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Enhancement in tunneling density of states in a Luttinger liquid: Role of nonlocal interaction
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Power-law suppression of local electronic tunneling density of states (TDOS) in the zero-energy limit
is a hallmark of the Luttinger liquid (LL) phase of the interacting one-dimensional electron system. We
present a theoretical model which hosts the LL state with the surprising feature of enhancement rather
than suppression in local TDOS originating from nonlocal and repulsive density-density interactions. Im-
portantly, we find enhancement of TDOS in the manifold of parameter space where the system is stable
in the renormalization group (RG) sense. We argue that enhancement of TDOS along with RG stability is
possible only when the system has broken parity symmetry about the position of local TDOS enhancement.
Such a model could be realized on the edge states of a bilayer quantum Hall system where both intralayer
and interlayer density-density interactions are present mimicking the role of local and nonlocal interactions,
respectively.
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I. INTRODUCTION

It is well known that the amplitude of electron tunnel-
ing into a Luttinger liquid (LL) state exhibits power-law
suppression in the zero-energy limit owing to its non-Fermi-
liquid behavior [1–9]. The suppression can be attributed to
many-body orthogonality, which is akin to an orthogonal-
ity catastrophe discussed in the context of a LL [10–18],
and it can be understood as follows. When an electronlike
quasiparticle (with vanishingly small energy) tunnels locally
into the LL prepared in its ground state, interelectron inter-
actions lead to a significant rearrangement of all the other
electrons constituting the LL state, which results in an excited
state which is orthogonal to the corresponding ground state
hence leading to the suppression of the tunneling process
itself. This is a direct consequence of the fact that the low-
energy excitation spectrum of a LL is devoid of electronlike
quasiparticles [19–25].

It is worthwhile to explore possibilities of departure from
the observed suppression, which is treated as a hallmark of the
LL phase, and this is the main idea behind the present study.
Here, we obtain an enhancement of local tunneling density of
states (TDOS) in the LL phase. We present a minimal setup
that allows for such an enhancement in TDOS of a LL. It
should be noted that in the bulk of a LL, any deviation from
suppression is unlikely to take place due to the above-stated
argument of the orthogonality. However, in the local neigh-
borhood of the boundary between two LLs, we may be able to
realize a situation where such deviations could occur. Hence,
with the goal of finding a deviation from suppression, in this
paper, we consider a geometry involving the junction of two
chiral LLs [26–28]. The junction of multiple LLs [29–56],
whether chiral or nonchiral, has been an area of theoretical
interest owing to the rich physics associated with various fixed
points that they host and belongs to the realm of the general

topic of quantum impurity problems in low-dimensional elec-
tronic systems.

In an earlier study [45] involving one of the present au-
thors along with others, it was shown that the exotic fixed
points of a three-wire junction can lead to an enhancement
of electron TDOS in the vicinity of the junction when the
LL parameter K is tuned to the repulsive interelectron interac-
tion limit, i.e., K < 1. The origin of this TDOS enhancement
was attributed to the reflection of a hole current [35] from
the three-wire LL junction due to interaction effects. A con-
cern that remained is that the fixed points which allowed
for an enhancement were unstable to relevant perturbation
in the renormalization group (RG) sense and may not be of
direct interest for experimental exploration. In a follow-up
work, the spin degree of freedom was incorporated for the
three-wire LL junction [52]; however, the issue of stability
remained. Recently, a density-matrix renormalization group
(DMRG) study was carried out by one of the present authors
along with others which demonstrated a TDOS enhancement
for the three-wire junction but again for an unstable fixed
point [56].

Actually, it is quite logical that all the fixed points depicting
TDOS enhancement in the vicinity of the LL junction are
unstable fixed points if the junction is symmetric. To un-
derstand this point, let us consider a hypothetical situation
consisting of a two-LL wire junction tuned to a disconnected
fixed point. The RG flow for the TDOS for each individual
wire in the vicinity of the junction decides the rate at which the
tunneling amplitude of an electron into the individual wires
diverges or gets suppressed in the zero-energy limit (E → 0).
In the presence of a weak tunneling amplitude between the
two wires, the net current flowing from one wire to another,
in the linear response limit, is proportional to the product
of the TDOSs of the two wires at the junction. In order
for the disconnected fixed point to be stable against weak
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interwire electron tunneling perturbation, the tunneling cur-
rent between the two wires must vanish in the zero-bias limit.
This, in the RG sense, implies that the interwire tunneling
operator is an irrelevant perturbation. Hence the stability of
the disconnected fixed point along with simultaneous TDOS
enhancement is achieved only when the rate at which TDOS
gets suppressed in one of the wires is more than the rate at
which TDOS is enhanced in the other wire as E → 0, i.e.,
simultaneous TDOS enhancement and stability are always
accompanied by breaking of parity symmetry between the
two wires about the junction. This symmetry breaking can
be achieved by having different intrawire interactions in the
two wires.

In this paper, we consider a fixed point of junction between
two chiral LLs for exploring TDOS enhancement where the
two chiral edge modes could belong to two distinct quantum
Hall (QH) states. This is theoretically equivalent to having a
single quantum point contact (QPC) in a Hall bar geometry
forming a tunnel junction between the left and the right region,
each of which in principle could host a distinct quantum Hall
state surrounded by its own chiral edge states. Such a setup
is simple from a theoretical perspective owing to the fact that
a junction between two chiral LLs can host only two fixed
points (a connected fixed point and a disconnected fixed point
[29,57]), unlike the three-wire case, which hosts a family of
fixed points [35,39,45].

Furthermore, we are interested in exploring how nonlocal
density-density interaction between edge states belonging to
the two sides of a QPC influences the TDOS. One way to
simulate such interactions is to consider a situation where we
fold the two-dimensional system about the QPC to form a bi-
layer system [58–61] and then consider local (in the folded 1D
coordinate system) interlayer and intralayer edge interaction
as shown in Fig. 1. As discussed above, to host a fixed point
that is stable and at the same time also shows TDOS enhance-
ment, we need to break the junction symmetry. We explore
two different ways of breaking the symmetry (i) by having
a junction between the chiral LLs belonging to two layers
such that each layer has a different filling fraction or, (ii) if
the filling fraction is same, then by introducing asymmetric
intralayer edge interaction.

II. INTERACTING QH EDGE HAMILTONIAN

Consider the situation of a bilayer interacting QH system
with filling fractions ν1 and ν2 on the two layers as depicted

FIG. 1. Stacking of bilayer QH states with filling fraction ν1 and
ν2 exposed to a uniform magnetic field with a local tunnel coupling
at the apex which is denoted by S. The top left panel shows the
zoomed-in view of the unfolded version of the bilayer QH edge
states. The bottom panel shows the α, β, and γ interactions between
chiral QH edge states. Here, the subscript “I ′′ and “O′′ stand for
the fields flowing into the junction and the fields flowing out of the
junction, respectively. “I ′′

1/2,I/O stand for the currents on the incoming
and outgoing edges.

in Fig. 1. To begin with, we consider repulsive density-density
interactions between the edges such that it poses a symmetric
situation about the junction and is parametrized by α, β, and
γ , where α is the interaction between the counterpropagating
edge states in the same QH states (intralayer interaction), β

is the interaction between the copropagating edge states of
the different QH states (interlayer interaction), and γ is the
interaction between the counterpropagating edge states of the
different QH states (interlayer interaction).

The Hamiltonian for QH edge states can be described
in terms of bosonic fields. The fermionic field ψI/O for
the electron on the edge can be expressed in terms of the
bosonic fields φI/O using the standard bosonization formula
[19,21,23–25,29,62] as ψI/O ∼ FI/O exp(iφI/O/ν), where sub-
script I (O) describes in (out) fields. Here, in” (“out”) is
used to index the chiral fields which flow into the junction
(out of the junction). FI/O are the corresponding Klein fac-
tors for in/out fields. Then the bosonized interacting edge
Hamiltonian describing our setup is given by

H = h̄πvF

∫ ∞

0
dx

[(
ρ2

1I + ρ2
1O

ν1

)
+

(
ρ2

2I + ρ2
2O

ν2

)
+ 2α

(ρ1Iρ1O

ν1
+ ρ2Iρ2O

ν2

)

+ 2β√
ν1ν2

(ρ1Iρ2I + ρ1Oρ2O) + 2γ√
ν1ν2

(ρ1Iρ2O + ρ1Oρ2I )

]
, (1)

where ρi,I/O = ±(1/2π )∂xφi,I/O and they represent the elec-
tronic density operator for the in/out bosonic fields corre-
sponding to filling fraction νi of the ith QH layer (i ∈ {1, 2}).

vF is the Fermi velocity, which has been taken to be the same
on all the edges. Note that the interaction parameters α, β, and
γ are scaled appropriately in the above Hamiltonian so that
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the transformation which diagonalizes the above Hamiltonian
stays algebraically simple. We use the folded basis to describe
the junction such that all the QH edge states lie between x = 0
and x = ∞ with the junction positioned at x = 0. We applied
the appropriate fixed-point boundary condition on the “in” and
the “out” fields at the junction. The interacting Hamiltonian
given in Eq. (1) along with the boundary condition describes
the total system. In what follows we will closely follow the
diagonalization procedure for the above Hamiltonian as was
done in Ref. [63]. To begin with, we can rewrite Eq. (1) in a
compact form as

H = h̄vF

4π

∫ ∞

0
dx ∇φ̄T (x) K ∇φ̄(x), (2)

where the matrix K is given by

K =

⎛
⎜⎜⎜⎝

1 β −α −γ

β 1 −γ −α

−α −γ 1 β

−γ −α β 1

⎞
⎟⎟⎟⎠ (3)

and is written in the basis �̄(x, t ), which is given by

(φ̄1, φ̄2, φ̄3, φ̄4)(x,t ) =
(

φ1O√
ν1

,
φ2O√

ν2
,

φ1I√
ν1

,
φ2I√
ν2

)
(x,t )

. (4)

Then at t = 0, the mode decomposition for the field φ̄a is
given by

φ̄a(x) =
∫ ∞

0

dk

k

[
c̄a,keiεakx + c̄†

a,ke−iεakx
]
, (5)

where a ∈ {1, 2, 3, 4}, with εa = +1 for a = {1, 2} (for
the outgoing field) and εa = −1 for a = {3, 4} (incoming

field). The commutation relation for the bosonic anni-
hilation and creation operator is given by [c̄a,k, c̄†

b,k′ ] =
δabkδ(k − k′), which is consistent with the commutation re-
lation of the bosonic field in the real-space basis φ̄(x)
given by [φ̄a(x), φ̄b(y)] = iπεaδabsgn(x − y). Since the re-
lation between original interacting fields φi,I/O and the
transformed field φ̄a is given by Eq. (4), the anni-
hilation operators ciI/Ok of the φiI/O field and c̄ak of
the φ̄a field are also related as (c1Ok, c2Ok, c1Ik, c2Ik ) =
(
√

ν1 c̄1k,
√

ν2 c̄2k,
√

ν1 c̄3k,
√

ν2 c̄4k ), where νi is the filling
fraction of the ith QH layer.

Let the interacting φ̄(x, t ) field be related to the Bogoliubov
field φ̃(x, t ) through a real matrix X , such that

φ̄(x, t ) = X φ̃(x, t ), (6)

where

φ̃α (x, t ) =
∫ ∞

0

dk

k

(
c̃α,keiεαk(x−ṽαt ) + c̃†

α,ke−iεαk(x−ṽαt )
)
, (7)

where α ∈ {1, 2, 3, 4} and εα = sgn(ṽα ). c̃αk (c̃†
αk) is

the bosonic annihilation (creation) operator for the αth
Bogoliubov mode, with commutation relations as
[c̃αk, c̃†

βk′ ] = δαβkδ(k − k′) and [c̃αk, c̃βk′ ] = 0, and this is

consistent with [φ̃α (x), φ̃β (y)] = π iεαδαβsgn(x − y).
From Eq. (2), the Heisenberg equation of motion for the

bosonic fields is given by

d

dt
φ̄a(x, t ) = −v f εa

4∑
α=1

Kaα

d

dx
φ̄α (x, t ). (8)

Using Eqs. (6) and (7) in Eq. (8), we have

4∑
α=1

[∫ ∞

0

dk

k
(ikεα )

(
Xaα ṽα − v f εa

4∑
b=1

KabXbα

)(
c̃αkeik(x−ṽαt ) − c̃†

αke−ik(x−ṽαt )
)] = 0. (9)

Equation (9) implies that

v f

4∑
b=1

εaKabXbα = Xaα ṽα. (10)

Now we can solve for the Xaα and the ṽα by
solving the above equation. The ṽα’s are given by
±

√
(1 − β )2 − (α − γ )2 and ±

√
(1 + β )2 − (α + γ )2, with

a + (−) sign for the out (in) free field. The bosonic excita-
tions are stable if the ṽα’s are real. In order for new fields to
satisfy the bosonic commutation relations, we must impose
the following normalized condition:

4∑
α=1

εaεαXaαXbα = δab,

4∑
a=1

εaεαXaαXaβ = δαβ. (11)

Once we have obtained the X matrix, then for all (x, t )
we have

φ̄a(x, t ) =
4∑

α=1

Xaαφ̃α (x, t ),

φ̃α (x, t ) =
4∑

a=1

εaεαXaαφ̄a(x, t ). (12)

The interacting bosonic field operator c̄ak and the Bogoli-
ubov field operator c̃αk are related as

c̄ak =
4∑

α=1

Xaα

(
Paα,+c̃αkei(εα−εa )kx + Paα,−c̃†

αke−i(εα+εa )kx
)
,

c̃αk =
4∑

a=1

Xaα

(
Paα,+c̄akei(εa−εα )kx − Paα,−c̄†

ake−i(εa+εα )kx
)
,

(13)
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where the projection operator is given by Paα,± =
(1 ± εaεα )/2. Let φ̄O/I , φ̃O/I be doublets such that φ̄O =
(φ̄1, φ̄2), φ̄I = (φ̄3, φ̄4) and φ̃O = (φ̃1, φ̃2), φ̃I = (φ̃3, φ̃4).
Also, ṽ1 = −ṽ3 > 0 and ṽ2 = −ṽ4 > 0. Then, we can
express Eq. (6) as(

φ̄O

φ̄I

)
(x,t )

=
(

X1 X2

X3 X4

)(
φ̃O

φ̃I

)
(x,t )

, (14)

where the Xi’s are 2 × 2 matrices. Now, the original in-
coming fields φiI and outgoing field φiO are related to each
other through a boundary condition at the junction (x = 0).
The boundary condition is expressed as the current splitting
matrix S, which corresponds to the different fixed points of
the junction, such that(

φ1O

φ2O

)
(x=0,t )

= S

(
φ1I

φ2I

)
(x=0,t )

,

(
φ̄1

φ̄2

)
(x=0,t )

= M−1SM

(
φ̄3

φ̄4

)
(x=0,t )

= S̄

(
φ̄3

φ̄4

)
(x=0,t )

, (15)

where M is a 2 × 2 matrix, with Mi j = √
νiδi j and S̄ =

M−1SM. From Eqs. (14) and (15), we have(
X1 φ̃O + X2 φ̃I

)
(x=0,t ) = S̄

(
X3 φ̃O + X4 φ̃I

)
(x=0,t ),

(X1 − S̄X3)φ̃O (x=0,t ) = (S̄X4 − X2)φ̃I (x=0,t ), (16)

φ̃O (x=0,t ) = (X1 − S̄X3)−1(S̄X4 − X2)φ̃I (x=0,t ), (17)

which can be translated to finite values of x using the follow-
ing relation:

φ̃O(x, t ) = (X1 − S̄X3)−1(S̄X4 − X2)φ̃I (−x, t ). (18)

Here, we have used the fact that in our setup the incoming
fields are left-moving fields (see Fig. 1). Now, using Eq. (14)
and the relation between the φ̄a and φa fields, we have

φO(x, t ) = M
[
T1φ̃I (−x, t ) + T2φ̃I (x, t )

]
,

φI (x, t ) = M
[
T3φ̃I (−x, t ) + T4φ̃I (x, t )

]
,

(19)

where

T1 = X1(X1 − S̄X3)−1(S̄X4 − X2),

T2 = X2,

T3 = X3(X1 − S̄X3)−1(S̄X4 − X2),

T4 = X4. (20)

Hence we have expressed all the interacting bosonic fields in
terms of the tilde fields [Eq. (19)], which are free, and this
will be used to calculate TDOS and scaling dimensions of
tunneling and backscattering operators that could be switched
on at the junction for RG analysis. Before we conclude this
section, it should be noted that for the setup considered here,
there are only two allowed fixed points [28,29] and, hence,
two possible S matrices, which are given by

S1 =
(

1 0
0 1

)
, (21)

S2 = 1

ν1 + ν2

(
ν1 − ν2 2ν1

2ν2 ν2 − ν1

)
, (22)

where S1 is the fully reflecting disconnected fixed point and S2

is the strongly coupled fixed point. For ν1 	= ν2, the S2 fixed
point may allow for incident current to be partially reflected
as a hole current.

III. POWER-LAW DEPENDENCE OF TDOS

The electronic TDOS [45,57] at energy E at the position x
is given by

ρ(E ) = 2π
∑

n

| N+1〈n|ψ†(x)|0〉N |2 δ(EN+1
n − EN

0 − E ),

where EN+1
n , |n〉N+1 and EN

0 , |0〉N are the energy eigenval-
ues and eigenstates corresponding to the nth excited state
of the (N + 1)-electron system and the ground state of the
N-electron system, respectively, for the interacting Hamil-
tonian given in Eq. (1) subjected to appropriate boundary
conditions (S1 or S2) and ψ†(x) is the electron creation oper-
ator at position x. In particular, we will be calculating TDOSs
only for the outgoing edge as they only carry interesting in-
formation about the fixed point to which the junction is tuned.
Hence, to obtain the TDOS in terms of the bosonic field, we
rewrite it as

ρi(E ) =
∫ ∞

−∞
〈0|ψiO(x, t )ψ†

iO(x, 0)|0〉e−iEt dt,

which in terms of the bosonic fields φiO reads as

ρi(E ) ∼
∫ ∞

−∞
dt〈0|ei φiO (x,t )

νi e−i φiO (x,0)
νi |0〉e−iEt .

Here, we have suppressed the subscript representing the
number of electrons in the ground state given by |0〉 for no-
tational convenience. Using Eq. (19), we evaluate the above
expression in two limits, (i) at the junction (x = 0) and
(ii) far from the junction (x → ∞). In both these limits,
TDOS has a pure power-law dependence of the form of
E (�i−1). The TDOS power law at the junction (x = 0) is
denoted by �0

i , and far from the junction, x → ∞ is denoted
by �∞

i (for details, see Appendix A). After a straightforward
algebra, the TDOS exponent at the junction is found to be
given by

�0
i = 1

νi

2∑
j=1

([T1]i j + [T2]i j )
2, (23)

while far from the junction it is given by

�∞
i = 1

νi

2∑
j=1

(
[T1]2

i j + [T2]2
i j

)
. (24)

TDOS in the zero-energy limit is enhanced when �i − 1 < 0,
is marginal when �i = 1, and is suppressed when �i − 1 > 0.
Our primary focus is to study �0

i , but before we go ahead, we
briefly discuss �∞

i . �∞ does not depend on the fixed point
that we impose at the junction but gets modified only by the
bulk interaction between the edges, and it always corresponds
to suppressed TDOS irrespective of the interaction strength
which is expected from standard LL physics [45]. The explicit
form for the TDOS exponent �∞

i corresponding to our model
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considered in Eq. (1) is given by

�∞
i = 1

2νi

(
1 − β√

(1 − β )2 − (α − γ )2

+ 1 + β√
(1 + β )2 − (α + γ )2

)
. (25)

Note that in the α, β, γ → 0 limit we recover the expected
1/ν power-law suppression of TDOS for an edge of the frac-
tional quantum Hall state [33]. The power law of 1/ν is also
recovered when only α, γ → 0 while β 	= 0, due to the fact
that the nonzero β corresponds to a pure forward scattering
interaction and hence can result only in the renormalization
of Fermi velocity but cannot influence the power law of the
TDOS. One should also note that even in the absence of
tunneling between the edges at x = 0, the very presence of
interaction parameters α, γ breaks translational invariance
along the edge while β alone does not affect translational
invariance as expected.

IV. STABILITY OF THE FIXED POINT

In this section, we obtain a general expression for the
scaling dimension of various tunneling and backscattering
operators which can be switched on at the junction, where
the scaling dimension being greater (less) than unity corre-
sponds to an irrelevant (relevant) operator and being equal to
1 corresponds to being marginal. There are two possible fixed
points for the junction described in Fig. 1: (i) The first one
is the disconnected fixed point, where the tunneling between
the two layers at x = 0 is fully suppressed. Hence the most
important perturbation to be analyzed as far as the RG stability
of the junction is concerned is the electron tunneling operator
between the two layers at x = 0. (ii) The second one is the
strong tunneling fixed point, where the two layers are strongly
coupled at x = 0 and, hence, the most important perturbation
to be analyzed as far as the RG stability of the junction is
concerned is the quasiparticle backscattering operator in each
layer at x = 0.

Furthermore, it should be noted that the relation between
the scaling dimensions of tunneling operators, which can be
switched on at the junction as a perturbation, and the TDOS
in the immediate vicinity of the junction (x → 0) is not a
simple relation, which one might naively expect. To under-
stand this point, let us consider the disconnected fixed point
to be specific. In this case, the scaling dimension of interlayer
tunneling operators is dictated by the correlation function
given by G = 〈0|ψ†

e,1O(0) ψe,2I (0) ψ
†
e,2I (t ) ψe,1O(t )|0〉, while

the TDOS in each of the individual edge states is governed
by the correlation functions g1 = 〈0|ψ†

e,1O(0, 0)ψe,1O(0, t )|0〉
and g2 = 〈0|ψ†

e,2I (0, 0)ψe,2I (0, t )|0〉. Here, the subscript “e”
corresponds to the electron operator, while we will use “qp”
for the quasiparticle operator and the subscript 1,2 stand
for the layer index. Hence one might expect that G = g1g2

for the disconnected fixed point leading to a simple relation
between TDOS and the stability of the junction. However,
G 	= g1g2 owing to the fact that one has interlayer interactions
such that the ground state of the full edge Hamiltonian, |0〉,
does not decompose onto the direct product of the ground
states of the edge Hamiltonian of individual layers, i.e.,

|0〉 	= |0〉1|0〉2 even for the disconnected fixed point. This
fact plays an important role in the interplay of stability of a
fixed point and TDOS enhancement via the various nonlocal
interaction terms.

The expressions for scaling dimension of backscattering
and tunneling operators are straightforward to calculate using
Eq. (19) and are given below:

(1) The intralayer quasiparticle backscattering operator
ψ

†
qp,iO(0)ψqp,iI (0) has a scaling dimension given by dO,I

ii =
dI,O

ii = 1
2

∑2
k=1(�k

B,i )
2, where

�k
B,i = √

νi(T3 + T4 − T1 − T2)ik . (26)

(2) The interlayer electron tunneling operator
ψ

†
e,iO(0)ψe, jI (0) has a scaling dimension given by

dO,I
i j = dI,O

ji = 1
2

∑2
k=1(�k

T, ji )
2, where

�k
T,i j = 1√

νi
(T3 + T4)ik − 1√

ν j
(T1 + T2) jk . (27)

(3) The interlayer electron tunneling operator
ψ

†
e,iO(0)ψe, jO(0) has a scaling dimension given by

dO,O
i j = dO,O

ji = 1
2

∑2
k=1(�k

T,i j )
2, where

�k
T,i j = 1√

νi
(T1 + T2)ik − 1√

νi
(T1 + T2) jk . (28)

(4) The interlayer electron tunneling operator
ψ

†
e,iI (0)ψe, jI (0) has a scaling dimension given by

dI,I
i j = dI,I

ji = 1
2

∑2
k=1(�k

T,i j )
2, where

�k
T,i j = 1√

νi
(T3 + T4)ik − 1√

νi
(T3 + T4) jk . (29)

V. SIMULTANEOUS TDOS ENHANCEMENT AND
STABILITY OF S1 FIXED POINT

The explicit form of the TDOS exponent corresponding to
the disconnected fixed point S1, denoted by �0

i,S1
, is evaluated

on one of the two outgoing QH edge states of the bilayer
system and is given by

�0
i,S1

= 1

2νi

(√
1 + α − β − γ

1 − α − β + γ
+

√
1 + α + β + γ

1 − α + β − γ

)
.

(30)

We note that though interlayer interactions do exist, the
TDOS in each layer only depends on the filling fraction (νi)
of the respective layer and not on that of the other layer.
We will see later that this is not the case for the S2 fixed
point. It is also clear from the above expression that in-
creasing α monotonically increases �0

i,S1
, which leads to the

suppression of TDOS. When β and γ are zero in the above
expression, �0

i,S1
reduces to (1/νi )

√
(1 + α)/(1 − α), where√

(1 + α)/(1 − α) is nothing but the inverse of the standard
LL parameter [64] which is known to suppress the TDOS and
the factor 1/νi leads to additional suppression owing to the
presence of a fractional QH edge state [33]. Also, it was dis-
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FIG. 2. The schematic pictures on the left show the unfolded version of the S1 junction fixed point of bilayer QH states exposed to a uniform
magnetic field. For a junction of ν1 = 1 and ν2 = 1/3 tuned to the S1 fixed point, (a) and (b) each show three density plots corresponding to �0

S1

and dS1 and the region of simultaneous TDOS enhancement and stability as we move from left to right in each row for α = 0 and α = 0.02,
respectively. (c) shows �0

S1
and dS1 and the region of simultaneous TDOS enhancement and stability as we move from left to right in the

row for α = 0.02. The third plot in this row indicates that the region of simultaneous TDOS enhancement and stability is mutually exclusive
in this case.

cussed earlier that the effect of β alone is trivial as it represents
the forward scattering interaction. Hence the enhancement
of TDOS is expected to be induced by the presence of a
finite γ .

To have a closer look at the interplay of various interac-
tion parameters leading to the enhancement of TDOS, we
carry out a small α, γ expansion of �0

i,S1
(α, β, γ ) around

(α = 0, β, γ = 0) to leading order and obtain

�0
i,S1

� 1

νi

(
1 + α − βγ

1 − β2

)
. (31)

From now onwards, we will only consider the case of
repulsive electron-electron interactions, i.e., α, β, γ > 0. Fur-
thermore, we focus on a specific case for exploring the
possibility of observing enhancement of TDOS (i.e., �0

i,S1
<

1) for a junction of a ν1 = 1 and ν2 = 1/3 QH system. This
case could be of relevance as in this case we break the
layer symmetry (which is necessary for the observation of
simultaneous TDOS enhancement and stability of the junc-
tion) by choosing distinct ν for each layer and both ν = 1
and ν = 1/3 represent a quantum Hall state which depicts
prominent plateaus in experiments [65–67]. It is expected that

TDOS enhancement for the ν2 = 1/3 edge will be practically
impossible due to strong suppression arising from the 1/ν

term in �0
i,S1

, and hence we focus on the ν1 = 1 edge only.
Equation (31) implies that TDOS enhancement for the ν1 = 1
edge will be possible only if β γ > α in the small α, γ limit,
which implies that the magnitude of α, β, and γ has to follow
a specific hierarchy for TDOS enhancement. However, most
importantly, this inequality points to the fact that interaction
parameters γ and β are essential for TDOS enhancement
while α is not (i.e., α can be zero). This point is demonstrated
numerically in Fig. 2, where the first plot in Fig. 2(a) shows
enhancement of the TDOS in the β-γ plane around the origin
whereas the first plot in Fig. 2(b) shows that the region of
TDOS enhancement starts shrinking as we turn on small but
finite α.

As far as the stability of the S1 fixed point (FP) is
concerned, the most relevant operators are the interlayer
single-electron tunneling operators, which are to be con-
sidered for the analysis because the scaling dimension of
backscattering operators is dI,O

11 = dI,O
22 = 0 for all α, β, γ

as expected. Also note that for the S1 FP, dI,O
12 = dO,I

12 =
dI,I

12 = dO,O
12 = dS1 . We obtain the expression for dS1 , which is
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FIG. 3. The schematic pictures on the left show the unfolded version of the S1 junction fixed point of bilayer QH states exposed to a
uniform magnetic field. For a junction of ν1 = 1 and ν2 = 1 states tuned to the S1 fixed point with asymmetric α in two layers, (a) shows three
density plots corresponding to �0

S1
and dS1 and the region of simultaneous TDOS enhancement and stability as we move from left to right in

the row for β = 0.6 and γ = 0.4. Here, region A shows the interaction parameters for which TDOS is enhanced on both the edges. Region B
(C) shows interaction parameters for which TDOS for the ν1 (ν2) QH edge is enhanced and the junction is stable simultaneously. For a junction
of ν1 = 1 and ν2 = 1/3 tuned to the S1 fixed point, in the presence of symmetric interactions, (b) shows three density plots corresponding
to �0

S1
and dS1 and the region of simultaneous TDOS enhancement and stability as we move from left to right in the row for γ = 0.4. Here,

regions A, B, and C in the rightmost plots correspond to (�0
S1

> 1, dS1 > 1), (�0
S1

< 1, dS1 > 1), and (�0
S1

< 1, dS1 < 1), respectively. Region
B shows the interaction parameters for which the TDOS is enhanced and the junction is stable simultaneously.

given by

dS1 = 1

4

(√
1 + α − β − γ

1 − α − β + γ

(
1√
νi

+ 1√
ν j

)2

+
√

1 + α + β + γ

1 − α + β − γ

(
1√
νi

− 1√
ν j

)2
)

. (32)

Note that dS1 is a function of both symmetric and anti-
symmetric combination of

√
ν1 and

√
ν2. The presence of

antisymmetric combination indicates that the broken layer
symmetry (ν1 	= ν2) results in an additional contribution to
the scaling dimension which is connected to the essential
requirement for tuning simultaneous TDOS enhancement and
stability. It is also clear from the above expression that the
junction gets more and more stable as we increase α; that
is, increasing α leads to monotonically increasing dS1 . Hence
finite α has an adverse effect on simultaneous TDOS enhance-
ment and stability as its presence, on one hand, leads to greater
stability but, on the other hand, suppresses the enhancement
of TDOS.

Similar to the expansion of �0
i,S1

above, we now pertur-
batively expand dS1 about (α = 0, β, γ = 0) to obtain the
following expression:

dS1 � ν1 + ν2

2 ν1ν2

(
1 + α − βγ

1 − β2
+

(
2
√

ν1ν2

ν1 + ν2

)
αβ − γ

1 − β2

)
. (33)

Consider the specific case of ν1 = 1 and ν2 = 1/3 which
was previously discussed in the context of �0

i,S1
, where

a TDOS enhancement was observed on the ν1 = 1 edge
when α = 0. For this case, with α = 0, we obtain dS1 �
2 − 2γ (β + √

3)/(1 − β2) using the above equation, which
implies that even for small β and γ , dS1 > 1, implying a
simultaneous TDOS enhancement and stability. This fact is
demonstrated clearly in the second and the third plots in
Fig. 2(a). Furthermore, the third plot in Fig. 2(b) shows how
the region of simultaneous TDOS enhancement and stabil-
ity shrinks as we turn on a small but finite α. This study
established the fact that breaking of layer symmetry by tak-
ing ν1 	= ν2 may lead to TDOS enhancement in one of the
two layers while ensuring stability of the fixed point as was
argued in the Introduction. For a finite α also, we do find
simultaneous TDOS enhancement and stability provided we
proportionately increase the strength of the other interactions,
but this is harder to see from the analytic expressions. Hence
we have performed a numerical analysis to demonstrate that it
is indeed possible, which is depicted in Fig. 3(b).

Now, consider the case when ν1 = ν2 = 1, so that �0
1 =

�0
2 = �0

S1
. When (β = γ = 0), dS1 = �0, which is due to the

fact that the ground state of the system can be written as the
direct product of the ground states of individual QH layers. In
the presence of intralayer interaction (β, γ ), �0

S1
and dS1 both

modify themselves, and dS1 acquires an additional contribu-
tion such that dS1 = �0

S1
+ (αβ − γ )/(1 − β2), which is due

to the fact that the ground states of the two QH layers are now
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entangled in the presence of nontrivial (β, γ ). Also note that
in the presence of only copropagating edge interaction β (with
α = γ = 0), the ground state of the two QH layers is still
entangled, but the power laws are not modified, and we have
dS1 = �0

S1
. We do not have simultaneous TDOS enhancement

and stability as expected owing to perfect layer symmetry
even in the presence of β, γ interaction as shown in Fig. 2(c).
We can break the layer symmetry by taking the interaction
parameter α in the two QH layers to be asymmetric. The
analytic expressions of �0

S1
and dS1 for the case of asymmetric

α in the two layers are too cumbersome to be included in
this paper; hence we have performed a numerical analysis
corresponding to this case and shown that the asymmetry in α

can indeed result in simultaneous enhancement of TDOS and
stability though it requires the presence of strong interaction.
The result of our numerical analysis is presented in Fig. 3(a).

VI. SIMULTANEOUS TDOS ENHANCEMENT AND
STABILITY OF S2 FIXED POINT

For the strongly coupled S2 fixed point, the TDOS expo-
nent for the outgoing edge of the ith QH layer is denoted by
�0

i,S2
and has a lengthy analytic expression; hence we first

focus on performing an expansion of �0
i,S2

to leading orders
in α, γ , which is given by

�0
1,S2

� 1

ν1

(
1 + (ν1 − ν2)(α − βγ )

(1 − β2)(ν1 + ν2)
+ 2

√
ν1ν2(γ − βα)

(1 − β2)(ν1 + ν2)

)
,

(34)

�0
2,S2

� 1

ν2

(
1 − (ν1 − ν2)(α − βγ )

(1 − β2)(ν1 + ν2)
+ 2

√
ν1ν2(γ − βα)

(1 − β2)(ν1 + ν2)

)
.

(35)

Note that in the weak (α, γ ) limit, both �0
1,S2

and �0
2,S2

have a term which is proportional to ν1 − ν2 but with oppo-
site sign. This implies that if ν1 > ν2, then the contribution
from this term will tend to suppress TDOS on the ν1 edge
while it will enhance it on the ν2 edge. Now, we consider
the specific case of ν1 = 1 and ν2 = 1/3 which was discussed
earlier in the context of the S1 fixed point. Naively, one would
expect that it is more likely to obtain an TDOS enhancement
in the ν1 = 1 edge as compared with ν2 = 1/3, because the
ν2 = 1/3 edge suffers from a strong suppression arising from
the overall factor of 1/ν in the expression for �0

2,S2
. Hence

we focus on TDOS enhancement in the ν1 = 1 QH layer as it
will have a higher likelihood of having simultaneous stability.
Substituting ν1 = 1 and ν2 = 1/3 in the expression of �0

1,S2

given above, we get �0
1,S2

� 1 + (1/2)(α − βγ )/(1 − β2) +
(
√

3/2)(γ − βα)(1 − β2), which implies that if the second
and the third terms in this expression turn out to be negative,
then enhancement of TDOS will be possible. This would
require that α < βγ and γ < βα simultaneously, which is
impossible because the interaction parameters are bounded
between zero and 1. Hence we need to look for a possibility
where the sum of the two terms is negative, which implies
(α − βγ ) + √

3(γ − βα) < 0. Now if we take an extreme
limit of β, i.e., β = 1 − ε, where ε is a small number which
is of the order of α, γ , or smaller and α = γ + δ where δ 

α, γ , then the inequality reduces to δ(1 − √

3) < 0 to leading

order in all the small parameters hence resulting in TDOS
enhancement. However, one should note that the β → 1 or
equivalently the ε → 0 limit of Eq. (35) is problematic as it is
itself a perturbative result and hence we must conform it using
exact numerical values. For example, for δ = 0.006, ε = 0.01,
and γ = 0.1, we see TDOS enhancement on the ν1 = 1 QH
edge, while for δ = 0.00996, ε = 0.01, and γ = 0.1, we see
TDOS enhancement on the ν1 = 1/3 QH edge. A numeri-
cal analysis of possible TDOS enhancement is explored in
Fig. 4(b), where we find that both for large values of β(γ ) and
small values of γ (β ), TDOS enhancement exists for α = 0.2.

This observation of enhancement for the case of ν1 = 1
and ν2 = 1/3 is indeed very interesting when we see it in
the light of Ref. [45], which reported TDOS enhancement
for a junction of three LL wires in the weak repulsive inter-
electron interaction limit. Reference [45] shows a correlation
between the Andreev-type-reflection-like process leading to
hole current [35] bouncing off the LL junction and the TDOS
enhancement at the junction. Note that even in our setup
(which is analogous to a junction of two nonchiral LL wires),
hole current is generated on the ν = 1/3 edge [4,26] for the
junction of ν1 = 1 and ν2 = 1/3. This can be seen from the
expression of the field splitting matrix given in Eq. (22), where
one of its diagonal elements turns negative for the choice of
ν1 = 1 and ν2 = 1/3. Hence one would have naively expected
that we should observe an enhancement only on the ν2 = 1/3
edge, but on the contrary we observe that the enhancement
is happening on both the ν1 = 1 and the ν1 = 1/3 edges.
We conclude that Andreev-reflection-like processes do not
necessarily lead to TDOS enhancement in general.

For the S2 fixed point, the intralayer single-quasiparticle
backscattering operator represents the most relevant pertur-
bation, and the junction is stable when dO/I

11 , dO/I
22 > 1. The

scaling dimension is studied mostly numerically as its exact
expression is too lengthy. We start by analyzing the weak
(α, γ ) limit by carrying out a leading order expansion of dO/I

ii
in these parameters which is given by

dO/I
11 � 2ν1ν2

ν1 + ν2

[
1 + βγ − α

1 − β2
+

(
2
√

ν1ν2

ν1 + ν2

)
γ − βα

1 − β2

]
.

(36)

Note that dO/I
11 is symmetric under ν1 ↔ ν2, and thus

dO/I
11 = dO/I

22 as expected. Let dO/I
11 = dO/I

22 = dS2 . In the limit
βγ > α, the second term in Eq. (36) dominates over the third
term, and dS2 tends towards the region where the strongly cou-
pled S2 fixed point is stable. Now, consider the specific case
of ν1 = 1 and ν2 = 1/3. dS2 can be written as dS2 = 1/2 + ζ ,
where ζ is a function of α, β, γ and is of the same order as
them in the α, β, γ 
 1 limit, which implies that the S2 fixed
point is an unstable fixed point in this limit. Above we have
noted that TDOS enhancement is possible for large values
of some interaction parameters [see Fig. 4(b)] for the ν1 = 1
edge, and hence we would like to check whether S2 can be
simultaneously stable in this parameter regime; however, this
analysis is too complicated to be pursued analytically owing
to lengthy expressions, and hence we perform a numerical
analysis. The result of our analysis is presented in last two
plots in Fig. 4(b), where we have shown the existence of a
small but finite overlap region between stability and TDOS
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FIG. 4. The schematic pictures on the left show the unfolded version of the S2 junction fixed point of bilayer QH states exposed to a
uniform magnetic field. (a) shows a junction of ν1 = 1 and ν2 = 1 tuned to the S2 fixed point with asymmetric α in the two layers. The three
density plots in (a) correspond to the region of �0

i,S2
< 1 and dS2 > 1 and the region of simultaneous TDOS enhancement and stability as we

move from left to right in the row for β = 0.6 and γ = 0.9. Region A (B) in the third plot shows interaction parameters for which the TDOS
for the ν1 (ν2) QH edge is enhanced and the junction is simultaneously stable. (b) shows a junction of ν1 = 1 and ν2 = 1/3 tuned to the S2

fixed point, in the presence of symmetric intralayer interactions. The first two density plots in (b) correspond to �0
S2

and dS2 for α = 0.2 as
we move from left to right. The last plot in the row shows the region of simultaneous TDOS enhancement, which is marked as region A.
(c) shows a junction of ν1 = 1 and ν2 = 1/3 tuned to the S2 fixed point, in the presence of asymmetric α interactions. The first two density
plots in (c) correspond to �0

S2
and dS2 for β = 0.6 and γ = 0.7. The last plot in the row shows the region of simultaneous TDOS enhancement

and stability, which is again marked as A.

enhancement in the strong γ limit. It is not surprising that
unlike the S1 fixed point, the region of simultaneous TDOS
enhancement and stability of the junction for the S2 fixed point
always lies in the strong γ limit. This arises from the fact
that the disconnected fixed point (S1) is a stable fixed point
while the connected fixed point (S2) is an unstable fixed point
in the presence of α alone (i.e., β = 0 and γ = 0). Hence
it requires large values of β or γ or both to stabilize the S2

fixed point. Also, note that for ν1 = 1 and ν2 = 1/3, we have
dO,I

11 = dO,I
22 = dO,I

12 = dO/I
21 . This is due to symmetry in the

current splitting matrix for the S2 fixed point, i.e., transmis-
sion = reflectance = 1/2, when current is excited from the
ν1 = 1 side.

For ν1 = ν2 = ν, the scaling dimensions of the tunnel-
ing operators are zero, i.e., dS2

12 = dS2
21 = dS2

II = dS2
OO = 0 as

expected. Also, �0
1,S2

= �0
2,S2

. The exact expression for the
scaling dimension of the backscattering operator and the

TDOS exponent �0
i,S2

is given by

dS2 = ν

√
1 − α − β + γ

1 + α − β − γ
, (37)

�0
i,S2

= 1

2νi

(√
1 + γ − β − α

1 − γ − β + α
+

√
1 + α + β + γ

1 − α + β − γ

)
.

(38)

Expanding Eqs. (37) and (38) in the weak α, γ limit,
we get

dS2 � ν

(
1 + γ − α

1 − β2

)
,

�0
i,S2

� 1

νi

(
1 + γ − βα

1 − β2

)
. (39)
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Note that for ν1 = ν2 = 1 there exists a symmetry between
the scaling dimension of the electron tunneling operator, dS1 ,
of the S1 fixed point and the scaling dimension of the electron
backscattering operator, dS2 , of the S2 fixed point in the α ↔
γ exchange, such that dS1 (α, β, γ ) = dS2 (γ , β, α). Also, we
have �0

i,S1
(α, β, γ ) = �0

i,S2
(γ , β, α). From Eq. (39), we note

that in the weak α, γ limit, the junction becomes stable in
the γ > α region and the TDOS shows that enhancement
appears in the βα > γ region, which is impossible to satisfy
simultaneously. Similar to the S1 fixed point, we do not expect
to see simultaneous TDOS enhancement and stability of the
junction in this case, as the role of α and γ gets exchanged
but the region of dS2 > 1 and �0

i,S2
< 1 still remains mutually

exclusive.
Now, we break the parity symmetry or layer symmetry

of the junction by introducing asymmetric α in the two QH
layers as we did for the S1 fixed point to investigate the possi-
bility of having dS2 > 1 and �0

S2
< 1 simultaneously. We run

a numerical search to check the possibility of simultaneous
stability and TDOS enhancement in the presence of asymmet-
ric α in the case of both ν1 = 1, ν2 = 1 and ν1 = 1, ν2 = 1/3,
and the results of our findings are given in Figs. 4(a) and
4(c). In both cases we again find the region of simultaneous
stability and TDOS enhancement, but it exists only in the
strong interaction limit.

VII. DISCUSSION AND CONCLUSIONS

Both the bulk and boundary of an isolated LL wire show
suppression of TDOS for LL parameter K < 1, i.e., the
repulsive interelectron interaction limit [64]. The minimal
modifications which could be added to the LL model such
that it leads to a deviation for the standard paradigm of TDOS
suppression are (i) formation of a junction of multiple LLs and
(ii) switching on nonlocal density-density interaction in addi-
tion to the local ones. Introducing exotic quantum impurity
into the LL [68] could also lead to TDOS enhancement, but
such a scenario is not the focus of this paper. The junction of
LL wires is a well-studied subject both theoretically and ex-
perimentally, but the physical setting for motivating a nonlocal
density-density interaction is not obvious. This leads us to
consider the bilayer quantum Hall system, which can naturally
host such a model. In particular, a bilayer quantum Hall line
junction [69] could be a possibility which allows all the four
edge states participating at the junction (two from the top layer
and two from the bottom layer) to come in the close vicinity
of each other hence leading to mutual interactions between
them. Such a system has been in discussion recently owing
to the possibility of being a host to localized parafermion
zero modes [69–72]. Also, there exists a long history in
the experimental realization of bilayer quantum Hall systems
[58–61,73,74]. Additionally, there has been significant exper-
imental progress also in realizing graphene bilayer quantum
Hall systems [75–80]. This experimental progress indicates
that the technology required for designing the proposed setup
may not be a far-fetched one.

In general, it is difficult to find a fixed point for the LL
system which leads to TDOS enhancement at the junction of
LLs and is also stable (in the RG sense) against perturbations
that could be switched on at the junction. This is obvious

as an enhancement of TDOS naturally implies the presence
of relevant perturbations involving tunneling of electrons at
the junction which could destabilize the junction fixed point.
An important realization in this paper was the fact that si-
multaneous enhancement of TDOS and RG stability of the
junction fixed point is a possibility provided we break the
layer symmetry either by having different filling fractions on
the two layers or by choosing a different strength for the two
intralayer interaction parameters (α).

Furthermore, we would like to point out that the occur-
rence of processes analogous to Andreev reflection at the
junction of LLs does not seem to provide a litmus test for
the presence of TDOS enhancement in general though such
a connection was observed in Ref. [45] in the context of a
junction of three LLs for a repulsive interelectron interaction
parameter regime. An invalidation of such an identification
was demonstrated explicitly when we considered the S2 fixed
point between the ν = 1 and ν = 1/3 edge, which supports a
process analogous to Andreev reflection at the junction owing
to the fact that the quasiparticles on the ν = 1/3 edge have
fractional charge as opposed to the electronlike quasiparticles
on the ν = 1 edge. Furthermore, we note that the junction
of two chiral LLs (not three) is enough to show TDOS en-
hancement provided we switch on interaction (like β and γ ) in
addition to the routinely considered interaction parameter α.

Lastly, we would like to point out that here we have taken
the interaction parameters to be independent of each other,
which in a general QH setup need not be true. Codependen-
cies of interaction parameters can be accounted for through
a distributed circuit model which was introduced in Ref. [81]
to analyze the experimental results obtained by those authors
in the context of an interacting quantum Hall edge state. We
apply this circuit model to our setup comprising four interact-
ing edge states and find that the interaction parameters indeed
have strong interdependencies which cannot be ignored in
general in a realistic experimental setup (see Appendix B for
more details).
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APPENDIX A: TUNNELING DENSITY OF STATES

The local electron TDOS for a chiral outgoing QH edge of
a 2 × 2 QH edge junction with filling fraction νi at a point x
from the junction is given by

ρi(E ) = 2π
∑

n

|〈n|ψ†
iO(x)|0〉|2δ(En − E0 − E )

=
∫ ∞

−∞
〈0|ψiO(x, t )ψ†

iO(x, 0)|0〉e−iEt dt . (A1)

The fermionic field ψiI/O denotes the incoming/outgoing
chiral edge with filling fraction νi and can be expressed in
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terms of the bosonic field φiI/O as ψiI/O ∼ FieιφiI/O/νi , where Fi

is the Klein factor. Then the TDOS is given by

ρi(E ) ∼
∫ ∞

−∞
dt〈0|ei φiO (x,t )

νi e−i φiO (x,0)
νi |0〉e−iEt . (A2)

Let φ̄O = (φ̄1O, φ̄2O) and φ̄I = (φ̄1I , φ̄2I ). The free Bogoli-
ubov fields φ̃ are related to the interacting φ̄ by the X matrix,
which can now be decomposed as follows:(

φ̄O

φ̄I

)
(x,t )

=
(

X1 X2

X3 X4

)(
φ̃O

φ̃I

)
(x,t )

. (A3)

The QPC of the 2 × 2 QH edge system can be accounted
for by a current splitting matrix at the junction which relates
the incoming interacting bosonic fields to the outgoing inter-
acting bosonic fields, such that(

φ1O

φ2O

)
(x=0)

= S

(
φ1I

φ2I

)
(x=0)

, (A4)

where S denotes the current splitting matrix given by the two
possible fixed points, namely, the S1 and S2 fixed points.(

φ̄1O

φ̄2O

)
(x=0)

= M−1SM

(
φ̄1I

φ̄2I

)
(x=0)

= S̄

(
φ̄1L

φ̄2L

)
(x=0)

, (A5)

where Mi j = √
νiδi j . Then the real interacting bosonic fields

φO and φI can be expressed only in terms of the left-moving
Bogoliubov fields φ̃I (which are independent of each other) as
follows:

φO(x, t ) = M
[
T1φ̃I (−x, t ) + T2φ̃I (x, t )

]
, (A6)

φI (x, t ) = M
[
T3φ̃I (−x, t ) + T4φ̃I (x, t )

]
, (A7)

where

T1 = X1(X1 − S̄X3)−1(S̄X4 − X2), (A8)

T2 = X2, (A9)

T3 = X3(X1 − S̄X3)−1(S̄X4 − X2), (A10)

T4 = X4. (A11)

Then

〈0|ψiO(x, t )ψ†
iO(x, 0)|0〉 ∼

2∏
j=1

(
iα

−ṽ jt + iα

)γi j

×
(

(iα)2 − 4x2

(iα − ṽ jt )2 − 4x2

)ζi j

,

(A12)

where α is the short-distance cutoff, γi j = [T1]2
i j+[T2]2

i j

νi
, and

ζi j = [T1]i j [T2]i j

νi
. Now we calculate the TDOS in two limits,

namely, first at the junction with x −→ 0, in which case
Eq. (A12) becomes

〈0|ψiO(x, t )ψ†
iO(x, 0)|0〉 ∼

2∏
j=1

(
iα

−ṽ jt + iα

)γi j+2ζi j

, (A13)

and the other far from the junction with x −→ ∞, in which
case Eq. (A12) becomes

〈0|ψiO(x, t )ψ†
iO(x, 0)|0〉 ∼

2∏
j=1

(
iα

−ṽ jt + iα

)γi j

. (A14)

Now from Eqs. (A1), (A13), and (A14), we have the TDOS
integral in the two limits of the form

∫ ∞

−∞

2∏
j=1

(
iα

−ṽ jt + iα

)�i j

e−iEt dt ∝ E (�i−1), (A15)

where the TDOS exponent �i is given by

�0
i = 1

νi

2∑
j=1

([T1]i j + [T2]i j )
2 (A16)

and, far from the junction,

�∞
i = 1

νi

2∑
j=1

(
[T1]2

i j + [T2]2
i j

)
. (A17)

APPENDIX B: INTERDEPENDENCY OF INTERACTION
PARAMETERS

Let us consider the simplest possible case of two quantum
Hall (QH) systems with filling fraction ν1 = ν2 = 1 in bilayer
stacking, with two incoming and two outgoing edges. Here,
we use a simple approach to account for the effect of Coulomb
interactions between the edges in terms of a distributed circuit
model [81]. The dynamics of edge plasmons traveling along
a single edge channel is modeled through the distributed elec-
trochemical capacitance per unit length between the channel
and the ground (denoted by Cch-channel capacitance). The
interaction between the two different channels is modeled
with distributed elements, which is expressed by the interedge
capacitance.

Interedge capacitance per unit length between φiI and φiO

of the same QH layer is given by Cα , between φiI and φ jI of
different QH layers (i 	= j) is given by Cβ , and between φiI

and φ jO of different QH layers is given by Cγ . Channel capac-
itance per unit length C(i)

ch = Cch for all the edges (i = {1, 4}) is
taken to be the same (as the Fermi velocity for each edge plas-
mon is taken to be the same [81]). Let ρiO/I (x, t ), ViO/I (x, t ),
and IiO/I (x, t ) be the excess charge density, potential, and
current flowing through the out/in edge channel of the ith
QH layer, respectively, at position x and time t . The relation
between the current Ii(x, t ) = (I1O, I2O, I1I , I2I )T and poten-
tial Vi(x, t ) = (V1O,V2O,V1I ,V2I )T is given by IiO(x, t ) =
σ (i)

xy ViO(x, t ) and IiI (x, t ) = −σ (i)
xy ViI (x, t ).

The excess charge density ρiI/O is related to the potential
through the matrix CT given by⎛
⎜⎜⎜⎝

ρ1O

ρ2O

ρ1I

ρ2I

⎞
⎟⎟⎟⎠

(x,t )

=

⎛
⎜⎜⎜⎝

Cp −Cβ −Cα −Cγ

−Cβ Cp −Cγ −Cα

−Cα −Cγ Cp −Cβ

−Cγ −Cα −Cβ Cp

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

V1O

V2O

V1I

V2I

⎞
⎟⎟⎟⎠

(x,t )

,

(B1)
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which in compacted form can be written as ρ(x, t ) =
CT V (x, t ). Cp is given by Cp = Cch + Cα + Cβ + Cγ . The
Heisenberg equation of motion for the coupled system [Eq. (8)
of the main text] is given by

d

dt
φa(x, t ) = −v f εa

4∑
α=1

Kaα

d

dx
φα (x, t ). (B2)

Since ρiI/O = ± d
dx φiI/O and IiI/O = ∓ d

dt φiI/O, we have

d

dt
Ia(x, t ) = −v f

4∑
α=1

Kaα

d

dx
Iα (x, t ),

d

dt
I (x, t ) = −U

d

dx
I (x, t ), (B3)

where U is a 4 × 4 matrix given by

U = v f

⎛
⎜⎜⎜⎝

1 β α γ

β 1 γ α

−α γ −1 −β

−γ −α −β −1

⎞
⎟⎟⎟⎠. (B4)

Now, using the continuity equation ∂tρi,I/O + ∂xIi,I/O = 0,
Eq. (B1), and the relation IiO/I (x, t ) = ±σ (i)

xy ViO/I (x, t ), we get

U = σxyC
−1
T , (B5)

where σxy is a diagonal 4 × 4 matrix with
(σ (1)

xy , σ (2)
xy ,−σ (1)

xy ,−σ (2)
xy ) being the diagonal elements.

We can now express interaction parameters in terms of
capacitance as follows:

v f = 1

Cch
+ 1

Cch + 2(Cα + Cβ )
+ 1

Cch + 2(Cα + Cγ )

+ 1

Cch + 2(Cβ + Cγ )
,

α =
1

Cch
− 1

Cch+2(Cα+Cβ ) − 1
Cch+2(Cα+Cγ ) + 1

Cch+2(Cβ+Cγ )

1
Cch

+ 1
Cch+2(Cα+Cβ ) + 1

Cch+2(Cα+Cγ ) + 1
Cch+2(Cβ+Cγ )

,

β =
1

Cch
− 1

Cch+2(Cα+Cβ ) + 1
Cch+2(Cα+Cγ ) − 1

Cch+2(Cβ+Cγ )

1
Cch

+ 1
Cch+2(Cα+Cβ ) + 1

Cch+2(Cα+Cγ ) + 1
Cch+2(Cβ+Cγ )

,

γ =
1

Cch
+ 1

Cch+2(Cα+Cβ ) − 1
Cch+2(Cα+Cγ ) − 1

Cch+2(Cβ+Cγ )

1
Cch

+ 1
Cch+2(Cα+Cβ ) + 1

Cch+2(Cα+Cγ ) + 1
Cch+2(Cβ+Cγ )

.

(B6)

As can be seen from the above equation (B6), interactions
between the edges, in general, cannot be treated as indepen-
dent parameters in a realistic situation.
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