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Phonon-assisted carrier tunneling with hyperfine-induced spin flip in coupled
quantum dot systems
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We calculate the rates of phonon-assisted hyperfine spin flips during electron and hole tunneling between
quantum dots in a self-assembled quantum dot molecule. We show that the hyperfine process dominates over
the spin-orbit-induced spin relaxation in magnetic fields up to a few teslas for electrons, while for holes this
crossover takes place at field magnitudes of a fraction of a tesla, upon the assumption of a large d-shell admixture
to the valence band state, resulting in a strong transverse hyperfine coupling. The interplay of the two spin-flip
mechanisms leads to a minimum of the spin-flip probability, which is, in principle, experimentally measurable
and can be used as a test for the presence of substantial transverse hyperfine couplings in the valence band.
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I. INTRODUCTION

Hyperfine (hf) coupling between carrier spins and nuclear
magnetic moments in a crystal [1] is one of the key factors
determining the properties of semiconductor structures, such
as quantum dots (QDs), and their usability in new informa-
tion processing devices. Once considered the main source
of dephasing [2–6], it can now be controlled with growing
precision and used as a manageable degree of freedom [7–9].

The hf coupling for electrons is dominated by the
approximately isotropic contact interaction. Its transverse
components can, in principle, lead to spin relaxation accom-
panied by a simultaneous change in one of the nuclear spins
(a “flip-flop” process). Due to a large mismatch between elec-
tronic and nuclear Zeeman energies, this process is restricted
to very low magnetic fields [10–12] or bright-dark exciton res-
onances [13]. At magnetic fields exceeding a fraction of a tesla
the hf processes become ineffective [14,15]. Even though the
energy gap can be closed by emitting a phonon [16], it turns
out that processes relying on the spin-orbit (SO) coupling
dominate in this regime [17,18] due to their more favorable
dependence on the magnetic field. A crossover between the hf
and SO regimes has been observed in gated GaAs QDs [19].

Theoretical description of hf-induced spin flips was de-
veloped in the context of electrons in gated QDs [20,21]:
One considers corrections to the carrier state with a given
spin, mediated by the hyperfine coupling with all the nuclei,
treated as a perturbation. In this way, the original state gets
an admixture of inverted spin, which allows transitions to
a state with a nominally opposite spin via spin-conserving
phonon couplings. For a transition within the Zeeman doublet,
the combination of the ∝ B−2 scaling of the hf admixture
(stemming from the carrier Zeeman energy, while the nuclear
Zeeman splitting is negligible), frequency dependence of the
phonon spectral density, and Van Vleck cancellation leads to
a ∝ B3 dependence on the magnetic field.

In the case of holes the physics of hf interactions is more
complex, and some questions seem to remain open. Over-
all, the hole hf coupling is due to dipole interactions, which
renders it much weaker than the contact interaction of elec-
trons [22–24]. Moreover, for a purely p-type valence band,
the transverse components of the hole hf coupling can re-
sult from only weak band-mixing effects [10,22,23], which
would strongly limit hole spin relaxation. Indeed, a coherent
population trapping experiment under transverse nuclear spin
polarization in a low-noise device [25] has led to the con-
clusion that the transverse hyperfine coupling is negligible.
On the other hand, selective measurements of the Overhauser
field for particular elements and isotopes in the crystal [26]
yield results that can be explained by a substantial admixture
of atomic d-shell states to the valence band, in line with
earlier theoretical calculations [27]. According to theoretical
models, a d-shell admixture would give rise to a substantial
transverse contribution to the hole hyperfine coupling [28].
Such a transverse component not only affects the dynamics of
spin dephasing but also leads to efficient hf-induced hole spin
relaxation.

In quantum dot molecules (QDMs), built of two coupled
QDs, even in the s shell, spin relaxation not only can take
place between states within one Zeeman doublet but can
also accompany charge relaxation (dissipative tunneling) be-
tween the QDs. Such processes were extensively studied for
two-electron configurations in the Pauli blockade regime of
gated QDMs [29], where the spin-flip rates were determined
experimentally [30]. Understanding the role of hyperfine in-
teractions in such a carrier tunneling process may be important
for possible spin injection schemes as well as for spin readout
protocols involving carrier transfer induced by gating pulses.
On the other hand, hf flip-flops combined with spatiotemporal
dynamics of the carrier may be used to imprint a particular
state in the nuclear system. Finally, theoretically predicted
characteristics of the spin relaxation, when confronted with
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the experiment, may verify the assumptions of the model and
thus offer information on the nature of the hf coupling itself.

A reliable description of processes involving tunneling in
self-assembled QD systems requires reasonable knowledge of
wave functions, which is achievable with the k·p method in
the envelope function approximation [31]. The k·p method
allows one also to describe all kinds of phonon-assisted pro-
cesses, including those involving SO-induced spin flips [32].
Recently, we also combined the k·p model with the hyperfine
Hamiltonian and provided a description of hyperfine cou-
plings based on multiband wave functions [28].

In this paper we calculate the rates of phonon-assisted
hyperfine spin flip-flops during electron and hole relaxation
between the two branches of the s shell in a QDM (cor-
responding to states localized in two different QDs if the
system is away from the resonance). We compare the result
with the SO-induced phonon-assisted spin-flip tunneling and
show that the hyperfine process dominates for fields below
a few teslas for electrons (depending on the axial electric
field), while for holes it becomes important only for fields
roughly below 0.1 T. The interplay of hf and SO mechanisms
of spin relaxation leads to a nonmonotonic dependence of the
total spin-flip probability, which may be used as a test for
considerable transverse hyperfine couplings.

This paper is organized as follows. In Sec. II we describe
the model of the system under study. Section III presents the
theory for the phonon-assisted tunneling of a carrier with a
simultaneous spin flip-flop between the carrier and a nuclear
spin. In Sec. IV we present the results. Section V concludes
the paper.

II. MODEL

We consider two coupled, vertically stacked self-
assembled InGaAs quantum dots [Fig. 1(a)]. The dots
are placed on wetting layers aG = 0.565325 nm thick of
In0.4Ga0.6As composition. The shape of each dot is defined
by the restriction of its upper limit by the surface [33]

Sn(r) = z(WL)
n + hn exp

(
− (x2 + y2)2

r4
n

)
,

where n = {1, 2} refers to the bottom and top dots, respec-
tively, z(WL)

n denotes the top of the wetting layer, hn is the dot
height, and rn defines the lateral extension. We take approxi-
mately (subject to discretization) h1 = 4.8 nm, h2 = 5.4 nm,
r1 = 15.8 nm, and r2 = 17 nm. Both dots have a trumpet-
shaped composition [34], where the position-dependent In
content is given by

C(r) = Cb + (Ct − Cb) exp

(
−

√
x2 + y2 exp (−z/zc)

rc

)
,

where Ct = 0.7 and Cb = 0.4 are related to the compositions
in the top and bottom regions of a given QD, zc = 1.1 nm,
and rc = 2.3 nm. To simulate material intermixing, the dots
are processed by a Gaussian blur with a standard deviation
of 0.6 nm. The computations were carried out on (200 ×
200 × 200)aG and (100 × 100 × 70)aG computational boxes
for calculation of strain and electron states, respectively.

FIG. 1. (a) Material distribution in the system and (b) the scheme
of the lowest energy levels, with spin-conserving and spin-flip tran-
sitions marked by solid and dashed grey arrows, respectively.

In order to quantitatively account for the hyperfine inter-
actions in an inhomogeneous system like a QD, one needs
to model the properties of wave functions on the mesoscopic
scale of several or tens of nanometers and simultaneously
describe the properties of Bloch functions near the nuclei on a
subnanometer scale. No single computational method is cur-
rently able to bridge these two scales; hence, we use the hybrid
approach developed in Ref. [28], in which the mesoscopic
scale is covered by an eight-band k·p theory in the virtual
crystal approximation, while the atomic-scale properties are
approximately accounted for by a simple model of effective
rescaled hydrogenlike orbitals with averaging over specific
alloying and isotope configurations.

Thus, on the mesoscopic scale, the static strain related to
the lattice mismatch is accounted for within the continuous
elasticity approach [35]. The strain-induced piezoelectric po-
tential is calculated including polarization up to the second
order in strain tensor elements [36] with parameters from
Ref. [37]. The wave functions for the four lowest electron
and hole states (corresponding to the two QDs and two spin
orientations are obtained using the eight-band k·p theory in
the envelope function approximation. The Hamiltonian, the
material parameters, and implementation are given in great
detail in Ref. [38]. We also used improvements of the model
described in Ref. [39].

The hyperfine Hamiltonian for the interaction of a carrier
with nuclear spins is

Hhf = 3Ehf

∑
α

ζαA(r − Rα ) · Iα/h̄, (1)

where α labels the ions, Rα are their positions,

Ehf = 2μ0

3π
μBμNa−3

B = 0.5253 μeV,
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μB and μN are Bohr and nuclear magnetons, respectively, aB

is the Bohr radius, μ0 is the vacuum permeability, Iα is the
nuclear spin, ζα defines the nuclear magnetic moment for a
given nucleus via μα = ζαμNIα , and

A(r) = a3
B

4h̄

[
8π

3
δ(r)S + L

r3
+ 3(r̂ · S)r̂ − S

r3

]
. (2)

We consider the two most common In isotopes, two Ga iso-
topes, and one As isotope with angular momenta j = 9/2,
3/2, and 3/2, respectively. We neglect any effects of nuclear
quadrupole couplings [40,41].

The Bloch function is modeled as a sum of atomic orbitals
corresponding to the outermost shells, centered around the
two nuclei in the primitive cell. The atomic orbitals are taken
as hydrogenlike wave functions ψnlm(r) = √

nξnlψ
(H)
nlm(nξnlr),

where ψ
(H)
nlm(r) are the wave functions of the hydrogen atom

and ξnl is a scaling parameter. Since only one shell of a
given symmetry is relevant for the topmost valence and lowest
conduction bands, the principal quantum number n will be
omitted. The conduction band of zinc-blende crystals is com-
monly assumed to be built of atomic s states (l = 0), while the
valence band is made of p states (l = 1), with the heavy-hole
subband composed of states with ±3/2 projections of the total
band angular momentum. While this picture allows one to
understand most of the properties of the system, it turns out
to be insufficient for the description of hyperfine interactions
in the valence band. In fact, the crystal symmetry allows a
combination of p and d (l = 2) states in the valence band. This
symmetry reduction opens the path to spin interactions that
conserve the band angular momentum projections only mod-
ulo 2, thus enabling spin flip-flops between the heavy holes
and nuclei, which would be forbidden by spin conservation
in a system with full rotational symmetry [26,28]. Therefore,
we include both p- and d-shell components in our model of
atomic orbitals making up the valence band.

The scaling parameters ξs for the s-shell states are obtained
from the experimentally determined values of the conduction
band wave functions at the nucleus [42,43]. The distribution
of the wave functions between the anion and cation is cho-
sen to be consistent with the known experimental [42,43]
and computational [27] data. In view of the lack of pre-
cise data, we choose ξp = 0.85ξs for each atom, following
the general relation between the scaling parameters of Slater
orbitals [44–46] (neither the Slater orbitals themselves nor
their scaling commonly used in tight-banding computations
can be used directly, as they are optimized against chemical
bonding and band structures and fail to reproduce the correct
behavior near the nucleus). The d-shell scaling parameter ξd

is estimated from the measured values of the hf coupling for
holes [26] using the theoretically computed weights of d-shell
admixtures in GaAs [27]. The resulting values of the param-
eters describing the hyperfine coupling are listed in Table I,
where we also give the quantities Mll ′ = |ψs(0)|−2〈l|1/r3|l ′〉
that characterize the geometry of the wave functions for the
dipole hyperfine interaction. The details of the model are
described in Ref. [28].

In view of the very small value of the nuclear Zeeman split-
ting, the probability for any nuclear configuration at thermal
equilibrium is essentially the same at typical temperatures of

TABLE I. Nuclear [2] and atomic parameters.

69Ga 71Ga 113In 115In 75As

I 3/2 3/2 9/2 9/2 3/2
ζ 1.344 1.708 1.227 1.230 0.959
r 0.604 0.396 0.0428 0.9572 1
ξs 3.9 3.9 4.4
ξp 3.3 3.3 3.7
ξd 10.5 8.9 11.9
Mp 0.050 0.050 0.050
Md 0.33 0.20 0.33
Msd 0.048 0.034 0.049
|αd |2 0.20 0.50 0.05
|acb

C/A|2 0.50 0.50
|avb

C/A|2 0.35 0.65

experiments involving self-assembled QDs (a few kelvins and
above). Since the carrier Zeeman splitting is much larger than
the nuclear one, the nuclear Zeeman energies can be neglected
when considering the energy change in a carrier-nucleus spin
flip-flop.

Coupling to phonons is described in the usual way. The
phonon subsystem and the carrier-phonon interaction are de-
scribed by the general Hamiltonian

Hph =
∑
k,λ

h̄ωk,λb†
k,λ

bk,λ +
∑
k,λ

{
(r), eik·r}(bk,λ + b†
−k,λ

),

where k and λ denote the wave vector and polarization of
a phonon mode, respectively, bk,λ and b†

−k,λ
are the cor-

responding annihilation and creation operators, and 
(r)
is an 8 × 8 matrix of operators in the coordinate repre-
sentation, corresponding to the eight-band structure of the
k·p theory and accounting for deformation-potential and
piezoelectric couplings. A detailed description of the carrier-
phonon Hamiltonian is given in Ref. [47].

III. PHONON-ASSISTED SPIN-FLIP TRANSITIONS

In this section we present the theory for the phonon-
assisted tunneling of carriers between the ground state
manifolds of the two QDs with a simultaneous spin flip-
flop between the carrier and a nuclear spin [Fig. 1(b)]. The
eight-band k·p theory treats the electron and hole states on
equal footing (the latter upon a standard transition from the
electron picture of the completely filled valence band to the
hole picture), and we present our theory for single-particle
states in a general form, without specifying the kind of the
carrier. In the following, the term “spin” is used to identify one
of the two subbands of the conduction or heavy-hole valence
band.

In a QDM structure with the two QDs separated by a
relatively wide barrier, the single-particle wave functions are
typically mostly localized in one of the QDs, with only a
tail of the wave function extending to the other QD. If the
energies of the ground states localized in the two QDs are
close enough (separation smaller than the energy distance to
the excited shells in each QD), then these two states built
of the single-QD ground states (s shells) form the lowest
molecular orbitals of the system, with energies further split
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by the Zeeman effect in a magnetic field. Here we will work
in such a parameter range. A particular situation occurs where
the ground states of the two QDs are energetically aligned.
Then, the two molecular orbitals become delocalized between
the two QDs and take the form of bonding and antibonding
orbitals with wave functions that are approximately even or
odd along the growth axis, respectively. The minimum energy
splitting at such a resonance is a measure of tunnel coupling
between the QDs [31].

In order to find the rate for a spin flip-flop process between
the two lowest states described above, we first calculate the
hyperfine flip-flop correction to the system state. We denote
the carrier state in the nth QD (n = 1, 2) with the nominal
spin orientation σ (resulting from the k·p diagonalization)
by |nσ 〉 and its energy by E (n)

σ . The state of the nuclei is
labeled by | · · · mα · · · 〉, where mα is the quantum number
for the z projection of the respective nuclear spin. The states
unperturbed by the hyperfine coupling are of a product form
|nσ ; · · · mα · · · 〉 = |nσ 〉 ⊗ | · · · mα · · · 〉. We restrict our theory
to the case of sufficiently strong tunnel coupling between the
QDs, such that the Zeeman energy is small compared to the
energy splitting between the two lowest molecular orbitals,
which is the case for all the results shown here (a more general
theory would be needed only for holes in fields B � 1 T and
very close to the exact tunneling resonance). In the lowest
order of perturbation theory with respect to the hyperfine
interaction the eigenstates of the system are then

|�nσ ;···mα ···〉 = |nσ ; · · · mα · · · 〉+
∑

α

c(nσ )
α+ |nσ ; · · · mα + 1 · · · 〉

+
∑

α

c(nσ )
α− |nσ ; · · · mα − 1 · · · 〉, (3)

where σ denotes inverted spin and the nuclear configuration
on the right-hand side is the same as the one on the left-hand
side except for the one explicitly given modified spin. The
coefficients of the perturbative correction are

c(nσ )
α± = 〈nσ ; · · · mα ± 1 · · · |Hhf |nσ ; · · · mα · · · 〉

h̄ω
(nn)
σσ

= 3Ehfζα

2h̄ω
(nn)
σσ

√
j( j + 1) − mα (mα ± 1)〈nσ |A(α)

∓ |nσ 〉,

where A(α)
± = Ax(r − Rα) ± iAy(r − Rα) and ω

(nn′ )
σσ ′ = (E (n)

σ −
E (n′ )

σ ′ )/h̄. The matrix elements of A(α)
± are calculated using

the model of Bloch functions described in Sec. II and fol-
lowing the multiband approach developed in Ref. [28]. In
the short-range approximation [22,23,48,49], these operators
are localized on the nucleus α, which leads to the physically
obvious property that the largest contribution comes from the
nuclei at which the probability density for the state n is the
largest.

From Fermi’s golden rule, the probability of a phonon-
assisted transition from the state with spin σ in QD1 to the
state with spin σ ′ in QD2 with a change in the nuclear config-
uration from {mα} to {m′

α} is



{mα}→{m′

α}
σ→σ ′ = 2π

h̄
|nB

(
ω

(12)
σσ ′

) + 1|
∑
k,λ

δ
(
h̄ωk,λ − |ω(12)

σσ ′ |
)

× |〈�2σ ′;···m′
α ···|{
(r), eik·r}|�1σ ;···mα ···〉|2.

Substituting the perturbation expansion from Eq. (3), taking
into account the obvious fact that the phonon interaction con-
serves nuclear spins, and denoting

Fσ ′σ (k) = 〈2σ ′|{
(r), eik·r}|1σ 〉, (4)

one finds

〈�2σ ′;···m′
α ···|{
(r), eik·r}|�1σ ;···mα ···〉

= Fσ ′σ (k) + Fσ ′σ (k)
∑
α,±

c(1σ )
α± 〈· · · m′

α · · · | · · · mα ± 1 · · · 〉

+ Fσ ′σ (k)
∑
α,±

c(2σ ′ )∗
α± 〈· · · m′

α ± 1 · · · | · · · mα · · · 〉 + · · · .

(5)

Since the multiband carrier wave functions are dominated by
one leading component (determining the nominal “spin” of
the state), the couplings Fσ ′σ (k) are large for σ = σ ′ and much
smaller otherwise, when they stem from the band mixing
involving SO couplings. The hyperfine admixture amplitudes
c(nσ )
α± are small as well. Therefore, in Eq. (5) we kept only

the contributions in the leading order in the SO or hf cou-
plings, neglecting those relying on both these weak couplings
simultaneously. Furthermore, for a nominally spin-conserving
process (σ = σ ′), the transition amplitude is by far dominated
by the first contribution Fσσ (k), which determines the spin-
conserving phonon-assisted tunneling rate


σ→σ = 2πRσσσσ

(|ω(12)
σσ |), (6)

where we define the spectral densities for the phonon bath as

Rσ1σ2σ3σ4 (ω) = 1

h̄2 |nB(ω) + 1|

×
∑
k,λ

Fσ1σ2 (k)F ∗
σ4σ3

(k)δ(ωk,λ − |ω|). (7)

For a spin-flip process, there are two mechanisms that may,
in principle, yield comparable contributions: the SO channel
entering via the first term and the hyperfine channel accounted
for by the two other terms on the right-hand side of Eq. (5).
The total spin-flip transition rate is then a sum of the SO rate,



(so)
σ→σ = 2πRσσσσ

(
ω

(12)
σσ

)
, (8)

and the rates for hyperfine transitions, summed up over final
configurations of the nuclear bath, differing by one nuclear
spin flip from the initial one,



(hf )
σ→σ (· · · mα · · · ) =

∑
α



(hf ),α
σ→σ (· · · mα · · · ), (9)

where we explicitly note the dependence on the initial config-
uration of the nuclear bath and



(hf ),α
σ→σ (· · · mα · · · ) = 2π

∑
a=σ,σ

∑
b=σ,σ

Q(α)
ab Raabb

(
ω

(12)
σσ

)
, (10)
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with

Q(α)
σσ =

(
3Ehfζα

2h̄ω
(22)
σσ

)2

{[ j( j + 1) − mα (mα − 1)]|〈2σ |A(α)
− |2σ 〉|2 + [ j( j + 1) − mα (mα + 1)]|〈2σ |A(α)

+ |2σ 〉|2},

Q(α)
σσ =

(
3Ehfζα

2h̄ω
(11)
σσ

)2

{[ j( j + 1) − mα (mα + 1)]|〈1σ |A(α)
− |1σ 〉|2 + [ j( j + 1) − mα (mα − 1)]|〈1σ |A(α)

+ |1σ 〉|2},

Q(α)
σσ = Q(α)∗

σσ = (3Ehfζα )2

4h̄2ω
(11)
σσ ω

(22)
σσ

{[ j( j + 1) − mα (mα + 1)]〈1σ |A(α)
− |1σ 〉〈2σ |A(α)

+ |2σ 〉

+ [ j( j + 1) − mα (mα − 1)]〈1σ |A(α)
+ |1σ 〉〈2σ |A(α)

− |2σ 〉}.
Note that Rσσσσ (ω) = R∗

σσσσ (ω), so 

(hf ),α
σ→σ is real.

Since the shape of the wave function for a given spatial state in a given QD very weakly depends on the spin orientation, all
the spectral densities in Eq. (10) are almost identical upon an appropriate choice of the arbitrary phases. This allows one to write



(hf ),α
σ→σ (· · · mα · · · ) = 2πR

(
ω

(12)
σσ

) ∑
a=σ,σ

∑
b=σ,σ

Q(α)
ab

= 2πR
(
ω

(12)
σσ

) (3Ehfζα )2

4
{[ j( j + 1) − mα (mα + 1)]|〈2σ |A(α)

+ |2σ 〉 − 〈1σ |A(α)
+ |1σ 〉|2

+ [ j( j + 1) − mα (mα − 1)]|〈2σ |A(α)
− |2σ 〉 − 〈1σ |A(α)

− |1σ 〉|2}. (11)

For a transition between the Zeeman states in a single QD
the wave functions of states 1 and 2 are nearly the same;
hence, the two matrix elements of A(α)

± in Eq. (11) become
identical, and the transition rate is suppressed by destructive
interference. Therefore, the contribution of the hf transitions
to spin relaxation in this case relies on higher state admixture,
shows a higher-order field dependence (which may be related
to Van Vleck cancellation due to time reversal symmetry like
in the SO case [50]), and is therefore limited to magnetic fields
below 1 T even for electrons [51]. This single-QD situation
is shown in graphical form in Fig. 2(a), where the process
involving a selected nuclear spin is represented as a transition
via a virtual state, splitting the phonon-assisted hf flip-flop
into the hf and phonon-induced (ph) transitions. Both quan-
tum amplitudes for the two paths have the same absolute value
but different phases, leading to destructive interference. In
contrast, in the QDM system, as long as the states are spatially
separated (away from the level-crossing resonance at which
the ground states in the two QDs are aligned), each nucleus
is effectively coupled to at most one carrier state (the one
localized in the same QD as the nucleus), and only one of the
two interfering amplitudes can be large. As shown in Fig. 2(b),
depending on the localization of the flipped nuclear spin in
the “initial” or “final” QD, either the ph-hf or hf-ph sequence
has a large amplitude, while the other one is suppressed due
to weak overlap between the nucleus and the carrier wave
function. From this graphical representation it is also clear
that the relaxation can involve a nuclear spin in one or the
other QD with a similar probability.

For unpolarized nuclei the physically meaningful rate is
obtained by averaging Eq. (9) over all the initial configura-
tions of the nuclear spins and summing up over all nuclear
spin flips,



(hf )
σ→σ = 2π

∑
a=σ,σ

∑
b=σ,σ

QabRaabb
(
ω

(12)
σσ

)
. (12)

Since 〈 j( j + 1) − mα (mα ± 1)〉 = 2 j( j + 1)/3, one finds

Qσσ =
∑

α

(
3Ehfζα

2h̄ω
(22)
σσ

)2 2 j( j + 1)

3

×(|〈2σ |A(α)
− |2σ 〉|2 + |〈2σ |A(α)

+ |2σ 〉|2), (13a)

Qσσ =
∑

α

(
3Ehfζα

2h̄ωσσ (11)

)2 2 j( j + 1)

3

×(|〈1σ |A(α)
− |1σ 〉|2 + |〈1σ |A(α)

+ |1σ 〉|2), (13b)

Qσσ = Q
∗
σσ =

∑
α

(3Ehfζα )2

4h̄2ω
(11)
σσ ω

(22)
σσ

2 j( j + 1)

3

×(〈1σ |A(α)
− |1σ 〉〈2σ |A(α)

+ |2σ 〉
+〈1σ |A(α)

+ |1σ 〉〈2σ |A(α)
− |2σ 〉). (13c)

IV. RESULTS

In this section we analyze and compare the electron and
hole phonon-assisted tunneling rates with hyperfine- and SO-
induced spin flips, as well as the spin-conserving tunneling
rates. The rates are calculated using Eq. (12), corresponding
to the thermal equilibrium of the nuclear bath at temperatures
much higher than the nuclear Zeeman energies. The matrix el-
ements in Eqs. (13) are evaluated using the k·p formalism for
hyperfine interactions developed in our previous paper [28],
while the spectral densities are computed directly from the
k·p wave functions according to the definitions in Eqs. (4)
and (7).

Before discussing the relaxation rates, let us briefly sum-
marize the typical energies in our system in order to validate
the model. Obviously, the critical parameter area is the vicin-
ity of the tunnel resonance, where the energy splitting between
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FIG. 2. Phonon-assisted hf relaxation as a transition via an inter-
mediate virtual state. (a) Transition within the ground-state Zeeman
doublet in a single QD; (b) transition between the two states forming
the ground state manifold of a QDM. The magenta and brown curves
schematically represent the wave functions of the initial and final
states, respectively. The red arrow is the electron spin. The blue ar-
rows show spins of representative nuclei. The hf and phonon-induced
transitions are represented by blue and green arrows, while the dotted
arrow marks a hf transition that is inefficient due to small wave
function overlap.

the two lowest molecular orbitals is the smallest. For the
structure under consideration, the minimum splitting between
these orbitals is 1.4 and 0.08 meV for electrons and holes,
respectively. The Zeeman splitting for electrons is 0.06 meV
at B = 1 T; hence, it is smaller than the tunnel splitting be-
tween the molecular states in a wide range of magnetic fields,
as assumed in our model. On the other hand, we find the hole
Zeeman splitting of 0.012 meV at B = 0.1 T. Therefore, at
fields on the order of 1 T it becomes comparable to the tunnel
splitting, and the model ceases to be valid in a narrow range
of electric fields around the resonance. We do not refer to this
parameter range in our discussion.

Figure 3(a) shows the spin-conserving relaxation rates be-
tween the two lowest electron states as a function of the
electric field F applied in the growth direction z that rel-
atively shifts the ground state manifolds of the two QDs.
The results are shown at two values of the magnetic field
oriented along the growth direction (Faraday configuration).
The central maximum corresponds to the tunneling resonance
when the two levels are aligned and form an anticrossing.
The oscillations are due to the interplay between the QD
separation and the wavelength of the emitted phonon as the
energy splitting between the two levels is changed [52]. The
difference between the relaxation rates at the two values of
magnetic field is marginal.

In Fig. 3(b) we show the spin-flip tunneling rates for the
electron in the presence of electric and magnetic fields as
in Fig. 3(a), comparing the rates calculated according to the
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FIG. 3. (a) Spin-conserving phonon-assisted tunneling rate of an
electron at two values of the magnetic field as a function of the
axial electric field. (b) Spin-flip transition rates due the hf (blue
lines) and SO (red lines) interaction. (c) Ratio of the spin-flip to the
spin-conserving phonon-assisted tunneling rates for both transition
channels.

theory presented above with those resulting from the SO cou-
plings [53]. The oscillations visible in Fig. 3(b) have the same
geometrical origin as those in Fig. 3(a). At weak magnetic
fields (here we choose B = 1 T) the hyperfine channel domi-
nates over the spin-orbit one. On the other hand, for moderate
and strong values of magnetic field (here B = 8.0 T), the
spin-flip transitions caused by the SO couplings are stronger
due to the very different magnetic field dependences of these
two classes of transitions. The hf transition relies on the
admixture of the spin-flipped state, which can be treated
within the lowest-order perturbation theory, as described by
Eq. (3). The admixed state involves a flipped nucleus and the
Zeeman companion of the initial or final state. Neglecting the
nuclear Zeeman energy, the lowest-order perturbative coeffi-
cients c(nσ )

α± are therefore inversely proportional to the carrier
Zeeman splitting and therefore vary as 1/B, leading to the
∝ 1/B2 dependence of the hf rate. On the other hand, the rate
of the SO relaxation increases slowly in the considered range
of the magnetic fields, in contrast to the relaxation within
the Zeeman doublet, where a strong power-law dependence
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is observed. This absence of the power-law increase is due to
the fact that neither of the reasons for the typical B5 depen-
dence in single QDs [32,54] (the dependence of the energy
splitting and time-reversal symmetry between the initial and
final states) holds here [53]. As a result, the SO relaxation
rate remains finite at zero magnetic field, and in the particular
structure studied here it grows rather slowly with B.

In the case of the hyperfine-induced transitions, we observe
a minimum at the field value corresponding to the resonance
condition (crossing of the ground states of the two QDs).
Under such conditions both wave functions are delocalized
over the two QDs; the discrimination of the two paths in
Fig. 2(b) is suppressed, and a destructive interference of the
two matrix elements of A± in Eq. (11) takes place. In our
case (and typically for self-assembled QDMs in general in
weak and moderate magnetic fields) the coupling energy is
larger than the Zeeman energy; hence, different spatial states
with opposite spins do not cross near the resonance. Such a
crossing might occur for very weakly coupled QDs, leading
to a different behavior. In such a case, phonon-assisted pro-
cesses would be suppressed due to low spectral density at
low-energy splittings, and the tunneling would rely on energy-
conserving flip-flops, which may be enabled by quadrupole
broadening.

The ratio of spin-flip to spin-conserving transition rates is
shown in Fig. 3(c). This value is equal to the probability of
spin flip during the incoherent phonon-assisted tunneling and
therefore is a measure of spin preservation in this process.
Typical values are on the order of 10−4 at 1 T, dominated
by the hf coupling and scaling as 1/B2 at lower fields, while
at higher fields the spin-flip process is dominated by the SO
coupling, and its probability is reduced to 10−6. The oscil-
lations of these rates as a function of the electric field result
from the interplay between the patterns of oscillations of the
spin-conserving and two spin-flip rates. These patterns are
not identical for a few reasons. First, the spin-flip transition
is associated with a slightly different energy transfer and
hence phonon wavelength. Second, the transitions couple to
different phonon modes. Third, the oscillations are modulated
by an envelope which decays in different ways, which shifts
the maxima and minima. Altogether, the spin-conserving and
spin-flip rates do not oscillate strictly proportionally, which
results in oscillations of their ratio.

The results for a hole are presented in Fig. 4. Again, we
show the electric field dependence of the spin-flip rate for
the two spin relaxation mechanisms at two magnitudes of
the magnetic field. For a hole, the spin-conserving phonon-
assisted relaxation, shown in Fig. 4(a), is slower than for an
electron due to weaker deformation potential coupling [31].
In addition, when the states are localized in different QDs,
the phonon-assisted tunneling is less efficient because of the
higher hole mass and hence stronger localization.

For a hole, as can be seen in Fig. 4(b), the two spin-flip
channels depend in different ways on the energy splitting
controlled by the external electric field. As a result, at a given
magnetic field, one or the other process may dominate. In the
vicinity of the resonance, when the phonon-assisted relaxation
or tunneling process is effective, the cross-over between the
two mechanisms occurs at magnetic field amplitudes of a
fraction of Tesla, much lower than in the case of an electron.
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FIG. 4. (a) Spin-conserving phonon-assisted tunneling rate of a
hole. (b) Spin-flip transition rates related to the hf (blue lines) and SO
(red lines) coupling. (c) Ratio of the spin flip to the spin-conserving
phonon-assisted process for both transition channels.

This is due to the fact that the hyperfine-induced spin flip is
much less probable than for an electron as a consequence of
the much lower hf coupling for holes, while the SO-induced
process is a few times more effective. Here the SO channel
is nearly magnetic-field-independent (again in contrast to the
relaxation between Zeeman sublevels [17,39] for the same
reasons as explained above for the electron), while the rate
for the hf channel scales as 1/B2.

The spin-flip probability, given by the ratio of the spin-
conserving to spin-flip rates [Fig. 4(c)], is dominated by the
hf-induced process at very low fields, on the order of 0.01 T
and below, with a remarkably high probability of the spin
flip on the order of 1% at B = 0.01 T except in the closest
vicinity of the resonance. At higher fields the importance
of this process is reduced, leading to a much lower relative
efficiency of the spin-flip process near the resonance, while
far away from the resonance the increasing SO contribution
yield overall probabilities on the order of 10−3.

In Fig. 5 we present the crossover between the SO and
hf-dominated hole spin flip as a function of the magnetic
field at an electric field magnitude of F = −5 kV/cm, near
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FIG. 5. Spin-flip relaxation rates for a hole for the two spin-flip
channels as a function of the magnetic field for a fixed electric field
F = −5 kV/cm. The relative spin-flip rates (the spin-flip probabili-
ties) for the two channels along with the total relative rate. Inset: The
absolute spin-flip relaxation rates for the two mechanisms.

the maximum of the relaxation rate (this time using a linear
scale). At this electric field value the crossover takes place at
B ≈ 0.2 T (the exact value obviously depends on the electric
field). While the hf channel manifests the 1/B2 dependence
visible already in Fig. 4, the SO contribution shows a very
weak increase with the magnetic field (see the inset in Fig. 5),
which was not noticeable earlier. As a result, the total relative
spin-flip rate (spin-flip probability) is a nonmonotonic func-
tion of the magnetic field over an experimentally accessible
range of field magnitudes. A similar nonmonotonic depen-
dence holds for an electron, similar to the relaxation within
the Zeeman doublet in a single QD, where such a crossover
was recently observed [51]. In our case, depending on the
value of the electric field, the minimum for the electron is less
pronounced and shifted to higher magnetic fields (well above
the SO-hf crossover) or even absent due to weaker magnetic
field dependence of the SO component for electrons, which in
some cases may even decrease at higher magnetic fields.

V. CONCLUSIONS

We have calculated the rates of phonon-assisted hyperfine
and spin-orbit-induced spin flips during electron and hole
relaxation in a self-assembled QDM using a multiband theory
of hyperfine couplings based on the k·p model. We have
predicted a crossover between the two processes as dominant
spin-flip mechanisms at magnetic fields of a few teslas and on
the order of 0.1 T for electrons and holes, respectively, with
the hf mechanism scaling as 1/B2 and dominating at lower
fields over the nearly magnetic field independent SO channel.
For the QDM structure considered here, the probability of spin
flip during electron tunneling between the QDs can be large
at low fields (about 1% for electrons and holes at magnetic
fields of 0.1 and 0.01 T, respectively) but decreases strongly
with increasing field, reaching values around 10−6 and 10−4

for electrons and holes, respectively, when the SO coupling
dominates the relaxation.

The interplay between the two channels with opposite mag-
netic field dependences of the relative spin-flip rates leads to
a nonmonotonic dependence of the total relative spin-flip rate.
The resulting minimum is particularly pronounced for holes
and could be observed in the spin-flip tunneling process, in
contrast to spin relaxation within the Zeeman doublet, where
the hyperfine effects are limited to much lower fields and
are probably not visible for holes. This prediction relies on
the assumed strong transverse hf coupling for holes, in line
with some recent experiments and with theoretical predictions
based on the d-shell admixture to the valence band states. As
the spin-flip efficiency is, in principle, measurable in optical
experiments, this prediction might be used for testing the pres-
ence of the transverse hf couplings. Another interesting field
of further study is the singlet-triplet relaxation of two-electron
systems in QDMs [30,55,56].
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