
[34,37]. Additionally, by ignoring ĤS

sys-field when formulat-
ing the projectors in Eq. (10), we implicitly considered the
field-system interactions to be weak enough that our quantum
system’s eigenstates remain unaffected by the presence of the
optical field. The assumptions associated with all these ap-
proximations turn out to be crucial in determining the regions
of validity of the method we develop to handle multitransis-
tor systems. Hence, at this point, we will briefly discuss the
limitations these approximations place upon our model.

The Born approximation assumes that the quantum states
of the thermal reservoirs are minimally affected by their
interactions with the quantum system. The Markov approx-
imation further assumes that bath correlations die down in
timescales τB much shorter than the timescales τR associated
with system density matrix evolution. Finally, when ignoring
fast-oscillating terms under the RWA, we implicitly assume
that the timescales τS associated with transitions between
energy eigenstates of the quantum system are much shorter
than τR [34].

It is generally understood that to satisfy these conditions,
the thermal baths need to have a large (ideally infinite) num-
ber of harmonic oscillator modes and a weak system-bath
coupling [40]. This effectively means that the thermal baths
have to be physically large enough to supply the heat flows to
the quantum system without significantly affecting their own
thermal properties. Since our model for the Darlington pair
introduces an intermediate thermal bath BI which is internal
to the device, this will place limitations on both the physical
size of the device as well as its speed of operation. We will
discuss these issues in more detail in Sec. II B.

Since the system-bath couplings are represented in the
master equation by the spectral densities J S

Q (ω), we can re-
formulate the above weak coupling condition as

� � J S
Q (�), (14)

where � represents the frequency scale associated with the
eigenvalues of ĤS

sys [26,40,41]. For the specific case of Ohmic
baths, this condition simplifies to 1 � κS

Q.
We introduced the optical interaction in Eq. (7) to sup-

port and enhance some of the thermally induced mechanisms
already present in the temperature-controlled version of the
transistor [17]. As such, we do not require the strength of this
optical interaction to go significantly beyond the strength of

the original transistor’s thermal interactions. Numerically, this
means that the scale of �S need only be large as the scale of
J S

Q (�) for our purposes. Together with our earlier condition
in Eq. (14), this results in

� � �S. (15)

As it happens, this condition essentially means that the optical
driving is not strong enough to significantly change the energy
levels or the thermal dissipation mechanisms of the quantum
system. We can easily verify this by noting that h̄� and h̄�S

represent the energy scale of ĤS
sys and ĤS

sys-field respectively.
This allows us to follow the paradigmatic strategy for deriving
the optical Bloch equations [42] and ignore the effects of
ĤS

sys-field when formulating the Lindblad superoperators for
the master equation. Ultimately, even though Eq. (15) came
about from us not needing too strong of an optical drive, it
nonetheless places an upper bound on how strong the drive
can be before our model starts getting inaccurate.

4. Dynamics of the density matrix

The reduced dynamics of our quantum thermal device can
be obtained by solving the master equation in Eq. (9) along
with the necessary initial conditions. Since ρ̂S (t ) is an 8 × 8
matrix, we will have a system of 64 coupled first-order differ-
ential equations to solve.

Luckily, the differential equations governing most of the
off-diagonal density matrix elements will have a form that will
ensure they eventually decay to zero irrespective of the initial
conditions. The only four off-diagonal elements to not do so
will be those under the influence of the external field F as
given in Eq. (7). The equations for these four density matrix
elements can be written in the compact form

ρ̇S
24 = γ S

42 − 1

2

(
βS,L

62 + βS,L
84 + αS,M

42

+βS,M
42 + αS,R

21 + αS,R
43

)
ρS

24,

ρ̇S
42 = γ S

24 − 1

2

(
βS,L

62 + βS,L
84 + αS,M

42

+βS,M
42 + αS,R

21 + αS,R
43

)
ρS

42,

ρ̇S
57 = γ S

75 − 1

2

(
αS,L

51 + αS,L
73 + αS,M

75

+βS,M
75 + βS,R

65 + βS,R
87

)
ρS

57,

ρ̇S
75 = γ S

57 − 1

2

(
αS,L

51 + αS,L
73 + αS,M

75

+βS,M
75 + βS,R

65 + βS,R
87

)
ρS

75, (16)

where

α
S,Q
jk = J S

Q

(
ωS

jk

)(
1 + nS

Q

(
ωS

jk

))
,

β
S,Q
jk = J S

Q

(
ωS

jk

)
nS

Q

(
ωS

jk

)
,

γ S
jk = i

�S

2

(
ρS

j j − ρS
kk

)
, (17)

and h̄ωS
i j = h̄(ωS

i − ωS
j ) represents the energy difference be-

tween the ith and jth eigenstates of the system Hamiltonian,
ĤS

sys. Here we have not indicated the explicit time dependence
of the density matrix elements for clarity.

045405-5



WIJESEKARA, GUNAPALA, AND PREMARATNE PHYSICAL REVIEW B 104, 045405 (2021)

Note how these off-diagonal elements are prevented from
decaying to zero by the γ S

jk terms, which in turn depend upon
the driving strength �S of the optical field. To get the more re-
stricted quantum transistor model of Ref. [17], we can simply
set �S = 0, in which case these four off-diagonal elements
decay to zero just like all the others. This would correspond to
the situation where the optical field F is absent and | 	ES

0 | = 0.
On the other hand, the equations for the eight diagonal

elements of the density matrix simplify to

ρ̇S
11 = +�S,L

51 + �S,M
31 + �S,R

21 ,

ρ̇S
22 = +�S,L

62 + �S,M
42 − �S,R

21 − ϒS
24,

ρ̇S
33 = +�S,L

73 − �S,M
31 + �S,R

43 ,

ρ̇S
44 = +�S,L

84 − �S,M
42 − �S,R

43 + ϒS
24,

ρ̇S
55 = −�S,L

51 + �S,M
75 + �S,R

65 − ϒS
57,

ρ̇S
66 = −�S,L

62 + �S,M
86 − �S,R

65 ,

ρ̇S
77 = −�S,L

73 − �S,M
75 + �S,R

87 + ϒS
57,

ρ̇S
88 = −�S,L

84 − �S,M
86 − �S,R

87 , (18)

where

�
S,Q
jk = J S

Q

(
ωS

jk

)((
1 + nS

Q

(
ωS

jk

))
ρS

j j − nS
Q

(
ωS

jk

)
ρS

kk

)
(19)

represents the transition rate from state | j〉 to state |k〉 induced
by the system-bath thermal interactions, and

ϒS
jk = i

�S

2

(
ρS

jk − ρS
k j

)
(20)

represents the transition rate from state | j〉 to state |k〉 induced
by the system-field optical interaction.

Solving this set of 12 first-order differential equations
along with the probability condition

Tr{ρ̂S} =
8∑

j=1

ρS
j j = 1, (21)

where Tr{X̂ } denotes the matrix trace, allows us to fully spec-
ify the density matrix evolution of the optically controlled
quantum gate developed in Ref. [25] from any initial condi-
tion. Setting �S = 0 and dropping the off-diagonal equations
allows the same for the quantum thermal transistor developed
in Ref. [17].

Once the density matrix ρ̂S (t ) at any given time t is known,
the expected value of any other observable Â(t ) at the same
time can be easily calculated through the elementary formula,

〈ÂS (t )〉 = Tr{ÂS (t )ρ̂S (t )}. (22)

5. Calculating thermal flows

Our analysis of these quantum devices in this work is
fundamentally based on the energy flow rates to and from
the different components of each quantum system. To obtain
expressions for these flow rates, we employ the principle of
energy conservation in the following way.

Since energy is always conserved, the rate of change of
the internal energy of any classical system has to equal its
net energy inflow from external sources. Incidentally, this

is simply a statement of the first law of thermodynamics.
When quantum systems are concerned, these exact quantities
are simply replaced by their corresponding expected values.
When applied to our quantum transistor S, this leads to the
continuity equation [15]

JS
F (t ) +

∑
Q=L,M,R

JS
Q(t ) = ∂

〈
ĤS

sys

〉
∂t

= Tr

{
ĤS

sys
d ρ̂S (t )

dt

}
, (23)

where JF and JQ denote the net energy inflows to the system
from the optical field and thermal bath Q respectively.

By using the master equation to substitute for d ρ̂S (t )
dt and

comparing similar terms we obtain the following expressions
for the energy inflows [15,17,25]

JS
F = −(

εS
24ϒ

S
24 + εS

57ϒ
S
57

)
,

JS
L = −(

εS
51�

S,L
51 + εS

62�
S,L
62 + εS

73�
S,L
73 + εS

84�
S,L
84

)
,

JS
M = −(

εS
31�

S,M
31 + εS

42�
S,M
42 + εS

75�
S,M
75 + εS

86�
S,M
86

)
,

JS
R = −(

εS
21�

S,R
21 + εS

43�
S,R
43 + εS

65�
S,R
65 + εS

87�
S,R
87

)
, (24)

where εS
i j = h̄ωS

i j represents the energy level difference be-
tween the eigenstates |i〉 and | j〉.

The Eqs. (16), (18), (21), and (24), along with some initial
conditions, form our model for analyzing the time-dependent
thermal behavior of any individual thermal transistor. For our
Darlington pair shown in Fig. 1, if the temperatures TH , TN ,
TI , TC , and optical field strength �F is known, we can use
these equations to find the heat flow rates through each of the
thermal transistors S1 and S2 starting from any initial density
matrix. However, since the temperature TI of the intermediate
bath happens to depend on the internal heat flows and is ini-
tially unknown, we cannot fully solve the system just utilizing
the individual transistor models alone.

B. Modelling the intermediate thermal bath

In earlier work on individual quantum transistors
[17,19,21,25,29], it was always assumed that the temperatures
of the external thermal baths were held constant at predeter-
mined values. This meant that the thermal baths were either
physically so large that the heat flows JQ in to the thermal
transistor hardly affected their temperatures, or that they had
other unmodelled interactions which maintained the bath tem-
perature in spite of these flows. In simple terms, the analysis
did not consider how the heat flows might raise or lower the
temperature of the thermal bath. Nevertheless, this did not
affect the validity of the thermal analysis since the thermal
baths were anyway external to the system of interest.

In our Darlington pair system, the external thermal baths
BH , BN , and BC certainly comply with the above assump-
tions. However, the intermediate thermal bath BI is completely
internal to the system under analysis and its temperature de-
pends upon the thermal flow rates of the individual transistors.
Hence, to model the thermal behaviors of BI , we first need to
find the relationship between its temperature TI and its average
internal energy EI

int. We can subsequently invoke the principle
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of energy conservation to relate EI
int to the relevant thermal

energy flow rates JI1 and JI2.
We begin by defining the heat capacity CI (TI ) of the ther-

mal bath at temperature TI as

CI (TI ) = dEI
int

dTI
. (25)

Using the previous characterization of the thermal bath in
Eq. (4) as an ensemble of quantum harmonic oscillators,
we can derive a theoretical expression for CI (TI ) following
the procedure outlined in the Appendix. Alternatively, for a
particular experimental realization of the intermediate ther-
mal bath, a more phenomenological expression for the heat
capacity may be obtained by considering its physical and
material properties. After CI (TI ) is fully characterized using
either method, the internal energy-temperature relationship of
the thermal bath may be obtained by integrating Eq. (25).

As energy is conserved within BI , the rate of change of
its average internal energy must equal the sum of its thermal
flow rates coming inwards from external sources, resulting in
the continuity equation

dEI
int

dt
= JI1 − JI2. (26)

Here JI1 is the energy flow rate from S1 to BI , and JI2 is the
energy flow rate from BI to S2 as shown in Fig. 1.

Combining Eq. (25) with Eq. (26) gives us the complete
model for characterizing the thermal behaviors of the inter-
mediate bath as

JI1 − JI2 = dEI
int

dTI

dTI

dt
= CI (TI )

dTI

dt
. (27)

The temperature of BI now varies with time, depending upon
the difference between the heat flows towards the two thermal
transistors.

1. Model limitations

Before further analysis, it is important first to discuss the
assumptions employed while deriving Eq. (27) and the physi-
cal conditions required for them to remain valid.

First of all, depending on the nature of the thermal bath,
its heat capacity CI may or may not depend upon its temper-
ature. However, most of our simulations in Sec. III will be
concentrating on the steady-state condition of our Darlington
pair system, after any transients due to an unbalanced initial
state have died out. Since dTI

dt = 0 anyway at the steady state,
the exact value of CI (or its temperature dependence behavior)
will not affect the steady-state solutions at all.

As we shall find in Sec. III B, the system will eventually
relax to this steady state regardless of the initial conditions as
long as the internal energy of the bath is an increasing function
of its temperature [i.e., CI (TI ) > 0], which is proven in the
Appendix to be always true. This is further clarified by the fact
that almost all known physical materials have positive heat
capacities [43].

Even though the final steady state is independent of CI , it
still determines the relaxation path the system follows to reach
that steady state. When we study the relaxation behaviors of
our system in Sec. III D, we will be assuming that CI is inde-

pendent of TI for simplicity. According to our discussion in the
Appendix, this assumption will be reasonable if the thermal
bath BI mainly contains low-frequency harmonic oscillators.

As discussed previously in Sec. II A 3, allowing BI to have
a finite heat capacity (and hence a finite physical size) could
affect the Born-Markov approximations used in deriving the
individual transistor models. For instance, an undersized bath
may mean that not enough bath oscillators are leftover in
BI to properly manifest Markovian dynamics. We refer the
interested reader to Rivas et al. [40] and Hofer et al. [41] for
an in-depth discussion on the validity of Born-Markov master
equations when the number of bath oscillators is finite.

To employ models developed assuming temperatures are
constant in a situation where they are actually changing, we
have to at least make sure that the timescale τT over which
a significant change in TI is observed is much longer than
the timescale τR associated with the thermal relaxation of an
individual transistor [i.e., τT � τR]. This condition will justify
a variant of the adiabatic approximation on each quantum
transistor. In simple terms, the previous model with fixed tem-
peratures can still be assumed valid because the temperatures
change only slightly in the timescale over which the individual
transistor operates.

By inspection, from Eq. (27), we can write an approximate
expression for the timescale τT as

τT ≈ CI (TI )
�TI

JI1 − JI2
, (28)

where �TI represents a small change in the temperature of
TI . On the other hand, τR can be approximated by numerically
simulating an individual quantum transistor and measuring the
time it takes to reach its steady state. The condition τT � τR

will then become an approximate minimum bound on the heat
capacity CI of the intermediate bath.

2. Model advantages and disadvantages

Unfortunately, the above τT � τR condition means that the
time it takes for the Darlington transistor pair to reach its
steady state will be considerably longer than that of a single
thermal transistor. In electronics terminology, the switching
speed of the thermal Darlington pair will be considerably
slower. In a broader context, this would be the main disadvan-
tage in almost every situation where we employ intermediate
baths for handling multitransistor systems.

On the other hand, the advantages of using this method
are numerous. First, the introduction of intermediate baths
divides the multitransistor system into blocks that can be
analyzed individually using existing models. Second, this
separability makes the method scalable for handling systems
made up of a large number of transistors. In contrast, any
method that analyzes multiple quantum transistors together
experiences an exponential increase of simulation complexity
due to the tensor products involved when combining different
Hilbert spaces. For example, combining two quantum transis-
tors with 8-dimensional Hilbert spaces each would result in a
64-dimensional compound Hilbert space. Since the number
of density matrix elements further squares the dimensionality
of the Hilbert space, the lack of computational scalability is
obvious. Thirdly, the conditions required of a thermal bath
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are generally easier to realize in physical systems than other
intermediary quantum systems (such as harmonic oscillators),
which generally needs careful tuning.

We finally note that there are nevertheless other quantum
systems that can act as intermediaries between two thermal
transistors. In fact, a single properly tuned quantum harmonic
oscillator or multilevel system shows promise in mediating
these interactions. However, since their theoretical treatment
is quite different from the method employed here, we will
present them separately in a future paper.

C. Combined system model

With the models for the individual components of the
Darlington pair system completely specified, we can begin an-
alyzing and simulating the dynamics of the full system. Since
we have both the temperature-controlled [17] and optically
controlled [25] versions for the individual transistors, we can
build two different composite systems.

If we are interested in building a Darlington pair con-
trolled by the temperature TN of the control bath BN , both
transistors need to be modelled after [17]. Setting �S = 0 in
Eq. (18) and ignoring Eq. (16), we will end up with 2 × 8
equations governing the dynamics of S1 and S2. Together with
Eqs. (21) and (27), this results in a set of 17 independent
first-order differential equations. We can numerically solve
these equations to obtain the time-evolution of the Darlington
pair system from any initial condition. As we shall see in next
few sections, once we fix TH at a high temperature and TC at a
low temperature, the thermal energy flow rate between BH and
BC will be controllable through appropriately adjusting TN .

On the other hand, a Darlington pair incorporating an
optically controlled transistor modelled after Ref. [25] will
have a slightly different configuration. Here, only the first
transistor will directly interact with the external field F , while
the second transistor will be optically shielded or off-resonant.
Hence, the second device will still be a temperature-controlled
device as before. Though this system does not match the
strictest definition of a Darlington pair, it will still make a
compound device which can function with far lower optical
field strengths at better efficiency than a single optically con-
trolled transistor. Since the first transistor will now have four
nonzero off-diagonal terms as given by Eq. (16), we will have
a total of 21 first-order differential equations for solving the
dynamics.

We note that there is a third configuration possible where
the optical field controls both transistors. However, with the
second transistor interacting with the input, this happens to be
quite different from a Darlington configuration. Accordingly,
we do not analyze this system in the main discussion but make
the results available at Ref. [33].

From observing Fig. 1, we can easily map the bath temper-
atures for S1 and S2 as follows:

T S1
L = TH , T S2

L = TH ,

T S1
M = TN , T S2

M = TI (t ),

T S1
R = TI (t ), T S2

R = TC . (29)

Consequently, the thermal energy flow rates read

JS1
L (t ) = JH1(t ), JS2

L (t ) = JH2(t ),

JS1
M (t ) = JN (t ), JS2

M (t ) = JI2(t ),

JS1
R (t ) = −JI1(t ), JS2

R (t ) = −JC (t ). (30)

Since the thermal bath BH provides thermal flows to both S1

and S2, its total flow rate JH (t ) is given by

JH (t ) = JH1(t ) + JH2(t ). (31)

For the optically controlled case, we additionally have �S1 =
�F , JS1

F = JF , and �S2 = 0. Furthermore, for simplicity we
assume all κS

Q to be equal

κS
Q = κ (32)

for Q = {L, M, R} and S = {S1, S2}. After specifying nu-
merical values for above temperatures and for transistor
parameters ωS

Q, ωS
Q1Q2

we will be in a position to start sim-
ulating the Darlington pair system.

III. SIMULATIONS AND RESULTS

In this section, we present and discuss the results ob-
tained from our numerical simulations of Darlington quantum
thermal transistor pairs for different system and environment
parameters. In all simulations, we work with SI units where
the reduced Planck constant is h̄ = 1.055 × 10−34 Js and the
Boltzmann constant is kB = 1.381 × 10−23 J/K.

A. Simulation parameters

The expected functionality of the Darlington pair is to
regulate the thermal energy flow from the thermal bath BH

to the thermal bath BC . As such, their respective temperatures
TH and TC have to be chosen such that TH > TC . In the current
state-of-the-art, the widest range of experimental technologies
for realizing these quantum devices, such as superconducting
circuits and circuit quantum electrodynamics, are available at
low temperatures [44–46]. In fact, the majority of recent theo-
retical and experimental work on quantum thermal systems
envision their operation at sub-Kelvin temperature ranges
[19,21,24,29,47]. Therefore, taking the temperature scale to
be in the milli-Kelvin range and the temperature ratio to reflect
values commonly used in the literature for individual tran-
sistor models [15,17,19,25], we set TH = 300 mK and TC =
30 mK in our simulations. This means that the temperature
TN of the third external bath BN should vary within the range
TN = [TC, TH ] = [30 mK, 300 mK].

For temperature-based control, TN will be varied within
this full range to regulate the heat flows. For optical control,
TN will instead need to be fixed at some bias temperature
beforehand. In our simulations, we choose this bias at TN =
TC = 30 mK. This will ensure that the thermal transistors will
be at their least conducting setting when the external optical
field is absent [i.e., �F = 0]. Additionally, this bias will be
easy to realize by simply connecting or merging the thermal
bath BN with BC .

Our next task is to specify the parameters ωS
Q and ωS

Q1Q2

of the individual transistors S1 and S2. Beforehand, we have
to identify the appropriate frequency scale � associated with
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the transistor energy levels. According to previous studies
[15,17,25], � depends upon the operating temperatures of the
setup through the relation

h̄� ≈ 5kBT . (33)

By substituting T ≈ 300 mK in this equation, the approxi-
mate scale for transistor frequencies can be derived as � ≈
3.12 × 1010Hz or � ≈ 1.96 × 1011rads−1.

With the frequency scale properly identified, we are now
in a position to fully specify the system parameters of S1 and
S2. For modeling all temperature-controlled quantum thermal
transistors, we will choose these parameters as

ωS
L = 0, ωS

LM = 0.9�,

ωS
M = 0, ωS

MR = 1.1�,

ωS
R = 0, ωS

RL = 0. (34)

On the other hand, the same parameters for all optically con-
trolled transistors will be

ωS
L = 0, ωS

LM = �,

ωS
M = 0.1�, ωS

MR = �,

ωS
R = 0, ωS

RL = 0. (35)

Furthermore, the bath-system coupling term κ will be
taken as

κ = 0.01 (36)

in keeping with our discussion in Sec. II A 3. As mentioned
previously, Eq. (34) will model S2 in the optically con-
trolled Darlington configuration, and both S1 and S2 in the
temperature-controlled configuration. Eq. (35) will model S1

in the optically controlled situation.
The optical field strength �S

F will be set to zero for
temperature-based control and will be varied as required for
optical control. From our simulations, we find that arbitrarily
increasing �S

F beyond a certain point will not have much
influence on the regulated heat flows. Borrowing electronics
terminology, it can be said that the transistor-action will even-
tually saturate at high optical driving strengths. Identifying
from the simulations when this saturation sets in, we will be
only varying �S

F within the range �S
F = [0, 0.7κ�]. Note that

our previous model condition in Eq. (15) is satisfied for this
whole �S

F range.
These chosen parameter values demonstrate the relevant

thermal regulation behaviors of each transistor type well,
while also simplifying the mathematics considerably. It must
be said however that the required transistor behaviors are
present for a wide range of system parameters, and that these
particular values are simply representative. By using different
values, different features and characteristics of the transistor,
such as the amplification factor, thermal efficiency or maxi-
mum possible heat flow, may be optimized. For the interested
reader, our MATHEMATICATM based code in Ref. [33] will
allow numerically simulating the Darlington pair for arbitrary
sets of system parameters.

B. Existence of steady-state solutions

Previous studies on individual quantum thermal transistors
have found that, if the bath temperatures and optical field
strengths are held constant, the quantum system always re-
laxes to a single stationary state from any initial state. Once
reaching this state, the elements of the density matrix, as
well as the thermal flow rates of the baths, will no longer be
varying with time. In fact, it is these steady-state heat flows
that demonstrate the reported transistor like behaviors.

It is not immediately obvious that just because individual
transistors have a steady-state solution, multitransistor sys-
tems like our Darlington pair should have a viable steady state
too. In a similar vein, the possibility of multitransistor systems
having multiple viable steady states cannot be discounted.
Hence, we begin with an investigation on whether there exist
steady-state solutions for the Darlington pair system, and if
they do, how many there are.

The typical process for finding steady-state solutions starts
with fixing all the system and environment parameters, includ-
ing the control parameters TN and �F . We then use Eqs. (21),
(24), (29), and (30) to substitute in our equations of motion,
namely Eq. (27) for the intermediate bath BI , and Eqs. (16)
and (18) for transistors S1 and S2. Taking the substituted
differential equations, we then assert

dρ
S1
i j (t )

dt
= 0,

dρ
S2
i j (t )

dt
= 0,

dTI (t )

dt
= 0, (37)

and drop any time dependence from the ρS
i j , TP and JP terms.

We then solve the resulting equations for TI , ρ
S1
i j and ρ

S2
i j to

get the steady-state density matrices, and finally use Eq. (24)
again to find the steady-state thermal flows.

While these equations are linear in the ρ
S1
i j terms, they will

have an exponential dependence on TI due to Eq. (11). This
will make it impossible to get a simple analytical solution for
the full set of equations. A potential workaround is to initially
fix the TI at a certain value, solve the now linear equations
for ρ

S1
i j and ρ

S2
i j , and finally calculate JI1 − JI2 in Eq. (27) to

verify whether dTI
dt is indeed zero. By sweeping TI through

the thermodynamically allowed range [TC, TH ], we can find
all possible solutions for the steady state.

Conceptually, this is equivalent to solving the transistors S1

and S2 individually while artificially holding TI constant, and
verifying whether the heat flows JI1 and JI2 are equal for that
particular TI . In Fig. 2, we have shown the different values
obtained for JI1 and JI2 while keeping �F and TN fixed and
sweeping TI through its full range. From the JI1 − JI2 graph, it
is quite obvious that only a single steady-state solution exists
for the system, at least within the TI = [TC, TH ] range.

Moreover, we can easily observe from Eq. (27) that, since
CI (TI ) > 0, positive (negative) values of JI1 − JI2 tend to in-
crease (decrease) TI . Together with the shape of the JI1 − JI2

graph in Fig. 2, this implies that any initial value for TI

eventually drifts to this single steady state as time goes on.
The speed of this drift will depend upon the magnitude of the
heat capacity CI of the intermediate thermal bath.

In Fig. 3, we present the steady-state values of TI obtained
while sweeping the control parameters TN or �F through
their full range. In both temperature and optically controlled
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FIG. 2. Steady-state heat flows to and from BI obtained from
individual transistor models when TI is artificially held constant
at different values. (Top) Temperature-controlled configuration for
control parameter TN = 0.4TH . (Bottom) Optically controlled con-
figuration for control parameter �F = 0.3κ�. All other parameters
are as given in Sec. III A.

situations, we see that a small increase in the input signal
leads to a significantly larger temperature increase for BI . In
brief, the second transistor experiences a strongly amplified
version of the initial input signal. Therefore it is natural for
the amplification factor of a thermal Darlington pair to be
significantly higher than that of a single transistor.

C. Thermal flow rates in the steady state

In the previous section, we established that the Darlington
transistor pair has only a single steady state, and that any
initial state eventually converges to that particular steady state
as long as the external environmental parameters are held
constant. Now we move on to analyzing these steady-state
energy flow behaviors in more detail.

For our analysis, we can think of the whole Darlington
transistor pair as a single three terminal device. Depending on
the control mechanism, either TN or �F can act as the input
signal, while the energy flow rates JN or JF correspondingly
make up the input “current.” For both mechanisms, the energy
flow rates JH and JC constitute the regulated output “current.”

1. Temperature-based control mechanism

In Fig. 4, we present the steady-state operating character-
istics of a Darlington pair with a temperature-based control
mechanism. The control parameter TN is varied in the range
[TC, TH ], and the corresponding input thermal flow JN and
output thermal flows JC and JH are recorded. We compare
these characteristic curves with those obtained by replacing

FIG. 3. Steady-state temperature TI of the intermediate bath BI

for the full control parameter range. (Top) Temperature-controlled
configuration while varying TN within the range [TC, TH ]. (Bottom)
Optically controlled configuration while varying �F within the range
[0, 0.7κ�]. All other parameters are as given in Sec. III A.

the Darlington pair with a single quantum thermal transistor
whose system parameters are given by Eq. (34).

We observe that increasing the input temperature TN results
in a corresponding increase of the output flows JC and JH . The
input thermal flow JN consumed by the device for this control
action is over a order of magnitude smaller than the regulated
thermal flows. Hence, it is quite obvious that our Darling-
ton pair performs as a high gain amplifier on the thermal
energy flows.

Compared to the single transistor, our Darlington pair
achieves higher output thermal flows while consuming far
lower input thermal flows for the whole temperature range.
Moreover, these high output flows are achieved at significantly
lower control temperatures. In short, the Darlington system
exhibits superior thermodynamic efficiency as well as supe-
rior sensitivity.

To further clarify these comparisons, we define the ther-
mal flow amplification factor βTe and temperature sensitivity
factor ηP

Te for our devices as

βTe = JH

JN
, ηP

Te = ∂JP

∂TN
. (38)

Since βTe measures the regulated thermal flow in terms of the
input thermal flow, it also represents the thermal efficiency
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FIG. 4. (Solid) Overall steady-state energy flow rates for the
external thermal baths BH , BN , and BC of the temperature-controlled
configuration of the Darlington pair system for TN = [TC, TH ] range.
(Dashed) For comparison, the same figures if the Darlington pair is
replaced with a single temperature-controlled thermal transistor [17].
All simulation parameters are as given in Sec. III A.

of the device. On the other hand, ηP
Te measures how sensi-

tive each thermal flow is to a slight increase in the input
temperature. Higher values of ηP

Te generally indicate a supe-
rior amplification action. In the electronic case, a Darlington
configuration is typically expected to square the amplification
factor of a single device [32].

From Fig. 5, we can observe that βTe is always signifi-
cantly larger in the Darlington pair compared to the single
transistor. Even in the low-temperature regime, the expected
amplification factor squaring is actually surpassed. Interest-
ingly, the thermal flow amplification becomes negative in
the TN ≈ [0.6TH , 0.85TH ] region, meaning that the device is
actually forcing energy backwards out of the input terminal.
This behavior is not uncommon for certain configurations of
these thermal devices [17,19]. After all, since TH > TN such
flows are not thermodynamically forbidden.

Figure 5 also shows that the sensitivity factors ηP
Te taper

off in the high temperature regime for both devices. This
saturation effect commonly emerges when the thermal flows
approach the maximum capacity of the amplifying device.
Since the Darlington pair naturally has higher thermal flows
and amplification, saturation is reached at a comparatively low
temperature.

All these results agree that the Darlington thermal tran-
sistor pair has superior thermal flow amplification, sensitivity
and thermodynamic efficiency than an equivalent single tran-
sistor. As discussed earlier, the price to pay for these superior
characteristics would be the slower switching speed and the

FIG. 5. (Solid) Thermal flow amplification factor βTe and ther-
mal flow sensitivity factor ηP

Te for the temperature-controlled
configuration of the Darlington pair system for TN = [TC, TH ] range.
(Dashed) For comparison, the same figures if the Darlington pair is
replaced with a single temperature-controlled thermal transistor [17].
All simulation parameters are as given in Sec. III A.

added complexity. Overall, the Darlington system is ideal
when the control signal TN varies only in the low-temperature
regime.

2. Optical field-based control mechanism

Similarly to the previous section, the characteristic curves
for steady-state energy flows, amplification factors and sensi-
tivity of the optically controlled Darlington pair is presented
in Figs. 6 and 7. The optical Rabi frequency �F now replaces
TN as the control parameter, and the optical energy flow rate
JF from the external driving field to the system is added to the
curves. The two factors introduced in Eq. (38) also need to be
slightly modified to fit the new control parameter as

βOp = JH

JF
, ηP

Op = ∂JP

∂�F
. (39)

Additionally, the comparison is performed against a single op-
tically controlled thermal gate modelled with the parameters
given by Eq. (35).

According to Fig. 6 the Darlington pair still operates as
an optically controlled gate, by regulating the majority heat
flows JH and JC in accordance with �F while consuming
very little energy from the optical field. Moreover, it achieves
this flow regulation at much lower optical field strengths than
the individual device. Consequently, it also reaches saturation
faster, as evidenced by the ηP

Op characteristics in Fig. 7. The
thermal efficiency figures are considerably higher too, at least
up until saturation sets in.
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FIG. 6. (Solid) Overall steady-state energy flow rates for the
external optical field F and the thermal baths BH , BN , and BC of
the optically controlled configuration of the Darlington pair system
for �F = [0, 0.7κ�] range. (Dashed) For comparison, the same
figures if the Darlington pair is replaced with a single optically
controlled thermal gate [25]. All simulation parameters are as given
in Sec. III A.

However, unlike in the previous temperature-controlled
case, the optically controlled Darlington system is not su-
perior to its single device counterpart across all figures of
merit. Specifically, in Fig. 6, we can see how the single device
begins to outperform the Darlington pair in terms of the reg-
ulated thermal flows in the high �F regime. In fact, when the
single device finally reaches saturation at around � = 3κ�,
the values for JH and JC is almost four times that of the
corresponding saturation values for the Darlington pair. The
reason for this behavior is that the optically controlled devices
naturally have superior maximum flow capabilities than the
temperature-controlled devices, as discovered earlier in [25].
In the Darlington pair, the regulated heat flow always has to
go through the transistor S2. Since S2 is still controlled by a
temperature, the whole system will have inferior maximum
heat flows.

The critical advantage of the Darlington pair over an in-
dividual transistor for the optically controlled case is that the
required operational Rabi frequency range has decreased con-
siderably from [0, 3κ�] to around [0, 0.3κ�]. Furthermore,
the thermal flow rates, efficiency and sensitivity are superior
within this reduced �F range. The obvious disadvantage, in
addition to those discussed previously, is the inferior maxi-
mum thermal flows.

Incidentally, these trade-offs for both control mechanisms
exactly match those observed in corresponding electronic
configurations. Perhaps the most important result of this dis-

FIG. 7. (Solid) Thermal flow amplification factor βOp and
thermal flow sensitivity factor ηP

Op for the optically controlled con-
figuration of the Darlington pair system for �F = [0, 0.7κ�] range.
(Dashed) For comparison, the same figures if the Darlington pair
is replaced with a single optically controlled thermal gate [25]. All
simulation parameters are as given in Sec. III A.

cussion is the evidence it gives that results from electronic
multitransistor systems may be directly carried over to their
thermal counterparts under the intermediate bath formalism.

D. Transient characteristics

Before concluding this section, we want to briefly inves-
tigate how the Darlington pair responds to a sudden change
in the input parameter. We specifically want to see how the
relaxation time compares to the single transistor device and
how the properties of the intermediate bath affects it. To keep
our discussion short, we will only analyze the optically con-
trolled configuration. For simplicity, we have also assumed
that the heat capacity CI of the intermediate bath is a constant
independent of the temperature TI .

In Fig. 8, we present a time-domain analysis of when our
systems experience a sudden change in the input optical field.
These time domain behaviors were obtained by numerically
solving the Eqs. (16), (18), (21), and (27). Initially both sys-
tems are stable at their respective steady state for �F = 0.
Once the optical field is suddenly increased to �F = 0.5κ�,
both systems fluctuate for a while before eventually converg-
ing to a new steady state.

Naturally, the single transistor must converge faster than
the Darlington pair. The time it takes to converge to its
steady state can be used to approximate the individual tran-
sistor relaxation timescale τR we previously introduced in
Sec. II B 1. On the other hand, the time the Darlington pair
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FIG. 8. Transient characteristics of the optically controlled Dar-
lington pair (solid) and its corresponding single transistor (dashed)
when optical Rabi frequency is suddenly increased from �F = 0
to �F = 0.5κ�. (Top) CI = 20kB. (Bottom) CI = 40kB. All other
simulation parameters are as given in Sec. III A.

takes to relax depends upon the heat capacity CI of BI . We can
clearly see from Fig. 8 that higher heat capacities mean that
the system takes longer to reach its steady state. Incidentally,
this relaxation time can be used to approximate τT in Eq. (28),
since TI fluctuates in the same timescales as JI1 − JI2.

As mentioned previously, the validity of our time-domain
analysis critically depends upon the condition τT � τR. It
is therefore obvious that reducing CI to the point that both
systems have similar convergence rates would make the model
itself invalid. From this result, we can infer that the Darlington
pair necessarily has to be slower than a single transistor. That
aside, we also established earlier that steady-state solutions
are valid regardless of the value of CI . These seemingly con-
tradictory conclusions can be resolved by observing that it is
only the transient behaviors that are made invalid when τT ap-
proaches τR. Simply put, the devices will eventually approach
the same steady state, but through a different pathway than
predicted by our intermediate bath formalism.

IV. FUNCTIONALITY OF THE INTERMEDIATE BATH

In this section, we briefly discuss the role of the inter-
mediate bath BI in facilitating the thermal energy exchange
between the two transistors. We believe an intuitive under-
standing of these underlying mechanisms will be helpful to
inspire further research into other quantum systems that can
serve as intermediaries between quantum thermal devices.
For our discussion, we will choose the temperature-controlled
configuration of the Darlington pair, mainly because both
transistors being identical makes the analysis simpler.

FIG. 9. The state and transition rate diagrams [25] of the two
individual thermal transistors in the steady state of the temperature-
controlled Darlington pair. The control bath temperature is set at
TN = 0.4TH , corresponding to a partially conducting state of the
Dalington pair. The intermediate bath temperature at the steady state
is found to be TI ≈ 0.7TH . All other simulation parameters are as
given in Sec. III A.

We employ the state and transition diagrams introduced
in Ref. [25] to visualize the steady-state operation of each
transistor. In Fig. 9, we show these diagrams for a typical
steady-state operating condition where the control tempera-
ture TN is large enough to allow a moderate thermal flow
through the Darlington pair.

The eight nodes in each diagram of Fig. 9 represent the
eight energy levels of the corresponding thermal transistor.
The relative size of the grey circles on each node represents
the steady-state population ρS

j j of that energy level. The nodes
are arranged in the vertical axis according to their energy,
while the horizontal axis is there simply for clarity. Note how
the parameter choices in Eq. (34) creates a twofold degeneracy
in the eight energy states. While this is not crucial for the
transistor operation, it simplifies our discussion since now
there is effectively only four energy levels for each transistor.

The colored arrows between the different nodes represent
the transition rates �

S,Q
jk in Eqs. (18) and (19). The color

of each arrow indicates which thermal bath Q the particular
transition is induced by, its direction points to the direction of
the population flow, and its thickness represents the magnitude
of the transition rate. Within this graphical formalism, the
transition rates �

S,Q
jk are interpreted as “flows” of popula-

tions between the nodes while the node sizes are interpreted
as the “volume” of populations in each energy eigenstate.
Consequently, the steady-state condition can be verified by
noting how the arrow thicknesses coming in and going out of
each energy node are equal, which ensures that its population
remains unchanged.

Any arrow pointing upwards in the energy axis entails an
absorption of energy from the corresponding thermal bath,
since the transistor moves from a low-energy state to a
high-energy state. Conversely, a downward pointing arrow is
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associated with an energy release to the respective thermal
bath. According to Eq. (24), the total energy flow rate JS

Q of
any thermal bath Q is calculated by taking the product of
each transition rate �

S,Q
jk with its corresponding energy level

difference εS
jk , and summing it over all transitions associated

with that bath. Therefore we can easily estimate any JS
Q from

these diagrams by considering the vertical lengths, directions
and thicknesses of all the arrows with the appropriate color.

Interestingly, these diagrams offer an intuitive explanation
of almost every aspect of the quantum thermal transistor
mechanism. We refer the reader to Wijesekara et al. [25] for a
more detailed discussion. Here, we are concentrating only on
the role of the intermediate bath BI .

From the orange arrows of Fig. 9, we can clearly see that
BI drives the transitions

T S1
1 = |↓↓↑S1〉 → |↓↓↓S1〉,

T S1
1 = |↑↑↓S1〉 → |↑↑↑S1〉,

T S1
2 = |↓↑↑S1〉 → |↓↑↓S1〉,

T S1
2 = |↑↓↓S1〉 → |↑↓↑S1〉 (40)

in S1, and the transitions

T S2
1 = |↓↓↓S2〉 → |↓↑↓S2〉,

T S2
1 = |↑↑↑S2〉 → |↑↓↑S2〉,

T S2
2 = |↓↓↑S2〉 → |↓↑↑S2〉,
T S2

2 = |↑↑↓S2〉 → |↑↓↓S2〉 (41)

in S2. Note that we have used the same symbol T S
i to denote

transitions which are effectively equivalent due to the previ-
ously mentioned energy level degeneracy.

We can safely ignore T S1
1 and T S2

1 since these transition
rates (i.e., thicknesses of the arrows) are much smaller than
both T S1

2 and T S2
2 . We now see that the functionality of the

thermal bath BI is twofold. First, it encourages the downward
T S1

2 transition by absorbing excess thermal energy from the
first transistor S1. Second, it encourages the upwards T S2

2
transition by providing the required energy to S2. The steady
state is achieved when BI absorbs as much energy from S1 as
it releases to S2. The precise temperature TI that achieves this
balance is therefore the steady-state temperature of BI .

An insightful reader might observe that the T S1
2 transition

has a much larger energy gap than the T S2
2 transition. For

the specific system parameters in Fig. 9, these gaps amount
to 1.1h̄� and 0.2h̄� for T S1

2 and T S2
2 respectively. This ef-

fectively means that the energy released by S1 in a single
downward quantum jump of the T S1

2 transition is much larger
than the energy S2 can absorb in a single upward jump of the
T S2

2 transition.
This brings to light the most important function of the in-

termediate bath. It absorbs a relatively large amount of energy
from S1 in a single quantum jump of the T S1

2 transition, and
then proportions that energy out in small pieces to S2 over
the course of multiple quantum jumps of the T S2

2 transition. In
essence, it functions as an energy divider in the quantum scale.

We are now in a position to expand upon our earlier claim
that a direct coupling between S1 and S2 will not facilitate

an efficient thermal transport. Any direct coupling between
S1 and S2 must still contend with the large energy difference
between the donor transition T S1

2 and recipient transition T S2
2 .

To use a different terminology, the coupling between S1 and S2

will have to transfer energy under a significantly off-resonant
condition. Typically, the coupling strengths will have to be
increased at least to ultrastrong levels to overcome the off-
resonance issue. However, by that point the energy levels of
the two quantum systems will be so severely affected that
they can no longer be expected to function as two individual
thermal transistors.

This is exactly why we need a third quantum system in the
middle to handle the above mentioned proportioning of energy
and bypass the off-resonance problem. Our intermediate bath
has two important properties which allows it to act efficiently
as the intermediary. First, it is made up of a large number
of quantum harmonic oscillators, so that both T S1

2 and T S2
2

transitions will have to be resonant with at least some of them.
Second, any energy that is absorbed into the bath is quickly
distributed (i.e., thermalized) among its oscillators. The first
property streamlines the energy exchange between the two
transistors and the bath, while the second supports efficient
thermal energy transport within the bath.

Before concluding this section, we note that there may
be other quantum systems beside a thermal bath which can
handle this type of energy transport. For instance, a properly
tuned quantum harmonic oscillator or a multilevel system may
be capable of jumping up multiple energy levels while absorb-
ing a large energy from S1, and release that energy in parts
to S2 over the course of several relaxation steps. We believe
the intuitive mechanisms we described here will assist future
researchers in identifying and engineering such systems.

V. CONCLUSIONS

This paper investigated two quantum thermal transistors
arranged in a Darlington pair configuration in terms of its ther-
mal behaviors. We investigated two possible control schemes
for the Darlington pair. In the temperature-controlled config-
uration, we used the temperature TN of an external thermal
bath BN as the control signal. Alternatively, in the optically
controlled configuration, the Rabi frequency �F of an ex-
ternal optical field F was used. We employed the previously
developed temperature-controlled thermal transistor [17] and
optically controlled thermal transistor [25] models to sim-
ulate the individual transistors. The whole configuration’s
expected functionality was to control the thermal energy flow
rate between the external thermal baths BH and BC by the
input signal.

Unlike quantum devices investigated in previous work, the
Darlington pair contained two individual transistors exchang-
ing thermal energy through an internal interconnection. It was
quite difficult to directly couple the two transistors using a
simple interaction Hamiltonian in a manner that facilitated a
strong thermal energy transfer. This was because the energy
levels of the two transistors which mediate this transfer were
significantly off-resonant to each other. Hence, to facilitate the
necessary thermal flow through this intermediate junction, we
introduced another thermal bath BI in between the two tran-
sistors. After developing a model to characterize the thermal
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flow through this intermediary bath, we numerically simulated
both the Darlington pair’s steady-state and transient thermal
flow behaviors.

Our detailed analysis revealed that if the external tempera-
tures and optical fields are held constant, the Darlington pair
always relaxed to a single steady state regardless of the initial
condition. Analyzing this steady-state behavior, we found that
both the temperature-controlled and optically controlled con-
figurations delivered the expected functionality of regulating
the thermal flows between BH and BC .

For the temperature-controlled configuration, the Dar-
lington pair regulated larger thermal flows at lower input
temperatures than an equivalent single thermal transistor. Fur-
ther analysis showed that the thermal Darlington pair had
significantly larger thermal flow amplification, better tem-
perature sensitivity, and superior thermodynamic efficiency.
Alternatively, for the optically controlled configuration, the
thermal Darlington pair managed to regulate the output ther-
mal flows while requiring only a fraction of the optical field
strength demanded by an equivalent single optical thermal
transistor. Similarly, the sensitivity and thermodynamic effi-
ciency of the thermal Darlington pair were superior in this
reduced input range. However, the Darlington pair saturated
at lower thermal flow levels than a single thermal transistor,
leading to reduced maximum regulated thermal flows and
efficiency in the high �F regime.

These results closely resemble the functionality expected
of a Darlington pair in electronics literature. In summary,
a thermal Darlington pair modeled after an electronic Dar-
lington pair showed similar characteristics to the electronic
case under our intermediate bath formalism. By generalizing
this result, future researchers may directly translate electronic
multitransistor configurations to their thermal counterparts
using this intermediate bath formalism.

A general weakness of using intermediate baths between
transistors was the considerable slowing of the composite de-
vice’s operational speed. The root cause for this was identified
as the adiabatic approximation required when incorporating
changing temperatures into the individual transistors’ models.
A potential workaround would be to use a smaller quantum
system than a thermal bath as the intermediary between the
two devices. A single quantum harmonic oscillator or a multi-
level system looks promising in properly mediating the energy
flow. Investigation into such scenarios is left as a potential
future extension of this work.
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APPENDIX: DERIVING THE ENERGY-TEMPERATURE
RELATION OF THE INTERMEDIATE BATH BI

Following the well known Caldeira-Legett model [35], the
intermediate thermal bath BI is modelled as an ensemble
of quantum harmonic oscillators. According to Eq. (4), its

Hamiltonian Ĥ I
bath reads

Ĥ I
bath =

∑
k

h̄ωI
k âI

k
†
âI

k, (A1)

where âI
k is the annihilation operator of the kth harmonic

oscillator with fundamental frequency ωI
k . Since the bath is

assumed to be under a thermal distribution, its density matrix
ρ̂I is given by

ρ̂I =
exp

(
− Ĥ I

bath
kBTI

)
Tr

{
exp

(
− Ĥ I

bath
kBTI

)} , (A2)

where kB is the Boltzmann constant and TI is the temperature
of BI .

The average internal energy EI
int of the thermal bath is the

expected value of its Hamiltonian [34]. We can calculate this
expected value using the elementary relation given in Eq. (22),
resulting in

EI
int = 〈

Ĥ I
bath

〉 =
Tr

{
Ĥ I

bath exp
(
− Ĥ I

bath
kBTI

)}
Tr

{
exp

(
− Ĥ I

bath
kBTI

)} . (A3)

Working in the number basis with respect to each harmonic
oscillator, the trace of any operator Î reads

Tr{Î} =
∞∑

N1=0

· · ·
∞∑

Nk=0

. . . 〈N1 . . . Nk . . .|Î|N1 . . . Nk . . .〉,

where Nk denotes the occupation number of the kth oscillator.
Calculating the two traces in Eq. (A3) and simplifying

gives us the relationship between the temperature and the
average internal energy of the thermal bath as

EI
int =

∑
k

h̄ωI
k

exp
(

h̄ωI
k

kBTI

)
− 1

. (A4)

Substituting for EI
int in Eq. (25) and carrying out the differen-

tiation results in the relation

CI (TI ) = kB

∑
k

(
h̄ωI

k

kBTI

)2 exp
(

h̄ωI
k

kBTI

)
[
exp

(
h̄ωI

k
kBTI

)
− 1

]2 . (A5)

We cannot simplify this equation further without fully speci-
fying the frequency distribution (i.e., distribution of the ωI

ks)
of the harmonic oscillator ensemble. However, we can still get
some important results for several limiting cases.

First of all, we can easily see that CI (TI ) > 0 for any oscil-
lator distribution. Furthermore, letting ωI

k go towards zero for
all k gives us

lim
ωI

k→0
CI (TI ) = kBkmax, (A6)

where kmax is the number of oscillators in the thermal
bath. This means that if the ensemble mostly contains low-
frequency oscillators (i.e., h̄ωI

k � kBTI ), the heat capacity
will be approximately independent of temperature. In that
case, the internal energy will have a linear relationship to the
temperature, and EI

int ∝ TI .
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