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Relevance of weak and strong classical scattering for the giant negative magnetoresistance
in two-dimensional electron gases
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The giant negative magnetoresistance (GNMR), observed in two-dimensional electron gases of high mobility,
is studied by controlled definition of additional short-range scatterers in form of two-dimensional Lorentz arrays
of varying obstacle density, as well as in the presence of edge scattering. The results support models, which
ascribe the temperature-independent regime of the GNMR to strong, classical scattering and the temperature-
dependent regime to electron-electron interactions under the influence of mixed disorder. The threshold magnetic
field, which separates the two regimes, is in rough agreement with the lower percolation transition of the Lorentz
array. At large obstacle densities, interaction corrections are suppressed and memory effects become more
relevant. Shape, amplitude, and width of the GNMR depend sensitively on the time scales of the contributing
scattering mechanisms. This can lead to qualitatively similar shapes for quite different parameter values.
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I. INTRODUCTION

Recent transport experiments on two-dimensional electron
gases (2DEGs) of high mobility in Ga[Al]As heterostructures
have shown the giant negative magnetoresistance (GNMR)
[1–9]. Often [3–7] but not always [6–9] the GNMR structure
is composed of a narrow, approximately parabolic, peak with
its center at B = 0 on top of a broader structure, which has a
maximum at B = 0, and a minimum at intermediate magnetic
fields around 100 mT. The narrow peak is quite robust with
respect to thermal activation and additional in-plane magnetic
fields. This phenomenology is different than that one of sim-
ilarly textured peaks observed in samples of lower mobilities
and larger interaction parameters [10,11], where the narrow
peak is strongly temperature dependent and can be explained
by weak localization.

The narrow peak of the GNMR texture has been attributed
to memory effects by strong, elastic scattering at oval defects,
which explains its insensitivity to in-plane magnetic fields as
well as to elevated temperatures [5]. In other experiments, a
narrow peak centered at B = 0 or at nonzero magnetic fields
has been observed but has remained undiscussed [6,7]. The
second structural element of the GNMR, namely the broader
peak, which is in most cases (but not all, see Ref. [9]) more
sensitive to thermal activation and to in-plane magnetic fields
[3,5,6], has been explained by an interplay between mixed
disorder and electron-electron interactions [6]. Interactions
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have also been considered within a hydrodynamic description,
where the boundary conditions of the viscous electron flow
at the edges have a global effect on the conductivity [12,13].
Within this description, however, the dependence on B‖ has
remained an open issue. Furthermore, a quantum mechanical
treatment has been presented [14], based on earlier obser-
vations that B‖ modifies the scattering rate of electrons in
closely spaced Landau levels [2,15]. Thus, it has emerged that
a variety of effects contribute simultaneously to the GNMR,
with weighting factors that depend on the sample parameters.
Presently, a comprehensive model for all these contributions
is not available. However, it is clear that the disorder potential
landscape has a crucial influence on the appearance of the
GNMR. Therefore, studying the dependence of the GNMR
on designed disorder potentials with varying parameters may
contribute to a better understanding of this remarkable effect.

In the present paper, we implement this concept by prepar-
ing two-dimensional Lorentz gases (2DLGs) [16], i.e., arrays
of identical, circular obstacles at random positions in semi-
conductor heterostructures, which show the GNMR. The
phenomenology of the samples without the designed disorder
is very similar to that one reported by Bockhorn et al. [3,5]
as well as by Hatke et al. [6]. The particular type of disorder
potential was chosen for several reasons. First of all, the arrays
can be prepared with excellent control of their scattering pa-
rameters. Second, the sparse but strong obstacles mimic some
possible intrinsic scenarios, like scattering at oval defects [5]
or at sparse impurities. Finally, the analysis and interpretation
of the measurements can resort to the well-established trans-
port models for two-dimensional Lorentz gases [17–22].
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In Sec. II, the sample preparation and the experimen-
tal setup is presented. The measured magnetoresistance
phenomenology is presented in Sec. III, followed by an in-
terpretation and discussion in Sec. IV. The paper ends with a
summary and our conclusions (Sec. V).

II. PREPARATION OF THE SAMPLES
AND EXPERIMENTAL SETUP

A GaAs/Al0.3Ga0.7As heterostructure with a 2DEG
150 nm below the surface was prepared by molecular beam
epitaxy. After a brief illumination with an infrared light-
emitting diode, an electron density of ne = 2.5 × 1015 m−2

and a mobility of μ = 960 m2/Vs of the pristine 2DEG is
measured at liquid helium temperatures, corresponding to an
electronic mean free path of �e = 78 μm. In order to avoid
strain and hysteresis effects, which can decrease the mobility,
Schottky-type electrodes on the sample surface are avoided.

The obstacle arrays are patterned by electron beam lithog-
raphy and subsequent reactive ion etching. Each obstacle
corresponds to an etched circle with a geometric radius of
425 nm, see the left inset in Fig. 1(a). Similar arrays with
an obstacle radius of 75 nm have been studied as well and
are shown in the supplement [23]. Random distribution is
ensured by generating the center coordinates of the circles
with a random number generator, and the correct distribution
is verified by a Voronoi tesselation of the array and a subse-
quent check of the distribution function for the Voronoi cell
areas [24,25]. Here, we allow mutual overlap of the obstacles,
in accordance with the assumptions underlying the widely
used theoretical results for the magnetotransport of 2DLGs
[18,26–28]. A picture of a typical sample is shown in the right
inset of Fig. 1(a). Since the analysis of Aharonov-Bohm os-
cillations at large magnetic fields indicates a lateral electronic
depletion length of ≈75 nm [29], the effective, electronic ob-
stacle radius is rs ≈ 500 nm. Furthermore, magnetoresistivity
experiments on antidot lattices prepared from this wafer by
the same method have shown that the electrostatic potential
at the obstacles is quite steep [22], and can be approximated
by hard walls. The dimensionless number density of a 2DLG
is defined as n� ≡ nsr2

s . It measures the fraction of the sample
area covered by the obstacles in the absence of mutual overlap.
The corresponding mean free path of the clean 2DLG equals
[20] �s ≡ (2nsrs)−1. Clean 2DLGs of this type undergo a
percolation transition at a critical magnetic field [28]:

Bc(n�) = h̄

e

√
2πne × 1

rs
×

√
n�

√
0.359 − √

n�
, (1)

which is reproduced in Fig. 1(a) for the small obstacle
densities considered here. For B > Bc(n�), the electrons are
localized by skipping around obstacles or clusters thereof.

The length of the Hall bar between the voltage probes as
well as its width w was 100 μm. Since the GNMR is known
to depend on w [7], the Lorentz arrays up to n� = 25 × 10−3

have also been prepared in Hall bars of 20 μm width, with
otherwise identical parameters.

The experiments were carried out in a dilution refrigerator
with a base temperature of 8 mK. The minimum electron
temperature is estimated to ≈80 mK, which can be increased
up to ≈800 mK without destabilizing the mixture circuit. For

FIG. 1. (a) Scanning electron microscope picture of a single
etched circle of 425 nm nominal radius (left inset) and an optical
microscope picture of an exemplifying Lorentz array with dimen-
sionless obstacle density n� = 1.25 × 10−2 (center inset). The main
figure shows the lower percolation threshold Bc(n�) of the 2DLGs
(full line). The black circle marks the value estimated for an effective
n� in our pristine heterostructure. Right insets: Example trajectories
for the delocalized (bottom) and localized (top) phase. The mag-
netoresistivities of the arrays for different values of n� and for two
Hall bar widths w, in particular small n�, w = 100 μm, small n�,
w = 20 μm and large n�, w = 100 μm are reproduced in (b), (c),
and (d), respectively. For each case, the traces measured at base
temperature (≈80 mK) and at 800 mK are shown. The vertical lines
denote the 2DLG percolation thresholds from (a). The insets show
zoom-ins of the magnetoresistance close to B = 0 and its temperature
dependence for selected samples.
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FIG. 2. Dependence of ρxx (B) on the in-plane magnetic field B‖
for the samples of width w = 100 μm for n� = 0 (a) and 0.0031 (c).
Adjacent traces towards increasing B‖ are offset by 1� for clarity. (b)
�ρxx (B‖) for B = 0 of the sample with n� = 0. The dependence of
the quantum scattering time on B‖ for the samples with W = 100 μm
is shown in (d). In all measurements shown here, the temperature was
80 mK.

larger temperatures, a 4He gas flow cryostat with a variable
temperature insert and a base temperature of 1.4 K was used.
For the data presented below, an ac current (500 nA, 17.7 Hz)
is injected into the samples, and the longitudinal and Hall volt-
ages are measured using lock-in amplifiers, which are attached
to suitable voltage probes. Both cryostats are equipped with a
rotatable sample stage, enabling scans of the angle � between
the magnetic field direction and the plane of the 2DEG.

III. MAGNETOTRANSPORT MEASUREMENTS

In this section, we start by describing the magnetoresistiv-
ity of the 2DLGs with n* = 0, where only intrinsic obstacles
are present and edge scattering is marginal, Figs. 1(a) and
1(b). We then look at the effects of artificial obstacles with
successively increasing densities. Later on, further parameters
are changed, namely the width of the Hall bar in Fig. 1(c)
as well as the in-plane magnetic field in Fig. 2. Finally, the
high-temperature regime (T > 1K) is described in Fig. 3.

Figure 1 shows an overview of the magnetoresistivity as
a function of n�, the temperature T and w. For w = 100 μm
and in the absence of artificial scatterers (n� = 0), the typ-
ical GNMR structure is observed [lowermost two traces in

FIG. 3. Temperature dependence of the longitudinal magnetore-
sistivities at higher temperatures. Left column: w = 100 μm with
n� = 0 (a), 0.0031 (b), and 0.025 (c). Right column: w = 20 μm with
n� = 0 (d), 0.0031 (e), 0.025 (f).

Fig. 1(b)], very similar to the reports by Bockhorn et al.
[3,5,30] as well as by Hatke et al. [6]: A narrow, approx-
imately temperature-independent peak, centered at B = 0 is
located on top of a broad peak, which vanishes as the tempera-
ture is increased to 800 mK. As n� is increased, the amplitude
and the width of the temperature-independent part increase
and the temperature-dependent component remains visible
only at successively larger B fields. In Fig. 1(c), the mea-
surements on identical arrays in a Hall bar with w = 20 μm
are shown. For n� = 0, a temperature-independent peak is
centered at B ≈ 3 mT. The broad, temperature-dependent part
extends to B ≈ 150 mT and is thus significantly broader as
compared to the w = 100 μm Hall bar. Also, in the narrow
Hall bar, ρxx has increased significantly over the whole in-
terval in which the GNMR structure is visible, indicating a
nonlocal contribution to the resistivity. The temperature de-
pendence sets in at similar magnetic fields as compared to
Fig. 1(b), but it is weaker.

The short, vertical bars in Figs. 1(b) and 1(c) indicate the
2DLG percolation thresholds. Remarkably, the onset of the
temperature dependence occurs at a magnetic field roughly
equal to this phase boundary. Increasing n� in these samples
suppresses the narrow peak at finite B, and for n� = 0.025,
the GNMR peak shape and its temperature dependence is
approximately independent of w. Furthermore, the insets in
Figs. 1(b) and 1(c) exemplify some temperature dependencies
very close to B = 0. A minute decrease of ρxx very close
to B = 0 for the arrays with n� = 0.025 is observed as T
increases.
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In Fig. 1(d), the magnetoresistivities for arrays with large
n� are reproduced. Here, w equals 100 μm. For n� � 0.065,
only the tail of the GNMR peak at large magnetic fields in
the quantum regime remains temperature-dependent, while
an additional, narrow peak at B = 0, already barely visible
at n� = 0.025, emerges and becomes more pronounced as n�

increases to 0.26, which is already close to the upper localiza-
tion threshold [28] of the Lorentz gases (n�

u = 0.359).
Besides the dependence on the temperature and the sample

width, a further characteristic property of the GNMR is its
remarkable evolution as a function of in-plane magnetic fields
[5,6]. Hitherto, this dependence has been studied by measur-
ing the longitudinal magnetoresistance in tilted B-fields, i.e.,
in a simultaneously varying in-plane component B‖ [5,6]. As
illustrated in the supplement, our samples show the same phe-
nomenology in this kind of experiment, namely a suppression
of the T-dependent component of the GNMR by B‖, while
the narrow, temperature-independent structure remains essen-
tially unchanged [23]. For the analysis to follow, however, it
strikes us as more expedient to study the evolution of ρxx(B)
with B‖ as an independent parameter. These measurements are
implemented by rotating the sample by small angles � about
the parallel orientation where the 2DEG lies in the plane of the
magnetic field, i.e., � = 0. Since for small angles, B⊥ ≡ B =
Btot sin(�) ≈ Btot� and B‖ = Btot cos(�) ≈ Btot, the in-plane
magnetic field can be considered as approximately constant in
the range of angles used. For example, in a total magnetic field
of 10 T, a perpendicular magnetic field of 300 mT corresponds
to a rotation angle of 1.7 degrees. At this angle, B‖ = 9.995 T.

For n� = 0, the negative magnetoresistivity in the
temperature-dependent regime is suppressed as B‖ is in-
creased, leading to a positive magnetoresistance at B‖ = 12 T,
see Fig. 2(a). A similar behavior was observed in studies
focusing on the influence of B‖ on microwave-induced re-
sistance oscillations [31], which has been discussed later on
[15]. The shape of the narrow, temperature-independent peak
is hardly influenced by small values of B‖. For B‖ = 12 T,
a dip is observed in ρxx(B) at B = 0, which we interpret in
terms of the well-known parabolic positive magnetoresistivity
of two-subband systems [32], generated here by the spin split-
ting. The additional modulation of the Shubnikov-de Haas
oscillations at large magnetic fields is tentatively attributed to
an increasing effective mass by B‖ [33], although a detailed
analysis is beyond our scope here. Furthermore, ρxx(B‖) for
B = 0 increases approximately parabolically [Fig. 2(b)], by a
factor reaching 1.43 at B‖ = 12 T. The effect of a 2DLG on
this behavior is exemplified for the array with n� = 0.0031,
see Fig. 2(c). Also here, the temperature-independent part of
the GNMR is influenced only weakly by parallel magnetic
fields up to ≈6 T, and shows signatures of spin splitting at
large B‖. The data of further arrays are given within the
Supplemental Material [23]. In the temperature-dependent in-
terval of the GNMR, an increase of ρxx comparable to that one
for n� = 0 is observed. We can thus conclude that moderate
in-plane magnetic fields increase the scattering rates, which
lead to an increase of the resistivities, but changes of the shape
of ρxx(B) are mostly observed in its temperature-dependent
interval. Qualitatively, this behavior is independent of the Hall
bar width (see Supplemental Material [23]). The quantum
scattering time τq can be extracted from the envelope of the

Shubnikov-de Haas oscillations [34]. It tends to decrease with
increasing B‖ as well as with increasing n�, as shown in
Fig. 2(d). It is interesting to note that the effect of increasing
the parallel magnetic field by 3T has an approximately similar
effect on τq as an increase of the obstacle density by a factor
of four.

In Fig. 3, some typical magnetoresistivities at higher tem-
peratures, T > 1 K, are shown. For our larger Hall bar width
(w = 100 μm) without artificial obstacles, the GNMR struc-
ture that has vanished around 800 mK remains absent and a
broad, positive magnetoresistivity is formed, see Fig. 3(a).
For T = 4 K and 8 K, a weak modulation is superimposed,
which we attribute to phonon-induced resistance oscillations
(PIRO) [20,35]. With increasing values of n�, the GNMR
peak becomes more robust with respect to thermal smearing
and is still visible at T = 16 K [Figs. 3(b) and 3(c)]. Also
here, PIRO are visible at intermediate temperatures, with an
additional peak appearing at smaller magnetic fields around
[9]. A smaller Hall bar width (w = 20 μm, right column of
Fig. 3) stabilizes the GNMR structure with respect to thermal
activation. Most dramatically, the peak observed in the sample
with n� = 0 remains visible up to T = 16 K, and the PIRO
are quite pronounced. As in our wide Hall bar, increasing
n� makes the magnetoresistance peaks even more robust with
respect to an increasing temperature, see Figs. 3(e) and 3(f).

IV. INTERPRETATION AND DISCUSSION

In this section, the various aspects of the GNMR as spec-
ified experimentally above will be analyzed and discussed in
greater detail.

A. The transition magnetic field

The observations reported above suggest that the compo-
nent of the GNMR with a weak dependence on temperature
and in-plane magnetic field is dominated by strong scattering
with a classical character. The shape of this component de-
pends on the obstacles that contribute to the elastic scattering
rate, namely the Lorentz array, the sample edges as well
as some unknown potential landscape of the pristine 2DEG.
Above a threshold magnetic field, the temperature-dependent
component, which also depends strongly on B‖ becomes dom-
inant. The values of this threshold are found to be very similar
to Bc(n�), the lower percolation threshold of the 2DLG. This
suggests the following picture, see also Fig. 1(a). At magnetic
fields below Bc, electrons are delocalized, and the resistivity
is dominated by the strong, elastic scattering at the obstacles.
Therefore, it has a weak T dependence. Perfect agreement
with the theoretical value for Bc is not to be expected, con-
sidering that it disregards scattering at the edges and at further
scatterers in the bulk. In a clean 2DLG above Bc, all electrons
are localized in skipping orbits around the obstacles or clusters
thereof, as well as in closed, undisturbed cyclotron orbits. In
this phase, the transport in a real system has an activated char-
acter, since additional background scattering, for example by
phonons, disturbs the cyclotron motion and tends to unpin the
electrons from the obstacles [22,28,36,37]. In fact, the mag-
netoconductance in this regime increases as the temperature is
increased, which becomes apparent by transforming the data
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of Figs. 1(a) and 1(b) to longitudinal magnetoconductivities
σxx(B) = ρxx(B)/[ρ2

xx(B) + ρ2
xy(B)], shown in Fig. 5 within

the Supplemental Material [23]. From this viewpoint, it ap-
pears plausible to relate the value for B ≈ 16 mT at which the
temperature dependence sets in for the sample with n� = 0,
Fig. 1(b), to an effective dimensionless obstacle density of
n�

2DEG ≈ 0.002. Thus, strong scatterers like, e.g., oval defects,
of the size of one obstacle from our Lorentz gases would have
an average distance of ≈11 μm, with a plausible mean free
path of �s ≈ 125 μm. It should be noted that the interpretation
of the transition magnetic field provided by Bockhorn et al. in
terms of scattering at oval defects [3,5,30] is in full agreement
with the conclusions drawn here.

B. Shape of the temperature-independent component

We proceed with a closer look at the narrow, temperature-
independent magnetoresistance structures close to B = 0. A
peak at B = 0 is visible in the Hall bars of 100 μm width for
n� = 0, which broadens as n� is increased, while the samples
with w = 20 μm show a peak at B = 3 mT n� = 0, which
sits on top of a broader, T-independent shoulder and which
is suppressed for increasing n�.

1. Dependence on n� and w; the mixed disorder model

We interpret the peak at B > 0 as a signature of diffusive
scattering at the edges of the Hall bar. It is well known that
this type of edge scattering causes a magnetoresistance peak
centered at w ≈ 0.55rc [38] where rc denotes the cyclotron
radius, i.e., at a magnetic field Bwp ≈ (0.55/w) × (h̄/e) ×√

2πn, leading to expected peak positions of Bwp(w =
20 μm) = 2.3 mT and Bwp(w = 100 μm) = 0.45 mT. Since
the shape of this peak is not well understood but it is known
from experiments to have a pronounced tail towards larger
magnetic fields [38], boundary scattering may contribute sig-
nificantly to the narrow magnetoresistance structure even for
wider Hall bars where the position of the wire peak cannot be
distinguished from B = 0. Thus, diffusive boundary scattering
may contribute, for example, to the approximately constant
ρxx(B) close to B = 0 in the samples with n� = 0.0031 and
0.0062 with W = 100 μm, see Fig. 1(b). As n� increases, edge
scattering becomes less relevant, and the wire peak tends to
vanish for n−1/2

s � w. This is in good agreement with our
experimental observations. Therefore, it appears plausible that
the dependence of this part of the GNMR on w may be
due to diffusive edge scattering. In experiments where the
shape of this structure is independent of w [5], n−1/2

s may
be comparable to or smaller than w, or the walls may have
a high specularity. However, just the absence of a classical
resistivity peak at nonzero B is not sufficient to exclude an
edge scattering contribution.

A quantitative analysis of this temperature-independent
GNMR peak component at B = 0 in terms of mixed disorder
scattering [18,36] has been carried out by Bockhorn et al. [5]
as well as by Hatke et al. [6]. Within this model, the negative
magnetoresistance for B below the percolation threshold orig-
inates from the skipping trajectories of the electrons around
and in between strong scatterers (here predominantly the
Lorentz obstacles), which are disturbed by the weak back-
ground scattering. For infinite samples (disregarding edge

FIG. 4. Fits (blue lines) of the narrow peaks of ρxx (B) at 80 mK
(green lines) to Eq. (2) for n� = 0 (a), 0.0031 (b), and 0.0125 (c).
The corresponding fit parameters for density of strong scatterers are
ns,eff = 2.80 × 108 m−2 (a), ns,eff = 1.68 × 109 m−2 (b), and ns,eff =
1.79 × 1010 m−2 (c). For comparison, the traces at 800 mK are shown
as well (orange lines). The black vertical bars denote the limits of the
fit interval, and ns is the fit parameter value obtained.

scattering) and for scattering times of the weak background
disorder τL much larger than τS , the scattering time by strong
disorder, the peak can be modeled by

ρxx(B) = ρxx(0)

[
1 − ω2

c f (τS/τL )

2πnsv
2
F

]
, (2)

with the cyclotron frequency ωc and the function

f (x) ≡ 2

x + 1

∫ ∞

0

yJ2
1 (y)

xy2 + 2
(
1 − J2

0 (y)
)dy,

where Ji(y) denote Bessel functions in the conventional
notation [5].

Here, τL ≈ 320 ps is estimated from ρxx(Bc) = m�

nee2τL
[5] of

the n� = 0 sample and it is assumed that the Matthiesen rule
holds for the combined scattering, i.e., ρxx(0) = m�

ne2 (τ−1
S +

τ−1
L ), which gives the corresponding value for τS from the

measurements, but is strictly valid only for sufficiently small
n�. Thus, fits of Eq. (2) to the measurements of ρxx(B) in the
interval B � Bc with the effective density of strong scatterers
neff

s as fit parameter can be carried out. The results are shown
in Fig. 4 for three exemplifying values of n�.

For n� = 0, ρxx(B) can hardly be called parabolic, and
the fit is accordingly quite poor. The obtained fit value of
ns,eff = 2.8 × 108 m−2 corresponds to quite large average dis-
tance between strong scatterers of 60 μm. Comparable results
have been reported earlier [5], where, however, an influence
of edge scattering could be excluded. As n� is increased,
the parabolicity of the magnetoresistance improves. The fit
values are smaller than the designed obstacle densities but
approach them as n� increases. In particular, they are a factor
of 7.4 (2.8) smaller than the lithographic obstacle densities at
n� = 0.0031(0.0125). For n� = 0.025, the ratio drops to 1.68
(the fit value was ns,eff = 5.95 × 1010 m−2), thereby leading
to a rather accurate estimate of the average obstacle spacing
with a deviation of 30%. We attribute this to the fact that the
condition τL 	 τS is only fulfilled for sufficiently large n�,
i.e., τL/τS = 0.063 for n� = 0 and 9.1 for n� = 0.025. Thus,
the samples showing a typical GNMR structure [5,6,9] are
most likely outside the range of validity of the mixed disorder
model, and fitting the GNMR data to this model in the regime
τL � τS underestimates the density of the strong scatterers.
For example, samples A and B in Ref. [6] resemble our
samples with n� = 0.0062 and 0, respectively, and the authors
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have estimated τL ≈ 0.2τS for their sample A. The samples
studied by Shi et al. [9], appear to have a rather large density
of strong scatterers with an effective n� ≈ 0.01, but the mixed
disorder model predicts a much broader magnetoresistivity
peak. This indicates that the ratio τL/τS is still too small for the
applicability of the mixed disorder model. Furthermore, our
study indicates that contributions from edge scattering may
influence this part of the GNMR peak even if a wire peak is
not visible. The studies reported by Mani et al. on samples
of very high mobility show a characteristic narrow peak at
B = 0 on top of a broad one, a structure, which resembles our
data for samples with n� = 0 [7]. The narrow peak observed
in this experiment has been interpreted in terms of weak
localization, however. We can exclude this explanation for
our samples, since the magnetoconductivity is negative for all
values of n� (see Supplemental Material [23]), while a positive
magnetoconductivity is expected for weak localization, due
to the suppression of coherent backscattering in magnetic
fields [39].

Interestingly, as n� is increased into the regime where
kinetic models are inapplicable [22] (n� � 0.025), ρxx(B) de-
velops a structure, which resembles the GNMR, namely a
narrow peak at B = 0 on top of a much broader shoulder.
However, both features are robust with respect to temperatures
and in-plane magnetic fields. They have been explained in
terms of classical memory effects [17,18,22,26,27], where the
broad peak corresponds to the narrow peak in the GNMR
regime, and the additional structure on top is attributed to
retroreflection at the Lorentz obstacles, with an approximately
linear negative magnetoresistance [19,25]. This shows that a
classification of the GNMR based on just the shape at a fixed
temperature is insufficient.

2. The weak dependence on B‖

In Fig. 2(d), it has been shown that τq is strongly influ-
enced by B‖: It decreases by a factor of 3 as B‖ is increased
from 0 to 3 T. As elaborated in Ref. [40], the position of
the electronic wave function in growth direction of the het-
erostructure depends on the in-plane magnetic field, and the
direction-averaged transport scattering time, which no longer
depends in a simple way on the quantum scattering time,
decreases due to the scattering contributions of the wave
vectors for which the wave function is displaced towards
the remote donors. This causes a decrease of the scattering
times and a positive magnetoresistance as a function of both
the perpendicular as well as the in-plane magnetic field, as
observed here as well, see Figs. 2(a) and 2(c). Therefore, we
attribute the weakly increasing resistivity by B‖ close to B = 0
in our samples to this established effect. However, the shape
of the temperature-independent GNMR component changes
only marginally, indicating that the additional scattering is
essentially irrelevant for the unpinning of the electrons from
the obstacles. This can be understood with the picture of the
two phases of the 2DLG: here, the system is still in the con-
ducting phase, where delocalized electrons move in straight
or weakly bent trajectories through the sample, a motion,
which experiences only minor changes by the additional weak
scattering.

FIG. 5. Parabolic fits of the temperature-dependent part of the
GNMR for the pristine sample (n� = 0) at base temperature (a) and
for 800 mK (b), using α [see Eq. (3)] as fit parameter. The corre-
sponding fit for n� = 0.0031 at base temperature is shown in (c) The
gray regions denote the fit intervals, with Bt as the lower and 40 mT
as the upper boundary, respectively. All measurements here have
been taken on the samples with w = 100 μm.

C. Properties of the temperature-dependent component

As for the discussion of the temperature-independent part
above, we structure this subsection according to the different
aspects of this component.

1. The interaction-induced resistivity correction

The broad, temperature-dependent part of the GNMR has
been analyzed by Hatke et al. [6] as well as by Bockhorn
et al. [4] within the model of an interaction-induced correction
in the presence of long- and short-range disorder [41]. This
model predicts a parabolic, temperature-dependent magne-
toresistance given by

ρxx(B)

ρ(0)
= 1 − αc0

2n2π2
√

h̄kBT τ
, (3)

where c0 ≈ 0.276 is a numerical constant and α is a parameter
that depends on the ratio of the Drude to the quantum scatter-
ing time, i.e., α = 4

√
τ/τq/(kF d ) with the Fermi wave vector

kF and the distance d between the 2DEG and the donor layer,
which in our heterostructure equals d = 40 nm.

As in the studies reported earlier [4,6], we do not observe
the predicted T −0.5 scaling, but rather a dependence roughly
∝ 1/T (not shown). For our sample with n� = 0 where τ =
290 ps and τq ≈ 3.5 ps (see Supplemental Material [23]),
we expect α = 7.2. In analogy to the analysis provided in
earlier work [4,6], we compare this value to those obtained
by fitting Eq. (3) to our experimental data of the samples with
w = 100 μm using α as fit parameter and obtain values αfit

for different temperatures, which deviate from 7.2 by a factor
between 1.95 at base temperature and 1.35 at 800 mK, where,
however, the measured trace is only approximately parabolic
at best, see Figs. 5(a) and 5(b).

As n� is increased, a magnetic field interval in which the
temperature dependent part is well described by a parabola
can no longer be identified, see Fig. 5(c). Possibly, con-
tributions from the strong scatterers as well as the larger
relevance of the E × B drift at the sample edges influence
the magnetoresistance in this regime. A further reason for the
nonparabolicity may be that even for our lowest nonvanishing
value of n� = 0.0031, the obstacle density is too large for
Eq. (3) to be strictly valid. Nevertheless, a fit of ρxx(B) in this
regime to Eq. (3) gives quite comparable values for α to those
found for n� = 0.
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2. The dependence on parallel magnetic fields

As shown in Figs. 2(a) and 2(b), and in agreement with
earlier reports [5,6], the temperature-dependent part of ρxx(B)
broadens and changes its shape under the influence of in-
plane magnetic fields. To the best of our knowledge, there
is no model available that extends the interaction effects in
the presence of mixed disorder to B‖. Qualitatively, however,
it appears plausible that the broadening of the GNMR by
in-plane magnetic fields can be caused by the decrease of the
quantum scattering time: the system is in the localized phase,
where transport requires un-pinning of the electrons from the
Lorentz obstacles by additional scattering, such as that one
indicated by a decreasing τq. We note that Zeeman splitting
may contribute to the non-monotonic shape of ρxx(B) as well.

3. The dependence on the sample width w

Furthermore, the broad, temperature-dependent peak has
been reported to depend on w, scaling roughly with w−0.5 [7].
In our experiments, the scaling factor deceases monotonically
as n� is increased, from 1.9 for n� = 0 to 1.15 for n� = 0025
( Fig. 2 within the Supplemental Material [23]). This suggests
that the scaling factor is a measure for the significance of edge
scattering, approaching 1 as the distance between the Lorentz
obstacles gets much smaller than w. We have determined the
quantum scattering time for the Hall bars of 20 μm to τq =
3.5 ps for n� = 0, quite similar to that one for the samples
with 100 μm, indicating that weak scattering at the edges is
marginal. Therefore, we tentatively explain the dependence of
this part of the GNMR on w by strong scattering at the edges,
similar in character to the scattering at the Lorentz obstacles.

D. The high-temperature regime

We proceed with a discussion of ρxx(B) at higher tempera-
tures, i.e., in the range T ε[1.4 K, 32 K] shown in Fig. 3. Since
the component of the GNMR with a significant temperature
dependence below 1 K has decayed in this regime, we ob-
serve here the thermal smearing of the GNMR component we
called temperature-independent in the measurements below
1 K. Such a weak temperature dependence is in tune with our
earlier identification of this component as classical, predom-
inantly elastic scattering. Apparently, a decrease of the mean
free path by Lorentz circles or at sample edges, increases the
pronunciation and the thermal stability of the peak, with a
remarkably strong influence of edge scattering in the samples
with the narrow Hall bar. A higher temperature increases the
electron-phonon scattering rate and changes thereby the ratio
τL/τS towards smaller values, while the character of the strong
scattering remains nonrandom. In this regime, therefore, all
samples are outside the range of validity of the mixed disor-
der model, and a corresponding theoretical description is not
available to the best of our knowledge. The magnetoresistivi-
ties reported by Shi et al. [9], as well as those shown by Hatke
et al. [6] for their sample A, somewhat resemble our data
shown in Fig. 3(c). Hence, possibly, also in those samples,
ρxx(B) may be governed by this regime of scattering times.
The data of Shi et al. have been interpreted later on in terms of
a hydrodynamic model [12], where the electron-electron scat-
tering rate increases with T , thereby decreasing the viscosity

of the electron liquid. Since the viscosity is suppressed by
perpendicular magnetic fields, a negative magnetoresistance
is expected. Within this model, the resistivity is determined
by a Hagen-Poiseuille-type flow profile with zero velocity at
the edges of the strong scatterers. Hence, the Lorentz obstacles
determine, together with the sample edges, an effective width
weff in between which the flow profile is established [12]. The
hydrodynamic model predicts a decreasing resistivity as the
temperature is increased, due to the decreasing viscosity, as
has been observed by Levin et al. [42] in 2DEGS of much
larger electron densities and in wires of 5 μm and below. We
observe a resistivity, which increases with T at B = 0 and
develops a positive dependence on B at large temperature.
This suggests that the hydrodynamic model is inadequate
for an explanation of our data. Nevertheless, we have tenta-
tively fitted some of our measurements to the hydrodynamic
model, with the relevant time scales as fit parameters (see
Supplemental Material [23]). For example, for the sample
with n� = 0.062 and w = 100 μm, a fit value for the Drude
scattering time of 426 ps at T = 1.4 K is obtained, which is
roughly a factor of 5 larger than the value obtained from
the resistivity at B = 0. While our observations in the high
temperature regime are consistent with an interpretation in
terms of predominantly classical scattering within a single
particle picture including memory effects, we do not exclude
the possibility that in some parameter range, in particular at
high temperatures, larger electron densities and/or small Hall
bar widths, a hydrodynamic description may be appropriate,
as has been shown recently for some other systems in this
temperature regime [43–45]

V. SUMMARY AND OUTLOOK

We have presented a study of the GNMR structure on a
series of samples where strong (via the density of Lorentz
obstacles and the sample width) and weak (via tempera-
ture and in-plane magnetic fields) scattering is varied. The
GNMR structure shows a continuous, multicomponent evo-
lution as a function of the corresponding scattering times.
As the density of strong obstacles increases, the temperature-
independent component of the GNMR close to B = 0 extends
over successively larger intervals, with the transition to the
temperature-dependent component taking place close to the
percolation threshold of the Lorentz gas. Thus, the behavior
in this phase is based on the transport properties of classically
delocalized states. For low obstacle densities, the existing
models for mixed disorder potentials predict a parabolic
shape for the two GNMR components. The curvature of the
temperature-independent peak can be used to determine the
density of the sparse, strong obstacles, and our study suggests
that this fit can be used for an order-of-magnitude estimate of
ns. One source of error is edge scattering, which can disturb
the parabolicity of the peak significantly. Furthermore, most
samples studied so far have parameters outside the range of
validity of the mixed disorder model, and our study suggests
that in cases where the long-range scattering time is not large
compared to the short-range scattering time, this analysis
underestimates the density of strong scatterers. In the range
of large obstacle densities where n−0.5

s � �e, a peak shape
quite similar to the GNMR emerges, which is however quite

045306-7



B. HORN-COSFELD et al. PHYSICAL REVIEW B 104, 045306 (2021)

robust with respect to thermal activation. In this regime, the
narrow peak close to B = 0 originates from retroreflection.
A peak at nonzero magnetic field at low temperature can be
attributed to edge scattering, while at higher temperatures,
a quite similar structure can be caused by phonon-induced
resistance oscillations [see in particular Figs. 3(c) and 3(d)].

The temperature-dependent part of the GNMR depends
sensitively on the Drude and quantum scattering times. The
system is in the classically localized phase, where additional
weak scattering contributes to the unpinning of electrons that
are trapped at, or in between, strong obstacles in the absence
of weak disorder. Both scattering times are found to be de-
creased by edge scattering as well as by additional in-plane
magnetic fields, which explains qualitatively the dependence
of the GNMR width on these parameters. For a better quantita-
tive agreement, the existing models should be extended to the
regime where the scattering time for long range scattering is

comparable to, or smaller than, the short range scattering time,
and include further scattering contributions like edge scatter-
ing. Also, it would be helpful to look at interaction corrections
in the presence of in-plane magnetic fields. In the future, it
will be furthermore interesting to study the crossover from
the mixed disorder model, for example in form of a 2DLG,
to the hydrodynamic model. Finally, further insight might
be gained from current-voltage characteristics in combination
with magnetic field sweeps in the nonlinear regime, along the
lines of Ref. [46].
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