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We present a theoretical study of vibrational and vibronic properties of a point defect in the dilute limit by
means of first-principles density functional theory calculations. As an exemplar we choose the negatively charged
nitrogen-vacancy (NV) center, a solid-state system that has served as a testbed for many protocols of quantum
technology. We achieve low effective concentrations of defects by constructing dynamical matrices of large
supercells containing tens of thousands of atoms. The main goal of the paper is to calculate luminescence and
absorption lineshapes due to coupling to vibrational degrees of freedom. The coupling to symmetric a1 modes is
computed via the Huang-Rhys theory. Importantly, to include a nontrivial contribution of e modes we develop an
effective methodology to solve the multimode E ⊗ e Jahn-Teller problem. Our results show that for NV centers
in diamond a proper treatment of e modes is particularly important for absorption. We obtain good agreement
with experiment for both luminescence and absorption. Finally, the remaining shortcomings of the theoretical
approach are critically reviewed. The presented theoretical approach will benefit identification and future studies
of point defects in solids.
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I. INTRODUCTION

The calculation of optical lineshapes of point defects in
solids is a topic with a long history [1–4]. Yet, atomistic
first-principles calculations [5] have been difficult. Certain
properties of defects, such as discrete energy levels or lo-
calized magnetic moments, resemble those of atoms or
molecules. However, those localized states are surrounded by
a huge number of other electrons and ions, which makes point
defects qualitatively different from atoms and molecules and
requires a treatment as a solid-state system. Unfortunately,
unlike perfect crystals, defects do not possess translational
symmetry, which significantly complicates their quantum-
mechanical description.

Optical signatures of defects in semiconductors and insu-
lators are properties where both the atomic and the solid-state
aspects are manifest. Many defects have localized levels in the
band gap of the host material, on par with atoms or molecules
in vacuum. Optical transitions involving those levels usually
lead to lattice rearrangement. This rearrangement typically
couples to a continuum of vibrational modes with different
frequencies, in contrast to molecules, where a finite number of
vibrations participate. As a result, optical signatures of defects
are composed of continuous bands [4].

Due to the complexity of the problem earlier first-
principles calculations of optical bands involved approxima-
tions that were not fully tested. Kretov et al. [6] performed
a study of the luminescence lineshape of a Mn impurity
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in Zn2SiO4, but approximated the vibrational modes of the
defect system by those of the bulk crystal. Alkauskas et al. cal-
culated luminescence lineshapes of defects in GaN and ZnO
with a very strong electron-phonon coupling (as quantified by
the so-called Huang-Rhys (HR) factor [1] S � 1, discussed
below) [7]. For such systems optical lineshapes can be accu-
rately calculated by mapping all vibrations onto an effective
one-dimensional vibrational problem [1]. In subsequent work,
Alkauskas et al. calculated the luminescence lineshape for a
negatively charged nitrogen-vacancy (NV) center in diamond
[8], a defect in which electron-phonon coupling is not strong
enough to justify the single-mode approximation. They ex-
plicitly treated all phonons pertaining to the defect system
by diagonalizing dynamical matrices of periodically repeated
supercells [9] with up to 11 000 atoms. The calculations took
into account only symmetric a1 vibrational modes, whereas it
is known that asymmetric e modes also contribute [10] due
to the dynamical Jahn-Teller (JT) effect in the electronically
excited state [11]. A few other recent studies have calcu-
lated optical lineshapes of point defects [12–14]. Most of
the published work used fairly small supercells, which yields
an incomplete description of the phonon spectrum. It can be
concluded that the status of calculations of optical lineshapes
of point defects is much behind that of molecules where
very accurate calculations are now being routinely performed
[15–17].

A proper inclusion of the dynamical JT effect is very dif-
ficult. Historically, an understanding of this effect has been
achieved by invoking an effective single-mode approximation
for the degenerate asymmetric vibrational mode [18]. This
approximation suffices to obtain the general features of optical
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FIG. 1. (a) Atomic structure of the NV center in diamond. (b) Energy-level diagram of the NV center. Splitting of the magnetic sublevels
is not to scale. (c) One-dimensional representation of adiabatic potential energy surfaces in the ground and the excited states. Points A and D
represent equilibrium geometry of the ground state, while points B and C represent equilibrium geometry of the excited state. �Eg and �Ee

are lattice relaxation energies. E0 is energy difference between the potential energy minima, and EZPL is the energy of the zero-phonon line.

lineshapes [19] or to assess the effect of the JT interaction
on spin-orbit coupling [20]. However, the single-mode ap-
proach is insufficient in the case of defects with weak to
moderate electron-phonon coupling. Unfortunately, the prob-
lem of diagonalizing the vibronic (i.e., combined vibrational
and electronic) Hamiltonian has an extremely unfavorable
scaling with regard to the number of vibrational modes that
are included. In the past, this limited the consideration of the
dynamical JT effect to no more than just a few vibrational
degrees of freedom [21].

In this paper, we present first-principles calculations of
defect optical lineshapes for the NV center in diamond. The
NV center is a very useful model system because its structure
is accurately known and the defect is extremely well charac-
terized spectroscopically. Our present paper goes well beyond
the ideas developed in Ref. [8] and significantly advances
the methodology and calculations in the following areas: (i)
We present the calculations of absorption lineshapes in ad-
dition to luminescence lineshapes. (ii) The contribution of
asymmetric e vibrations is included. The latter is possible
because (iii) we propose and test an efficient algorithm to
solve the multimode Jahn-Teller problem, which allows us to
treat vibronic coupling to a very large number of asymmetric
modes.

Our paper is not just an academic exercise in the develop-
ment of quantum-mechanical methods for solid-state systems.
Recently, the field of point defects in solids has experienced
a renaissance due to the application of point defects in vari-
ous branches of quantum technologies: quantum computing,
quantum communication, and quantum sensing [22]. While
the NV center is probably one of the most prominent examples
of these so-called quantum defects, many other defects have
been addressed [22]. There is a wealth of experimental data
on various point defects in solids and many potentially useful
systems await to be discovered or identified. The ability to
accurately calculate optical signatures of point defects will
greatly aid their identification and potential application. We
note that the dynamic Jahn-Teller effect influences not only
the vibrational sidebands but also the fine structure of the
spectra, in particular the splitting of the zero-phonon line
(ZPL, see below for a definition). In the case of the NV center
the fine structure is affected by the spin-orbit coupling in the

excited state, which, in its turn, is reduced when the dynamic
Jahn-Teller effect is present [20]. The fine structure of the
spectra will not be considered in this paper.

The paper is organized as follows. In Sec. II we introduce
the nitrogen-vacancy center. In Sec. III the general theory of
optical lineshapes of defects is laid down. The first-principles
methodology and actual calculations are presented in Sec. IV.
These calculations are subsequently used to build effective
models of NV centers in very large supercells, as detailed in
Sec. V. Coupling to fully symmetric a1 vibrational modes is
discussed in Sec. VI and the interaction with e modes, i.e.,
the dynamical multimode Jahn-Teller effect, is analyzed in
Sec. VII. The calculated lineshapes, where the contributions
of a1 and e modes are combined, are presented and compared
to experiments in Sec. VIII. Our findings are summarized in
Sec. IX, where we also discuss possible sources of the remain-
ing small discrepancies between theory and experiment.

II. THE NITROGEN-VACANCY CENTER

The defect studied in this paper is the negatively charged
NV center in diamond, depicted in Fig. 1(a). It is a complex
of a substitutional nitrogen atom with a carbon vacancy; the
extra electron comes from remote donors. Over the past two
decades the NV center has been the focus of a lot of re-
search activity [10] due to its application in nanoscale sensing
[23], quantum communication [24], and quantum computa-
tion [25].

The point-group symmetry of the defect is C3v with a
threefold axis going through the nitrogen and the vacant site.
The energy level diagram of the negatively charged NV center
is shown in Fig. 1(b). The NV center has a triplet ground state
3A2 and a triplet excited state 3E . Once the system is in the
excited state, it can either return to the ground state via a
radiative transition or undergo an intersystem crossing to the
singlet state 1A1. The latter process is important for optical
spin polarization and readout; for more details see Ref. [10].
In this paper, we will focus on optical transitions between
3E and 3A2 states. Also, we will use the term “NV center”
omitting the explicit mention of its negative charge state.

The role of lattice vibrations in optical properties can be
qualitatively illustrated using an effective one-dimensional
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representation, the so-called configuration coordinate diagram
[4,26], shown in Fig. 1(c). The equilibrium geometries of the
defect in the excited and the ground state are different, which
is reflected by the fact that total energies in different electronic
states attain their minimum for different configurations. In the
so-called classical Franck-Condon picture the energy Eabs is
associated with absorption energy and the energy Eem with
emission. Lattice relaxation energies during optical transitions
are quantified by Franck-Condon shifts in the ground (�Eg)
and the excited (�Ee) state.

Let the energy difference between the equilibrium config-
urations be E0 and let εgn and εem be energy eigenvalues of
quantum-mechanical vibronic levels in the ground and the
excited state, referenced to the respective potential energy
minima. The optical transition between the lowest vibronic
level in the excited state and the lowest vibronic level in the
ground state is called the zero-phonon line; its energy is

EZPL = E0 + εe0 − εg0. (1)

The zero-phonon line is the transition during which the net
number of phonons in the system does not change. Strictly
speaking, the definition Eq. (1) is valid only for T = 0 K. In
this paper we will assume this low-temperature limit and cal-
culate luminescence and absorption lineshapes for T = 0 K.

Because of different geometries in the excited and the
ground state, luminescence and absorption signals are not
narrow lines at the energy of the ZPL, but become broadened
due to lattice vibrations, resulting in bands. A quantitative
theory of the vibrational structure of optical lines is given next,
in Sec. III.

III. VIBRATIONAL BROADENING OF
OPTICAL TRANSITIONS

The process of optical emission is described by an energy-
dependent emission probability P(h̄ω), the number of photons
emitted in the solid angle 4π per unit energy per unit time.
The process of absorption is described by an absorption cross
section σ (h̄ω). These quantities are given by [27]

P(h̄ω) = CPω3Iem(h̄ω), σ (h̄ω) = CσωIabs(h̄ω), (2)

where

Iem(h̄ω)=
∑

n

|〈�e0|μ̂|�gn〉|2δ(E0 + εe0 − εgn − h̄ω) (3)

and

Iabs(h̄ω)=
∑

n

|〈�g0|μ̂|�en〉|2δ(E0 + εen − εg0 − h̄ω). (4)

In the subscripts g stands for “ground” and e for “excited.” CP

and Cσ contain fundamental physical constants, as well as the
refractive index of diamond, nr . As we will be interested in
normalized lineshapes, these constants will not be discussed
further. Wave functions |�gn〉 and |�en〉 describe vibronic
states in the ground and excited electronic manifolds; their
energies εgn and εen were introduced in Sec. II. μ̂ is the dipole
operator; in the most general case it can be written as the sum
of electronic and ionic contributions:

μ̂ = μ̂el + μ̂N . (5)

In this paper we will employ the so-called crude adiabatic
(also called static) approximation. In this approximation elec-
tronic wave functions depend only on electronic degrees of
freedom and they are eigenfunctions of the electronic Hamil-
tonian corresponding to some fixed position of ions [28].

The ground state of the NV center is an orbital singlet [10],
and its vibronic states can be written as

|�g;pr〉 = χa1
gp (Qa1 )χ e

gr (Qe)|A2〉. (6)

Here the a1 and e symmetry components of the vibrational
wave function are shown explicitly. To describe these com-
ponents we need two quantum numbers p and r that in the
previous expressions were substituted with a single index n.
To avoid possible confusion the index e for “excited” will be
used as a subscript, and the index e to label the e irreducible
representation will be used as a superscript whenever both
indices appear on the same symbol.

The excited state is an orbital doublet [10], and the general
expression of its vibronic states is [29]

|�e;st 〉 = χa1
es (Qa1 )

[
χ ex

et (Qe)|Ex〉 + χ
ey
et (Qe)|Ey〉

]
, (7)

where s and t are used to label ionic wave functions of a1 and
e symmetry, respectively; like for the ground state, quantum
numbers s and t replace a single quantum number n in Eq. (4).
Using the notation

|
et 〉 = χ ex
et (Qe)|Ex〉 + χ

ey
et (Qe)|Ey〉 (8)

we can rewrite the vibronic wave function in the excited state
as

|�e;st 〉 = χa1
es

(
Qa1

)|
et 〉. (9)

This form will be useful in Sec. VII.
In the expressions above ionic wave functions pertaining to

vibrational modes of a2 symmetry are not explicitly shown. In
the case of the NV center these modes show up neither in ab-
sorption nor emission. The reason for this is that the difference
between equilibrium geometries in the 3A2 and 3E electronic
states (to be discussed in more detail in Secs. VI and VII)
contains only a1 and e components, but no a2 components.
I.e., the projection of that difference on a2 vibrational modes
is zero. Thus, these modes will not be considered further in
this paper. However, a2 modes can in principle contribute in
some other C3v systems. As these modes do not break the
degeneracy of E electronic states, they are not Jahn-Teller
active. Therefore, they can be treated the same way as a1

modes.
When ground- and excited-state wave functions are in the

form of Eqs. (6) and (7), the nuclear part of the dipole operator
[Eq. (5)] does not contribute. If the symmetry axis of the NV
center is along the z direction, then light emitted from this
center is polarized in the xy plane. Using group-theoretical
analysis one can then show that

|〈�g;pr |μ̂el|�e;st 〉|2

= |μ0|2
∣∣〈χa1

gp

∣∣χa1
es

〉∣∣2[∣∣〈χ e
gr

∣∣χ ex
et

〉∣∣2 + ∣∣〈χ e
gr

∣∣χ ey
et

〉∣∣2]
(10)

where μ0 = ∑
i e〈A2|xi|Ey〉 is the reduced matrix element in

the Wigner-Eckart theorem (the sum runs over all electrons of
the negatively charged NV center and e is elementary charge).
Physically, μ0 is simply the transition dipole moment.
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The energies of vibronic levels that appear in Eqs. (3) and
(4) are a sum of contributions by a1 and e modes, i.e., εgn =
εa1

gp + εe
gr and similarly for the excited state. In this case one

can show that functions Iem and Iabs from Eqs. (3) and (4) can
be expressed as

I{em,abs}(h̄ω) = |μ0|2A{em,abs}(h̄ω), (11)

where A(h̄ω), the spectral function, is given by the following
expression:

A{em,abs}(h̄ω) =
∫

Aa1(h̄ω − h̄ω′)Ae(h̄ω′) d (h̄ω′). (12)

This is a convolution of the two spectral functions pertaining
to a1 and e modes. In the case of luminescence we define these
spectral functions by

Aa1 (h̄ω) =
∑

p

∣∣〈χa1
e0

∣∣χa1
gp

〉∣∣2
δ
(
EZPL + ε

a1
g0 − εa1

gp − h̄ω
)

(13)

and

Ae(h̄ω) =
∑

r

[∣∣〈χ ex
e0

∣∣χ e
gr

〉∣∣2 + ∣∣〈χ ey

e0

∣∣χ e
gr

〉∣∣2]
δ
(
εe

g0 − εe
gr − h̄ω

)
.

(14)

In the case of absorption they are

Aa1 (h̄ω) =
∑

s

∣∣〈χa1
es

∣∣χa1
g0

〉∣∣2
δ
(
EZPL + εa1

es − ε
a1
e0 − h̄ω

)
(15)

and

Ae(h̄ω) =
∑

t

[∣∣〈χ ex
et

∣∣χ e
g0

〉∣∣2 + ∣∣〈χ ey
et

∣∣χ e
g0

〉∣∣2]
× δ

(
εe

et − εe
e0 − h̄ω

)
. (16)

Since Aa1 carries the lion’s share of luminescence and absorp-
tion lineshapes (as discussed in Secs. VI–VIII), we choose
to define Aa1 with respect to EZPL, while Ae is defined with
respect to energy zero. This is done for convenience only and
other choices are certainly possible. Therefore, in the case of
emission Aa1 (h̄ω) is nonzero for energies smaller than EZPL,
while Ae(h̄ω) is nonzero for energies smaller than zero. In the
case of absorption Aa1 (h̄ω) is nonzero for energies larger than
EZPL, and Ae(h̄ω) is nonzero for energies larger than zero. All
quantities A(h̄ω) are automatically normalized to 1 as per their
definition.

As mentioned above, in this paper we will not deal with ab-
solute luminescence intensities and absorption cross sections,
defined in Eq. (2), but rather with normalized lineshapes.
Comparing with Eq. (2), we see that those are given by

Lem(h̄ω) = N1ω
3Aem(h̄ω) (17)

for emission and

Labs(h̄ω) = N2ωAabs(h̄ω) (18)

for absorption, where N1 and N2 are normalization constants,
needed because of the appearance of factors ω3 and ω in
L{em,abs}(h̄ω). The principal task of the current paper is the
evaluation of Eqs. (12)–(18) for the NV center.

TABLE I. Calculated lattice constants a (Å), bulk moduli B
(GPa), and highest phonon frequencies (in meV) at high-symmetry
points in diamond. Experimental values [35–37] are listed for com-
parison. For the lattice constant and bulk modulus the deviation from
the experimental value is indicated in parentheses.

a B ω(�) ω(X) ω(L)

PBE 3.574 (+0.20%) 430 (−0.19%) 160.5 147.6 154.2
HSE 3.548 (−0.53%) 470 (+0.61%) 169.9 155.1 161.1
Expt. 3.567a 443b 166.7c 149.2b 153.0b

aReference [35].
bReference [36].
cReference [37].

IV. FIRST-PRINCIPLES CALCULATIONS

Calculations have been performed within the framework
of density functional theory (DFT). Exchange and correlation
were described by the hybrid functional of Heyd, Scuseria,
and Ernzerhof (HSE) [30]. In HSE a fraction a = 1/4 of
screened Fock exchange is admixed to the semilocal exchange
based on the generalized gradient approximation in the form
of Perdew, Burke, and Ernzerhof (PBE) [31]. As discussed
below, the HSE functional provides a very good description
of the electronic structure of bulk diamond (in particular its
band gap) and optical excitation energy of the NV center
[32] (Sec. IV B). However, the PBE functional yields better
agreement with experiment for the bulk lattice constant, the
bulk modulus, and the vibrational properties of diamond [33]
(Sec. IV A). For this reason we also perform calculations at
the PBE level. We used the projector-augmented wave ap-
proach with a plane-wave energy cutoff of 500 eV. Other
computational details are given when describing specific sys-
tems. Calculations have been performed with the Vienna
Ab-initio Simulation Package [34].

A. Bulk parameters and lattice vibrations

Lattice relaxation was performed using a conventional cu-
bic cell with eight carbon atoms. The Brillouin zone was
sampled using the Monkhorst-Pack [5] 8 × 8 × 8 k-point
mesh. Results are summarized in Table I. We observe that
PBE provides a better description of the lattice constant and
the bulk modulus. However, the band gap is significantly
underestimated in PBE (Eg = 4.12 eV, compared to the exper-
imental value of 5.48 eV [35]). The band gap is much closer
to experiment in HSE (Eg = 5.36 eV).

Phonon dispersion curves were calculated using the
PHONOPY software package [38]. Force constants were com-
puted in 4 × 4 × 4 supercells (containing 512 atoms) using
finite displacements and a single k point (at �) for the
Brillouin-zone sampling. We have used displacements � =
0.01 Å. In Fig. 2 the calculated phonon dispersion curves
are compared with inelastic neutral scattering data from
Ref. [37]. Our calculations represent phonon dispersion for
T = 0, while experiments have been performed at room tem-
perature. However, due to the very rigid nature of the diamond
lattice the phonon frequencies in diamond change by less than
0.1 meV from cryogenic temperatures to room temperature
[39], justifying the comparison of calculations with room-
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FIG. 2. Phonon dispersion curves of diamond calculated using
PBE (blue lines) and HSE (red lines) functionals. Experimental val-
ues are taken from Ref. [37].

temperature data. Our calculations are in full agreement with
those of Ref. [33]. Both PBE and HSE functionals describe the
phonon dispersion reasonably well. However, PBE provides a
slightly more accurate description of the spectrum, e.g., for
longitudinal acoustic phonons or optical phonons along the
paths XK, K�, and �L (Fig. 2). The highest phonon frequen-
cies for high-symmetry points are compared with experiment
in Table I.

B. Negatively charged NV center

In this section we discuss calculations of the NV center
and analyze the convergence of these calculations with respect
to the supercell size. We also present the calculations of the
vibrational properties of the NV center.

1. Ground state

First-principles calculations of the ground and the excited
state of the NV center have been reported previously (for
a review see Ref. [40]). Here we give an overview of our
calculations for completeness. The NV center possesses a C3v

point symmetry and has a stable paramagnetic ground state
3A2 with spin S = 1.

Calculated Kohn-Sham defect level diagrams are shown in
Fig. 3 for both functionals. In these calculations the defect
supercell is a 4 × 4 × 4 cell with 512 atomic sites. We used
a single k point (at �) for Brillouin-zone sampling. Theo-
retical lattice constants were used (Table I) consistently for
both functionals. For both spin channels there are three defect
levels in the band gap: a fully symmetric a1 level and a doubly
degenerate e level. All the levels are filled in the spin-majority
channel, and only the a1 level is filled in the spin-minority
channel [10]. The splitting between the two sets of levels is
larger in HSE: in the spin-minority channel the difference
between the a1 level and the e levels is 1.87 eV for PBE and
2.94 eV for HSE. The 3A2 ground state can be described by
the electronic configuration a2

1e2.

2. Excited state

The excited-state triplet 3E is obtained by promoting the
electron in the spin-minority channel from the a1 level to
the e level (as shown by dashed arrows in Fig. 3), resulting
in the electronic configuration a1e3. We treat the electronic

FIG. 3. Defect-level diagrams of the NV−1 center calculated
using PBE (a) and HSE (b) functionals. Diagrams show Kohn-
Sham single particle defect levels for the ground state 3A2. The
spin-majority channel is denoted with upward arrows and the spin-
minority channel is denoted with downward arrows. Shaded areas
correspond to the valence band (VB) and the conduction band (CB).
Dotted arrows show optical excitation.

structure of the excited state using the delta self-consistent
field (�SCF) method [41], whereby the state is modeled by
constraining appropriate Kohn-Sham orbital occupations. The
�SCF method is originally due to Slater, who applied it to
optical excitation in atoms; the method was first applied to the
NV center by Gali et al. [32]

The 3E state is a E ⊗ e JT system [11,42] [more precisely,
it is a E ⊗ (e ⊕ e · · · ) system]. The reason for the Jahn-Teller
instability is the degeneracy of nominal a1e2

xe1
y and a1e1

xe2
y

configurations of the 3E manifold. The 3E state is unstable
with respect to symmetry breaking due to the interaction with
e phonons, leading to the lowering of the energy. The Jahn-
Teller effect is dynamical [11,42], which qualitatively means
that on average the NV center still retains C3v symmetry.
I.e., the adiabatic potential energy surface has a minimum off
the high-symmetry point, but the total wave function of the
ground vibronic level is totally symmetric. The fundamental
consequence of the dynamical nature is that wave functions
that describe the entire system of ions and electrons cannot
be factorized into the ionic part and the electronic part. This
is already expressed by Eqs. (7) and (8). A more rigorous
discussion of the dynamical vs the static JT effect can be
found in Ref. [29].

Vibrational modes obtained in the JT-distorted geometry
are inconvenient for theoretical analysis because they lack
symmetry properties of the C3v point group. The existing
understanding of the Jahn-Teller effect relies on the use of
vibrational modes that have the symmetry of the system in the
undistorted configuration, C3v in our case [29]. Unfortunately,
calculations of vibrational frequencies in C3v symmetry for
degenerate states with configurations a1e2

xe1
y or a1e1

xe2
y pose

computational difficulties due to the degeneracy of these
states. A correct way to proceed would be to perform vibra-
tional analysis for a mixed electronic state, the density of
which is the average of charge densities of the a1e2

xe1
y and

a1e1
xe2

y configurations. One can expect that the charge density
of such a mixed state would be well approximated with a
system with a configuration a1e1.5

x e1.5
y , whereby the electron
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TABLE II. Convergence of the energy difference between the
equilibrium configurations E ′

0, as well as lattice relaxation energies
�E ′

g and �E ′
e as a function of the supercell size (in eV). Values

correspond to the PBE functional and the symmetric electron con-
figuration a1e1.5

x e1.5
y in the excited state.

3 × 3 × 3 4 × 4 × 4 5 × 5 × 5

E ′
0 1.719 1.694 1.689

�E ′
g 0.155 0.173 0.174

�E ′
e 0.185 0.199 0.205

in the spin-minority channel is split between ex and ey levels.
It is this state with fractional occupations that is used here
for the calculation of vibrational properties in the excited
state. From now on, the equilibrium geometry of the excited
state with the electronic occupations a1e1.5

x e1.5
y will be called a

symmetric excited-state configuration (it retains the C3v sym-
metry). The equilibrium geometry with electronic occupations
a1e2

xe1
y or a1e1

xe2
y will be called an asymmetric excited-state

configuration. The asymmetric configuration corresponds to a
true physical minimum on the adiabatic excited-state potential
energy surface.

3. Optical excitation energies

We first test the convergence of calculated energy dif-
ferences between the ground and excited states E0, as well
as lattice relaxation energies �Ee and �Eg [Fig. 1(c)]
as a function of the supercell size. In these calculations
the excited-state wave function and geometry correspond to
the symmetric electron configuration a1e1.5

x e1.5
y . We note that

the energy of the system with this electron configuration is not
strictly physical due to Coulomb repulsion between a “split”
electron occupying two different levels. To emphasize this fact
we add a “prime” to energies calculated with this occupation
(E ′

0, �E ′
e, �E ′

g). These calculations serve as a numerical test
regarding convergence of calculated energies as a function of
the supercell size, as they are faster than the calculation with
the actual asymmetric configuration a1e2

xe1
y or a1e1

xe2
y . For the

same reason we employ the PBE functional in these tests.
Results for supercells 3 × 3 × 3 (216 atomic sites), 4 × 4 × 4
(512 sites), and 5 × 5 × 5 (1000 sites) are shown in Table II.
The Brillouin zone was sampled at the � point. From the
results we see that the 4 × 4 × 4 supercell is sufficient to
describe energies with an accuracy of 0.01 eV.

In Table III the calculations of E0, �Eg, and �Ee with PBE
and HSE functionals are summarized. Values correspond to

TABLE III. Calculated E0 and relaxation energies for the PBE
and HSE functionals (in eV). Values correspond to the electronic
configuration a1

1e3 in the excited state and the 4 × 4 × 4 supercell. In
parentheses a1 and e components of Franck-Condon shifts are given.

PBE HSE

E0 1.689 1.995
�Eg (a1 + e) 0.196 (0.159 + 0.037) 0.257 (0.214 + 0.043)
�Ee (a1 + e) 0.218 (0.182 + 0.036) 0.298 (0.256 + 0.042)

the physical (asymmetric) electron configuration a1
1e3 in the

excited state and pertain to the 4 × 4 × 4 supercell. Franck-
Condon shifts �Eg and �Ee occur due to lattice relaxation
which, as discussed in Sec. III, has a1 and e components.
These two contributions are also presented. In short, in the
case of a1 modes this is given by

∑
k Sk h̄ωk; in the case of

e modes this is given by
∑

k K2
k h̄ωk (see Secs. VI and VII

for the definition of the quantities Sk and K2
k ). We note that

the e component of �Ee is exactly the Jahn-Teller relaxation
energy, often labeled EJT. The value of E0 calculated in HSE,
1.995 eV, is close to the experimental ZPL of 1.945 eV. Note
that in order to determine the theoretical value of the ZPL we
would need to add the contributions of zero-point vibrations
εe0 − εg0 as per Eq. (1). Typically this contribution is of the
order of ≈10 meV [43]. We can conclude that the HSE func-
tional provides a very good description of optical excitation
energies.

4. Vibrational properties

Here, we define all the quantities needed in the calculation
of vibrational properties explicitly; they will be needed in
describing the embedding procedure in Sec. V. Central param-
eters in these calculations are the Hessian matrix elements:


α,β (m, n) = ∂Fm,α

∂rn,β

, (19)

where Fm,α is the force that acts on atom m in the Carte-
sian direction α and rn,β is the displacement of atom n
from equilibrium in the direction β. The Hessian matrix
of the NV center is calculated using the finite-difference
approach [44]. This requires a large number of SCF cal-
culations; however, this number can be reduced employing
symmetry properties. The dynamical matrix element is de-
fined as Dα,β (m, n) = 
α,β (m, n)/

√
MαMβ , where Mα and

Mβ are atomic masses. Diagonalization of the dynamical ma-
trix yields mass-weighted normal modes ηk and vibrational
frequencies ωk of the defect. We then classify the obtained
modes according to the irreducible representation of the C3v

group, i.e., a1, a2, or e. Actual calculations of dynamical
matrix elements were performed in 4 × 4 × 4 supercells for
both PBE and HSE.

V. EMBEDDING METHODOLOGY

In Sec. IV B 2 we showed that the parameters of the config-
uration coordinate diagram related to the optical excitation of
the NV center are converged within 0.01 eV in the 4 × 4 × 4
supercell. However, while such supercells allow calculating
the general features of the optical lineshapes, they are not
sufficient if our goal is to obtain lineshapes with high accuracy
and high-energy resolution [8].

Let us take the 4 × 4 × 4 supercell as an example. As will
be explained in Secs. VI and VII, optical lineshapes reflect
lattice relaxation at the defect caused by the optical transition.
In essence, optical spectra reflect the decomposition of these
relaxations in the basis of vibrational modes. The lowest-
frequency mode at the � point in the 4 × 4 × 4 supercell
is 35.0 meV for the NV center in the ground state (PBE
result). The resulting calculations of optical lineshapes can
therefore not contain any contributions of modes with lower
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frequencies. In contrast, the experimental luminescence line-
shape clearly shows the contribution of all acoustic phonons
down to zero frequencies [45]. Because the relaxations have
the periodicity of the lattice the problem is not resolved by
calculating the phonon spectrum in the entire Brillouin zone
of the supercell, as only � phonons contribute (see Sec. VI for
a more quantitative discussion).

We solve this issue by the use of the embedding methodol-
ogy [8], which enables us to compute lattice relaxations and
vibrational modes for supercells N × N × N for which direct
first-principles calculations are too expensive. We apply the
methodology for supercells with N � 5. The idea has two
principal components: (i) calculations of lattice relaxations
in these large supercells and (ii) calculation of vibrational
spectra in these supercells. At the core of our methodology
is the fact that interatomic interactions in diamond are short
ranged. The meaning of this statement and the importance for
the two aspects mentioned above are as follows:

(a) When the electronic structure of the defect changes
from 3E to 3A2 (or vice versa) for fixed lattice positions, the
forces that appear on the atoms surrounding the defect decay
fast as a function of the distance from the defect.

(b) When the position of one atom changes in a fixed
electronic state, the induced force on neighboring atoms also
decays very fast as a function of a distance from this atom.

Property (a) enables us to calculate lattice relaxations in
very large supercells. A quantitative description will be given
in Secs. VI and VII. Property (b) enables the construction
of the Hessian matrix, and therefore the study of vibrational
modes of NV centers embedded in these large supercells. The
remainder of this section is devoted to the explanation of the
second component of our methodology.

The Hessian matrix 
α,β (m, n) [Eq. (19)] of a large defect
supercell is constructed as follows. If atoms n and m are
separated by a distance larger than a chosen cutoff radius rc1,
then the Hessian matrix element is set to zero. If both atoms
are separated from either the nitrogen atom or the vacant site
by a distance smaller than the cutoff radius rc2, then we use
the Hessian matrix element from the actual defect supercell.
For all other atom pairs we use bulk values.

While the procedure is straightforward, it requires some
corrections. Setting matrix elements beyond a certain radius
to zero can break Newton’s third law:


α,β (n, n) = −
∑
m 	=n


α,β (m, n). (20)

Breaking this “acoustic sum rule” would introduce a small but
nonzero net force on the entire system that could affect the
results for low-frequency acoustic modes. We could enforce
the fulfillment of Newton’s third law by setting each matrix
element 
α,β (n, n) (diagonal in the atomic index n) equal to
the right-hand side of Eq. (20). However, such a correction for
α 	= β can break the symmetry of the Hessian matrix:


α,β (n, n) = 
β,α (n, n), (21)

which follows from a more general symmetry property:

α,β (m, n) = 
β,α (n, m). To ensure that (i) the frequency of
acoustic modes at the � point is equal to zero and (ii) symme-
try properties of the Hessian are preserved we set 
α,β (n, n)
to the right-hand side of (20) only in the case when α = β.

Regarding the parameter rc1 in the embedding procedure,
we used the value rc1 = 7 Å. In the case of rc2 we used a
slightly smaller value, rc2 = 5.6 Å, to reduce the overall com-
putational cost in hybrid functional calculations. We expect
the error bar of the embedding procedure to be ≈2 meV,
obtained from the convergence tests of bulk phonons (see,
e.g., Ref. [43]).

The embedding procedure was applied to supercells up to
N = 20. A N × N × N supercell contains 8N3 atomic sites,
and thus 24N3 degrees of freedom. Thus, to find vibrational
modes and frequencies we need to diagonalize dynamical
matrices as large as 192 000 × 192 000. Since these matrices
are sparse, with only ≈0.5% of nonzero elements (sparsity
99.5%), we used the spectrum slicing technique [46] based on
the shift-and-invert Lanczos method, as implemented in the
SLEPC [47] library. Parallelization was done using an interface
to the MUMPS [48] parallel sparse direct solver.

VI. COUPLING TO A1 MODES

A. General formulation

In this section we discuss the calculation of spectral
functions Aa1 (h̄ω), as defined in Eqs. (13) and (15). The cal-
culation of these spectral functions is difficult for two main
reasons. The first reason is that the evaluation of overlap
integrals 〈χa1

e0 |χa1
gp〉 or 〈χa1

es |χa1
g0 〉 entering Eqs. (13) and (15) is

computationally very challenging, since, generally speaking,
normal modes in the ground and the excited state will not
be identical. The two sets of modes are related via the so-
called Duschinsky transformation [3]. Because the vibrational
modes in the ground and the excited state differ, as explicitly
confirmed by our calculations, overlap integrals are highly
multidimensional integrals. To overcome this problem we will
assume the equal-mode approximation, as is nearly always
done for solid-state systems [2].

We will describe the geometry of the entire system using
normal coordinates Qk , i.e., Cartesian coordinates projected
on normal modes ηk:

Qk =
∑

α

√
Mα (Rα − Rg,α )ηk;α, (22)

where Rα is the position of atom α, Rg,α is its equilibrium
position in the ground state, Mα is the mass of atom α, and ηk;α
is a vector that describes the three components of the mode ηk
for atom α. Within the equal-mode approximation the change
of the adiabatic potential energy surface as a result of optical
excitation is linear in normal coordinates:

�V (Q) = Ve(Q) − Vg(Q) =
∑

k

qkQk, (23)

where qk are linear coupling constants. In the expression
above we omit a constant energy offset that does not affect
overlap integrals. In this approximation vibrational modes and
frequencies in the ground and the excited state are identical,
but the harmonic potential describing each vibrational mode
k is displaced by �Qk = qk/ω

2
k [19], ωk being the angular

frequency of the mode k.
The overlap integral of two same-frequency displaced

harmonic-oscillator wave functions, pertaining to the
vibrational mode k, has an elegant analytical expression
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[19]: ∣∣〈χ k
0 (Q)

∣∣χ k
n (Q − �Qk )

〉∣∣2 = Sn
k

n!
exp(−Sk ) (24)

where

Sk = ωk�Q2
k

2h̄
(25)

is the partial HR factor. This factor has a statistical interpreta-
tion as the average number of k-mode phonons created during
an optical transition [1]. Partial Huang-Rhys factors define the
so-called spectral density of electron-phonon coupling S(h̄ω),
which is the key property that needs to be computed in order
to calculate Aa1 (h̄ω):

Sa1 (h̄ω) =
∑

k

Skδ(h̄ω − h̄ωk ). (26)

The total Huang-Rhys factor due to coupling to a1 modes is
then

Sa1 =
∫ ∞

0
Sa1 (h̄ω)d (h̄ω) =

∑
k

Sk . (27)

As seen in the expressions above, we use similar notation for
Sa1 , the total Huang-Rhys factor and a dimensionless quantity,
and Sa1 (h̄ω), a spectral density with units [1/energy]. How-
ever, this should cause no confusion, as the spectral density
can always be identified based on the indicated functional
dependence on h̄ω.

Evaluation of spectral functions (13) and (15) is simplified
if one considers their Fourier transform to the time domain,
commonly denoted as the generating function [27]:

G(t ) =
∫

Aa1 (h̄ω)eiωt d (h̄ω). (28)

The generating function for luminescence is given by

G(t ) = exp

[
−iEZPLt/h̄ − Sa1 +

∫
eiωt Sa1 (h̄ω) d (h̄ω)

]
,

(29)

and similarly for absorption [49]:

G(t ) = exp

[
−iEZPLt/h̄ − Sa1 +

∫
e−iωt Sa1 (h̄ω) d (h̄ω)

]
.

(30)

Once generating functions are known, spectral functions can
be obtained via the inverse Fourier transform:

Aa1 (h̄ω) = 1

2π

∫ ∞

−∞
eiωt G(t )e−γ |t | dt . (31)

The term e−γ |t | is included to account for the homogeneous
broadening of the optical transition.

The main task is therefore the calculation of partial Huang-
Rhys factors Sk via Eq. (25). The coefficients �Qk in that
equation describe the change of the equilibrium defect geome-
try upon optical transition and are given by an equation similar
to Eq. (22):

�Qk =
∑

α

√
Mα�Rαηk;α. (32)

Here �Rα = Re,α − Rg,α is the change of the equilibrium
position of atom α between the ground and the excited state.

As discussed in Sec. V, actual geometry relaxations �Rα

extend much farther than can be described using moderate-
size supercells used in first-principles calculations. To address
this problem we note that within the harmonic approximation
�Qk can alternatively be expressed as

�Qk = 1

ω2
k

∑
α

Fα√
Mα

ηk;α, (33)

where Fα is the force on atom α induced by the electronic
transition. Specifically, in the case of luminescence this is the
force in the equilibrium geometry of the excited state when the
wave function is that of the ground state [point B in Fig. 1(c)].
In the case of absorption it is the force in the equilibrium
geometry of the ground state when the wave function is that
of the excited state [point D in Fig. 1(c)]. In the case of elastic
interactions, as is the case for the NV center in diamond,
Fα decays much more rapidly with distance from the defect
center compared to �Rα . Indeed, when the electronic state
is changed, only atoms in the immediate surrounding expe-
rience the change in the force. However, once those atoms
start to move under the influence of these forces, the resulting
displacements �Rα are long ranged (see also Appendix B of
Ref. [8]).

We tested that contributions to the spectral density of
electron-phonon coupling Sa1 (h̄ω) are already converged if we
ignore the forces for atoms lying further than rc1 = 7 Å from
the nitrogen site. Because of this rapid decay of forces, shown
in Sec. I of the Supplemental Material [50], we make an ap-
proximation that the same forces would be obtained in larger
supercells that are not amenable to explicit first-principles
calculations. This constitutes aspect (i) of the embedding
methodology discussed in Sec. V.

Equations (25), (26), and (33) define the procedure for the
calculation of Sa1 (h̄ω) within the equal-mode approximation.
However, since vibrational modes in the ground and the ex-
cited state are different, one has to choose which vibrational
modes to use in the calculation. In Sec. II of the Supplemental
Material [50] we show, by means of a simplified model, that
in the case of luminescence it is best to choose vibrational
modes and frequencies of the ground state, while in the case of
absorption it is best to choose those of the excited state. This
is the choice we will be making for all the results reported in
this paper.

B. Results: Luminescence

Figure 4 shows how the spectral density due to the cou-
pling to a1 phonons [Eq. (26)] converges as a function of the
supercell size. The results pertain to the PBE functional, and
δ functions in Eq. (26) have been replaced by Gaussians. In
order to obtain a smooth function throughout the whole vibra-
tional spectrum we have used Gaussians of variable width.
Our tests indicated that choosing σ to vary linearly from
σ = 3.5 meV for ω = 0 to σ = 1.5 meV for the highest-
energy phonon results in a smooth spectral density without
introduction of any artifacts. This smearing procedure will be
used for all spectral densities in this paper.
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FIG. 4. Convergence of spectral densities Sa1 (h̄ω) (in units
meV−1) due to coupling to a1 phonons with respect to the supercell
size. Supercells range in size from 4 × 4 × 4 (512 atomic sites) to
20 × 20 × 20 (64 000 sites). Huang-Rhys factors for each supercell
are also given. The insets enlarge the high-frequency part. Gaussian
smearing with varying σ was used, as explained in the text.

Figure 4 shows that for phonon frequencies >100 meV
the spectral density is already converged for supercells 12 ×
12 × 12 or even 8 × 8 × 8 (inset). However, larger supercells
are needed to converge Sa1 (h̄ω) for energies <60 meV. The
essence of our embedding procedure discussed in Sec. V was
exactly to achieve this smooth behavior throughout the whole
phonon spectrum. It is also because of a slower convergence
in the low-frequency part of the spectrum that the smearing
procedure with a varying σ was used.

PBE and HSE spectral densities for the 20 × 20 × 20 su-
percells are compared in Fig. 5(a). HSE yields noticeably
stronger electron-phonon interactions with the total HR factor
being ≈33% larger. The most pronounced features in the
HSE spectral density are shifted to slightly higher phonon
energies. For example, the ratios ωHSE/ωPBE for the three
most-pronounced peaks in the PBE spectrum, at 62.5, 135.7,
and 161.6 meV are 1.054, 1.057, and 1.051. This difference
stems from the fact that the bonds are stiffer in HSE in
comparison to PBE, as reflected in the difference of lattice
constants. In fact, these ratios are very similar to the ones for

FIG. 5. (a) Spectral densities Sa1 (h̄ω) (in units meV−1) due to
coupling to a1 phonons for luminescence, calculated with PBE and
HSE functionals. Huang-Rhys factors are also given. The inset en-
larges the high-frequency part. (b) Spectral functions Aa1 (h̄ω) [in
units eV−1, Eq. (13)] for luminescence calculated using PBE and
HSE. The ZPL energy is set to the experimental value.

bulk phonons given in Table I. Apart from this, the shapes of
the two spectral densities are rather similar.

Calculated spectral functions Aa1 (h̄ω) [Eq. (13)] for the
two functionals are shown in Fig. 5(b). These functions were
calculated using Eq. (29) and γ = 0.3 meV in Eq. (31). Since
the actual luminescence line contains contributions from both
a1 and e phonons, we leave the comparison with experiment
to Sec. VIII.

C. Results: Absorption

To calculate Sa1 (h̄ω) for absorption one needs to calculate
forces in the excited state Fα at the geometry of the ground
state [point D in Fig. 1(c)], where the two 3E states are
degenerate.

Due to issues related to the convergence of the electronic
structure for the degenerate state, we calculate these forces
indirectly from displacements via

Fα =
√

Mα

∑
k

ω2
kηk;α�Qk, (34)

where ωk and ηk;α are calculated in the 4 × 4 × 4 supercell,
and �Qk are given by Eq. (32). At a first glance, the procedure
to calculate the displacements might appear circular. This
is not the case. We use the calculated displacements in the
4 × 4 × 4 supercell to “restore” the forces in this supercell.
These forces are then used to determine the displacements in
large supercells for which actual first-principles calculations
are not possible.

Spectral densities Sa1 (h̄ω) for absorption in the case of
the 20 × 20 × 20 supercell are shown in Fig. 6(a). Compared
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FIG. 6. (a) Spectral densities Sa1 (h̄ω) (in units meV−1) due to
coupling to a1 phonons for absorption, calculated with PBE and HSE
functionals. Huang-Rhys factors are also given. The inset enlarges
the high-frequency part. (b) Spectral functions Aa1 (h̄ω) [in units
eV−1, Eq. (15)] for absorption calculated using PBE and HSE. The
ZPL energy is set to the experimental value.

to emission, one sees slightly larger differences between the
shapes of spectral densities calculated in PBE and HSE. PBE
calculations exhibit a broad peak at ≈60 meV and this peaks
shifts to ≈75 meV in HSE. Spectral functions Aa1 (h̄ω) for
absorption [Eq. (15)] for the two functionals are shown in
Fig. 6(b). As in the case of luminescence, the comparison to
experiment is left for Sec. VIII.

VII. COUPLING TO E VIBRATIONS: MULTIMODE
JAHN-TELLER PROBLEM

The coupling to e modes during optical transitions oc-
curs because of the JT effect in the 3E state. As discussed
in Sec. IV B 2, the effect is dynamical [19]. The dynamical
nature of the effect has been confirmed by the ∼T 5 broadening
of the ZPL at low temperatures [11], as well as by actual
calculations of the potential energy surface [42].

The purpose of the present section is to calculate spectral
functions of coupling to e vibrations, given by Eqs. (14) and
(16).

A. Multimode Jahn-Teller effect: General theory
and the choice of basis

The dynamical JT effect is described in a number of articles
and books, e.g., Refs. [19,29,51]. Here we briefly review the
general theory of this effect, and derive the expressions that
are used in our calculations.

The vibronic wave function of the excited state is given
in Eq. (9). a1-symmetry vibrational wave functions χa1

es (Qa1 )
were addressed in Sec. VI. The e-symmetry part |
et 〉 =

χ
ex
et (Qe)|Ex〉 + χ

ey
et (Qe)|Ey〉 [Eq. (8)] can be represented in

the {|Ex〉, |Ey〉} basis as a two-component vector (χ ex
et , χ

ey
et ).

In this representation |
et 〉 is an eigenvector of the vibronic
Hamiltonian [29]:

Ĥ = Ĥ0 + ĤJT. (35)

Here

Ĥ0 = Ĉz

∑
k;γ∈x,y

(
− h̄2

2

∂2

∂Q2
kγ

+ 1

2
ω2

k Q2
kγ

)
(36)

describes the motion in the harmonic potential, while

ĤJT =
∑

k;γ∈x,y

ĈγVkQkγ (37)

is the linear Jahn-Teller interaction. ωk are angular frequen-
cies of vibrations, Vk are vibronic coupling coefficients, and
k = 1, . . . , N runs over all pairs of degenerate e-symmetry
vibrations. In the expressions above Ĉγ are matrices [20]:

Ĉx =
(

0 1
1 0

)
, Ĉy =

(
1 0
0 −1

)
, Ĉz =

(
1 0
0 1

)
.

The Schrödinger equation Ĥ|
et 〉 = εet |
et 〉 can be solved
by diagonalizing the Hamiltonian in the basis of eigenvec-
tors of Ĥ0 [29]. One of the obvious choices for this basis
is a wave function of the type |n1xn1y, . . . , nNxnNy; Ex〉 and
|n1xn1y, . . . , nNxnNy; Ey〉. nkx and nky are vibrational quantum
numbers pertaining to the doubly degenerate mode k. How-
ever, this choice of the basis is not the most convenient when
dealing with many e modes. A more convenient choice is
provided by so-called chiral phonons, as explained in the
following.

As a preliminary, let us consider [51] the operator Ĵ =
Ĵel + Ĵph, where

Ĵel = h̄

2
σ̂y, Ĵph = Ĉz

∑
k

L̂z,k . (38)

Here Ĵph is the sum of phonon angular momentum op-
erators L̂z,k = ih̄(Qkx∂/∂Qky − Qky∂/∂Qkx ) that acts in a
two-dimensional subspace of normal modes {Qkx, Qky}. Ĵel

acts on the orbital part of the wave function and σ̂y is the Pauli
matrix. Ĵ commutes with both Ĥ0 and ĤJT, and therefore also
with Ĥ.

Let us now find wave functions that would be eigenstates of
Ĥ0, and simultaneously of Ĵel and Ĵph. The orbital eigenstates
of the operator Ĵel are |E±〉 = 1/

√
2(|Ex〉 ± i|Ey〉) with eigen-

values Jel = ± h̄
2 . Expressing Jel = jel h̄ enables us to define

a quantum number jel = ±1/2, usually called the electronic
pseudospin. Since Ĥ0 does not mix different electronic states,
|E±〉 [or (1/

√
2,±i/

√
2) in the assumed matrix notation] are

also eigenstates of Ĥ0.
To find common eigenstates of Ĵph and Ĥ0 we will describe

the vibrational degrees of freedom by the aforementioned chi-
ral phonons. Second-quantization operators of these phonons
are [52]

ak+ = 1√
2

(akx − iaky), ak− = 1√
2

(akx + iaky),
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where akx and aky pertain to normal modes Qkx and Qky,
respectively. Defining the number operator of right- and left-
hand phonons as n̂k± = a†

k±ak± we can rewrite the total
phonon angular momentum operator as

Ĵph = Ĉz h̄
∑

k

(n̂k+ − n̂k−) (39)

and Ĥ0 as

Ĥ0 = Ĉz

∑
k

h̄ωk (n̂k+ + n̂k− + 1). (40)

By comparing Eqs. (39) and (40) we see that the common
eigenfunctions of Ĥ0 and Ĵph can be described by two quan-
tum numbers for each pair of e phonons k: nk = nk+ + nk−,
the total number of k phonons, and lk = nk+ − nk−, whereby
Lk = lk h̄ is the angular momentum quantum number associ-
ated with k phonons. Since nk+ and nk− are integers, for a
given nk , lk takes values lk = nk, nk − 2, nk − 4, . . . ,−nk .

It follows from the previous discussion that common eigen-
states of Ĥ0, Ĵel, and Ĵph can be written as |n1l1, . . . , nN lN ; E+〉
and |n1l1, . . . , nN lN ; E−〉. As they are also eigenfunctions of
Ĵ = Ĵel + Ĵph, these wave functions can be characterized by a
quantum number:

j = jel +
∑

k

lk .

The new basis functions are eigenfunctions of Ĥ0, but,
certainly, not of ĤJT. If we express Qkγ in the Jahn-Teller
Hamiltonian Eq. (37) in terms of creation and annihilation
operators ak± and a†

k±, we can rewrite ĤJT as

ĤJT =
√

2
∑

k

Kk h̄ωk

(
0 ak+ + a†

k−
ak− + a†

k+ 0

)
. (41)

The parameters Kk = Vk/

√
2h̄ω3

k are dimensionless vibronic

constants [18]. We can then derive matrix elements of ĤJT in
the new basis:

〈n′
1l ′

1, . . . , n′
N l ′

N ; E−|ĤJT|n1l1, . . . , nN lN ; E+〉

=
√

2
∑

k

Kk h̄ωkδl ′k lk+1

⎡
⎣∏

j 	=k

δn′
j n j δl ′j l j

⎤
⎦

×
[√

nk − lk
2

δn′
knk−1 +

√
nk + lk + 2

2
δn′

knk+1

]
. (42)

We note that ĤJT couples only electronic states of differ-
ent electron pseudospin. Ĥ0 is diagonal in both vibrational
quantum numbers and orbital degrees of freedom with matrix
elements:

〈n1l1, . . . , nN lN ; E±|Ĥ0|n1l1, . . . , nN lN ; E±〉
=

∑
k

h̄ωk (nk + 1). (43)

Equations (42) and (43) are the final expressions for the vi-
bronic Hamiltonian in the basis of chiral phonons.

The logic for choosing the new basis can be recapped as
follows. ĤJT and thus Ĥ = Ĥ0 + ĤJT do not commute with

Ĵel and Ĵph separately. However, as discussed above, Ĥ com-
mutes with Ĵel + Ĵph. Therefore the Hamiltonian only couples
basis states with the same quantum number j, thus separating
the diagonalization problem for different angular momentum
components j [51]. This is the biggest advantage of the new
basis. The procedure for diagonalizing Ĥ = Ĥ0 + ĤJT is de-
scribed in Sec. VII D.

B. Calculation of coupling parameters

The first task in the solution of the vibronic problem is
to calculate linear coupling constants Vk or, alternatively, di-
mensionless parameters Kk . In the case of the JT effect the
adiabatic potential energy surface in the subspace {Qkx, Qky}
(a single e pair) has two branches with energies [29]:

Uk (Qk ) = 1
2ω2

k Q2
k ± VkQk, (44)

where Q2
k = Q2

kx + Q2
ky. Energy minimization in DFT self-

consistent calculations follows the lower-lying branch of
Eq. (44). The minimum of this potential occurs at �Qk =
Vk/ω

2
k . This enables the determination of Vk and thus Kk once

�Qk is known:

K2
k = ωk�Q2

k

2h̄
. (45)

We find �Qk from

�Q2
k = �Q2

kx + �Q2
ky, (46)

where

�Qkγ = 1

ω2
k

∑
α

Fα√
Mα

ηkγ ;α. (47)

Here, as above, γ = {x, y}. Equation (47) is identical to
Eq. (33) (see Sec. VI for the description of parameters), with
the only difference that Eq. (47) is applied to e modes rather
than a1 modes. In the case of absorption forces Fα are ob-
tained as in Sec. VI C.

Comparing Eq. (45) with Eq. (25) we see that the di-
mensionless parameter K2

k plays a similar role to the partial
Huang-Rhys factor Sk in the case of coupling to a1 modes. A
different notation is used for historical reasons. Thus, in anal-
ogy to Eq. (26), we introduce a spectral density of coupling to
asymmetric e modes, given by

Se(h̄ω) =
∑

k

K2
k δ(h̄ω − h̄ωk ),

where the sum runs over all e doublets. As in the case of
Sa1 (h̄ω), Se(h̄ω) depends on the supercell size, converging
towards the final result as the system size increases. The result
for the 20 × 20 × 20 supercell is shown in Fig. 7. The integral
of this function quantifies the strength of the Jahn-Teller inter-
action in a system, which we will label Se:

Se =
∑

k

K2
k =

∫ ∞

0
Se(h̄ω)d (h̄ω). (48)

For simplicity of the nomenclature we will also call it a
Huang-Rhys factor pertaining to coupling to e modes. Jahn-
Teller interaction is considered strong for Se � 1, and weak
in the case of Se � 1 [29]. For the NV center HSE values are
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FIG. 7. Spectral density Se(h̄ω) (in units meV−1) due to coupling
to e phonons for (a) luminescence and (b) absorption, calculated
with PBE and HSE functionals. Results are for the 20 × 20 × 20
supercell. Huang-Rhys factors are also given.

Se = 0.56 for emission and Se = 0.57 for absorption. One can
conclude that the JT coupling is of medium strength.

C. Luminescence and absorption processes

Diagonalization of Ĥ = Ĥ0 + ĤJT [Eqs. (42) and (43)]
produces vibronic wave functions (8) in the form |
et 〉 =
|χ+

et 〉|E+〉 + |χ−
et 〉|E−〉 where

|χ±
et 〉 =

∑
nl

C±
et ;n1l1,...,nN ln

|n1l1, . . . , nN lN 〉. (49)

In terms of the wave functions |χ±
et 〉 the overlap integrals that

appear in the expression for Ae(h̄ω) in Eqs. (14) and (16) can
be rewritten as∣∣〈χ e

gr

∣∣χ ex
et

〉∣∣2 + ∣∣〈χ e
gr

∣∣χ ey
et

〉∣∣2 = ∣∣〈χ e
gr

∣∣χ+
et

〉∣∣2 + ∣∣〈χ e
gr

∣∣χ−
et

〉∣∣2
.

In the limit of zero temperature overlaps for luminescence
spectrum (14) are calculated between the lowest vibronic state
of the electronic excited state |3E〉 and all the vibrational
states of the electronic ground state |3A2〉. The lowest vibronic
state is always the one with the pseudospin j = ± 1

2 [29].
Therefore, in the case of luminescence one has to diagonalize
the Hamiltonian for either the j = 1

2 or the j = − 1
2 “channel”

(the two states are degenerate).
In the case of absorption, overlap integrals in the spectral

function (16) are calculated between zero-phonon state |00..0〉
of the electronic ground state |3A2〉 and vibronic states of
the electronic excited state |3E〉. Overlaps will be nonzero
only for vibronic states in the |3E〉 manifold that contain the
contribution of the zero-phonon state |00..0〉. This phonon
state is only present in vibronic states with j = ± 1

2 [51], and
therefore in our diagonalization procedure we again need to
consider either only the j = 1

2 or the j = − 1
2 channel.

As in the case of spectral functions Aa1 (h̄ω), when calculat-
ing Ae(h̄ω) we choose the vibrational modes and frequencies
of the ground state for luminescence, and those of the excited
state for absorption.

D. Diagonalization of the vibronic Hamiltonian

Reformulation of the problem in terms of the new basis
makes the diagonalization of the vibronic Hamiltonian in the
presence of a small number of e modes a computationally
tractable task. Without this reformulation, treating even a few
modes would be computationally too expensive. In construct-
ing the basis set we limit the total number of excited vibrations
ntot = ∑

k nk to a certain number. By increasing this number
we can monitor the convergence of the final result. We find
that convergence is easily achieved in our case.

However, we are still facing a daunting challenge: for
the NV center effectively an infinite number of e modes,
described by the spectral density Se(h̄ω), participate in the
Jahn-Teller effect. To address this problem we propose the
following approach.

We approximate the actual spectral density Se(h̄ω) with
S(eff )

e (h̄ω), defined as

S(eff )
e (h̄ω) =

Neff∑
n=1

K̄2
n gσ (h̄ωn − h̄ω). (50)

Here gσ is a Gaussian function of width σ ; the sum runs over
Neff “effective” vibrations with frequencies ωn and vibronic
coupling strengths K̄2

n . For a fixed number Neff , the parameters
K̄2

n , ωn, and σ are obtained by the minimization of the integral

I =
∫ ∞

0

∣∣Se(h̄ω) − S(eff )
e (h̄ω)

∣∣ d (h̄ω) (51)

while enforcing that
∑Neff

n=1 K̄2
n = ∑N

k=1 K2
k = Se. If Neff = N ,

the actual number of e doublets, then this approach reproduces
the full calculation. However, one expects that convergence of
the final result can be achieved for Neff � N , such that the
problem is still tractable by the diagonalization procedure.
This indeed turns out to be the case. In Sec. III of the Sup-
plemental Material [50] we present a test of the procedure for
the 2 × 2 × 2 supercell.

E. Spectral functions Ae(h̄ω) for absorption and emission

In this section we briefly discuss the spectral functions
Ae(h̄ω) [Eqs. (14) and (16)] for both luminescence and ab-
sorption.

The results for luminescence are shown in Fig. 8 for both
functionals. We used Neff = 22 (see Sec. VII D). In the figure
we compare Ae(h̄ω) obtained via the solution of the multi-
mode JT problem (labeled “JT”) with the one obtained via the
Huang-Rhys approach (labeled “HR”). In the latter we treat
the e modes as if they were fully symmetric a1 modes. Spec-
tral functions are obtained in a manner completely identical to
those of a1 modes, as described in Sec. VI.

Somewhat surprisingly, the HR calculation yields spectral
functions very similar to those of the JT calculation. The
agreement between the two sets of calculations is striking and
one is tempted to conclude that there is a deeper underlying
reason for this. However, in the Appendix we show that the
good agreement is to some degree accidental. Indeed, using
first-order perturbation theory we derive that for Se � 1 the
JT theory yields an intensity for the first vibrational side peak
exactly twice as large as the HR approach. As a result, the
weight of the ZPL is smaller in the JT treatment. We then use
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FIG. 8. The spectral function Ae(h̄ω) (in units eV−1) for emis-
sion [Eq. (14)] obtained with (a) PBE and (b) HSE functionals. We
compare spectral functions obtained via the solution of the multi-
mode Jahn-Teller problem (“JT”) and via the Huang-Rhys treatment
(“HR”).

a simple model to show that as Se becomes larger the situation
is reversed: the weight of the first phonon peak becomes
smaller in the JT calculation with respect to the HR result,
and vice versa for the weight of the ZPL. Interestingly, in the
range Se ≈ 0.5–1.0 the two approaches provide a very similar
quantitative description, explaining the result shown in Fig. 8.
Regardless, our analysis warns that applying the Huang-Rhys
approach can lead to errors in the case of small Se.

The spectral functions Ae(h̄ω) for absorption are shown
in Fig. 9. In contrast to luminescence, the Jahn-Teller treat-
ment differs substantially from the Huang-Rhys calculation.
Overall, compared to the HR function, the JT function is
“stretched.” This is in agreement with model calculations for

FIG. 9. The spectral function Ae(h̄ω) (in units eV−1) for absorp-
tion [Eq. (16)] obtained with (a) PBE and (b) HSE functionals. We
compare spectral functions obtained via the solution of the multi-
mode Jahn-Teller problem (“JT theory”) and via the Huang-Rhys
treatment (“HR theory”).

TABLE IV. Calculated Huang-Rhys factors for emission and
absorption.

Luminescence Absorption

Sa1 Se Stot Sa1 Se Stot

PBE 2.39 0.52 2.91 2.60 0.51 3.11
HSE 3.20 0.56 3.76 3.59 0.57 4.16
Expt. 3.49a

aReference [55].

systems with the dynamic JT effect [51], as also exemplified
in recent first-principles modeling of diamondoids [53]. More-
over, we observe a change in the energy and the intensity of
peaks that appear in Ae(h̄ω). For example, the phonon side
peak closest to the ZPL decreases in intensity and moves to
larger energies. These results clearly illustrate that using the
JT theory is essential in the case of absorption at NV centers
in diamond.

VIII. RESULTS: A1 AND E MODES COMBINED

In this section we present the final result of our calcu-
lated, luminescence, and absorption lineshapes, obtained via
Eqs. (12), (17), and (18), and compare them with experimen-
tal lineshapes [54]. In Table IV the calculated Huang-Rhys
factors for the coupling with a1 and e modes are summarized.
We define the total Huang-Rhys factor as Stot = Sa1 + Se. In
comparison with experiment, the total Huang-Rhys factor for
emission is slightly underestimated in PBE and overestimated
in HSE. The contribution of e modes to optical lineshapes can
be quantified by a ratio Se/Stot, which we find to be 14–18%.

A. Luminescence

The calculated luminescence lineshapes are compared to
experimental curves from Refs. [55] (labeled “ANU”) and
[8] (labeled “UCSB”) in Fig. 10. Details about experimental
procedures and samples are given in the corresponding pa-
pers. To allow for a meaningful comparison the theoretical
lineshapes were shifted to match the experimental ZPL. The
overall agreement is quite good with both the PBE and the
HSE functional. As one of the goals of the current paper is
the analysis of the accuracy of modern density functionals in
describing these luminescence lineshapes, we now discuss the
differences between the two sets of calculations.

Comparing experiment with the PBE calculation, we see
that the intensities of the ZPL and the first two phonon peaks
in the calculated lineshape are too large. This is because
the total HR factor calculated in PBE is smaller than the
experimental one (Table IV). In contrast, the total HR factor
calculated in HSE is larger than the experimental one (Ta-
ble IV), yielding that the intensity of the ZPL and the three
phonon side peaks is too small in comparison with experi-
ment. From the atomistic point of view, one could conclude
that the change in the equilibrium defect geometry between
the ground and the excited states is slightly underestimated in
PBE, while this change is overestimated in HSE.

Looking at the position of the peaks, we see, however, that
theory agrees with experiment remarkably well. This concerns
not only the main phonon replica at about 65 meV, but even
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FIG. 10. Theoretical normalized luminescence lineshapes (in
units eV−1), compared with experimental spectra: (a) PBE functional
and (b) HSE functional. Experimental spectra from Refs. [55] (la-
beled “ANU”) and [8] (labeled “UCSB”). The ZPL energy of the
theoretical curves is set to the experimental value.

the fine structure of the luminescence lineshape, especially
visible between the second and the third replica of the 65-meV
peak. We do note that the positions of the peaks in PBE (which
are directly related to the vibrational frequencies) show a very
close agreement with experiment, while some shifts are evi-
dent for HSE, because frequencies are slightly overestimated.
This conclusion is in line with the fact that PBE does a better
job at describing the lattice constant, bulk modulus, and bulk
phonons of diamond (Sec. IV).

B. Absorption

The calculated absorption lineshapes, where the contribu-
tions of both a1 and e phonons are included, are compared
to experiment in Fig. 11. The experimental lineshape is from
Ref. [54]. As we did in the case of luminescence, we will
first compare the overall lineshape and then look at the fine
structure of the absorption band.

Comparing the PBE calculation [Fig. 11(a)] with experi-
ment we see that, like for luminescence, the intensity of both
the ZPL and the first phonon side peak is overestimated in
PBE. In contrast, both of these intensities are underestimated
in HSE [Fig. 11(b)]. Like in the case of luminescence, we
trace this to the accuracy of the functionals in describing the
change of the defect geometry in the ground state with respect
to that of the excited state: the lattice relaxation is slightly
underestimated in PBE, and overestimated in HSE.

Looking at the fine structure of the spectra, we see that,
also on par with luminescence, the positions of the peaks
are better described in PBE in comparison to HSE. This
distinction is particularly clear in the description of the first

FIG. 11. Theoretical normalized absorption lineshapes (in units
eV−1) calculated using the Huang-Rhys (labeled “HR theory”) and
Jahn-Teller treatment (labeled “JT theory”), compared with the ex-
perimental spectrum: (a) PBE functional and (b) HSE functional.
The experiment is from Ref. [54]. The ZPL energy of the theoretical
curves is set to the experimental value. The small peak marked with
a star “�” in the experimental curve is the ZPL of another center and
should be disregarded in the comparison.

phonon side peak, at ≈2.1 eV. The experimental curve dis-
plays the famous double-peak structure [45]. While the double
peak is not clearly revealed in the PBE calculation, one can
nevertheless see that the calculation accurately describes the
overall position of the peak. In addition, the peak is broader
than in the case of luminescence, in line with experimental
findings. This peak is shifted to slightly larger energies in
HSE. This can again be attributed to the fact that, like for bulk
diamond and the NV center in the 3A2 state, the vibrational
modes and frequencies in the 3E state are more accurately
described in PBE. The origin of the double-peak structure will
be addressed in a separate experimental-theoretical paper.

Focusing on the PBE result, it is interesting to compare
the JT treatment with the HR treatment. Strictly speaking,
the HR treatment for absorption is not justified in the pres-
ence of the dynamical JT effect. However, it can be viewed
as an approximation, and is computationally much simpler.
While the positions of peaks are reasonably well described
in both treatments [Fig. 11(a)], there are distinct differences.
For instance, the JT approach offers a better description of
the two features at energies ≈2.15 and 2.24 eV. The improved
agreement with experiment lends support to the validity of the
multimode JT approach developed in our paper.

C. Summary of comparison with experiment

The main conclusions of our calculations, discussed in this
section, are the following.
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(i) The change of the equilibrium defect geometry of the
NV center in the 3E state with respect to the 3A2 state is over-
estimated in the HSE functional, while it is underestimated in
the PBE functional.

(ii) Overall, both functionals describe the major peaks, as
well as the fine structure in luminescence, quite accurately.
The positions of the peaks in the luminescence band calcu-
lated with the PBE functional are in nearly perfect agreement
with the experimental spectrum, while the peak positions are
overestimated (relative to the ZPL) in HSE.

(iii) The PBE functional describes the positions of major
peaks and the fine structure in the absorption spectrum better
than the HSE functional, and this is in particular visible in the
width of the first phonon side peak.

(iv) Focusing on the PBE result, the Jahn-Teller theory
provides a more accurate description of the peak positions in
absorption, which is especially true in the case of the broad
structure in the 2.1–2.3-eV range.

(v) The splitting of the first phonon side peak in absorption
is not clearly reproduced in theoretical calculations.

IX. DISCUSSION

In this section we critically review our methodology and
the calculations, with a special emphasis on the accuracy of
density functionals in the quantitative description of the vi-
brational and vibronic structure of isolated NV centers. Before
we discuss the origin of the remaining discrepancies between
theoretical and experimental curves (Figs. 10 and 11), let us
mention some aspects that have not been addressed or that
have only been partially addressed in our current paper.

Quadratic interactions. Our calculations rely on the lin-
ear theory of electron-phonon coupling. While there is little
evidence that quadratic terms are important in the coupling
to a1 phonons, it is known that quadratic Jahn-Teller terms
do manifest themselves [12,42]. In particular, it is estimated
that the quadratic terms are ∼1/3 of the linear terms in terms
of energy [12,42]. Unfortunately, inclusion of quadratic terms
in the multimode treatment increases the complexity of an
already complex problem tremendously and it may not be pos-
sible to include this given current computational capabilities.
We do suggest that more work is needed here.

Treatment of the excited state. The 3E excited state has
been described using the �SCF approach, as customary in
state-of-the-art defect calculations [32,56]. As demonstrated
by our results, �SCF yields good results, even though the
calculation of excited states using constrained orbital occu-
pations in DFT does not have the same fundamental backing
of rigorous theorems as the calculation of the ground state.
Future work in this field would certainly benefit from the on-
going developments in calculating excited states using more
rigorous (and computationally much more intensive) many-
body approaches.

Hessian matrices for charged defects. There is a remaining
question regarding the accuracy of Hessian matrix elements
for charged defects in actual supercell calculations. In an
infinite solid the negatively charged defect would induce
polarization charge +(1 − 1/ε) in the vicinity (ε being the
dielectric constant), while the polarization charge of the same
magnitude but opposite polarity would be pushed to infinity.

In the supercell approach the polarization charge that should
be pushed to infinity is homogeneously distributed over the
supercell [57] and there is, in addition, a neutralizing back-
ground that is introduced to prevent the Coulomb interaction
from diverging. This “unphysical” spreading of the polariza-
tion charge and the presence of the neutralizing background
may introduce errors in the calculation of force constants.
Since these errors decrease as the size of the supercell grows,
the approach employed in this paper is to calculate these
constants for the largest system that is tractable for both PBE
and HSE functionals, i.e., the 4 × 4 × 4 supercell nominally
containing 512 items. A more rigorous solution of the issue is
left for future work.

Treatment of degenerate electronic states and dynamical
Jahn-Teller effect. As has been discussed in the literature,
the application of DFT to degenerate electronic states (3E
in our case) is in principle more troublesome than in the
case of nondegenerate ones [58], as the standard Hohenberg-
Kohn theorem does not strictly apply. This also translates
into practical aspects of finding vibrational frequencies and
vibronic coupling constants. In this paper we chose specific
approximations to determine these quantities, i.e., deter-
mining the vibrational frequencies using the “symmetric”
electron configuration a1e1.5

x e1.5
y and determining vibronic cou-

pling constants from calculations performed away from the
degeneracy point.

Let us assume that the aspects mentioned above affect the
calculated lineshapes in a minor way. In this case one could
attribute the remaining discrepancy between experiment and
theory to the accuracy of density functionals in describing
structural and vibrational properties of diamond and the NV
center.

To test this hypothesis, let us assume that the shape of the
calculated spectral densities Sa1 (h̄ω) and Se(h̄ω), calculated
in PBE, is close to the “truth,” keeping in mind an excellent
agreement regarding the positions of peaks, especially for
luminescence. However, as discussed in Sec. VIII, atomic
relaxations are slightly underestimated in PBE, the conclu-
sion reached comparing the calculated Huang-Rhys factor
with the experimental one. Let us assume that atomic relax-
ations projected on all vibrational modes are underestimated
by the same linear factor ζ 1/2. As a result, our estimates
for “corrected” spectral densities are S′

a1
(h̄ω) = ζSa1 (h̄ω) and

S′
e(h̄ω) = ζSe(h̄ω).

In Fig. 12 we show the calculated luminescence lineshape
with ζ = 1.2; ζ was obtained via a least-square fit to the ex-
perimental luminescence lineshape. Unsurprisingly, this value
is almost exactly the ratio between the experimental total
Huang-Rhys factor and the PBE value (3.49/2.91 = 1.199;
see Table IV). It is evident that the agreement with experiment
is very good, both for the general shape of the luminescence
line and for all the fine features of the spectrum.

Since the value of ζ represents the scaling of the geometry
relaxation in the excited state with respect to the ground state,
we have to use the same value of ζ for the calculation of the
absorption lineshape. In other words, once ζ is fixed based
on an analysis of the luminescence lineshape, there are no
more free parameters in the calculation of the absorption
lineshape. Like for luminescence, in this calculation we use
PBE spectral densities Sa1 (h̄ω) and Se(h̄ω) scaled with ζ :
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FIG. 12. Calculated normalized luminescence lineshape, com-
pared with the experimental lineshape (both in units eV−1). In the
calculations we used scaled PBE spectral densities S′

a1
= ζSa1 (h̄ω)

and S′
e = ζSe(h̄ω), with ζ = 1.2. Experimental spectra are as in

Fig. 10.

S′
a1

(h̄ω) = ζSa1 (h̄ω) and S′
e(h̄ω) = ζSe(h̄ω). The result of the

calculation is shown in Fig. 13. Like for luminescence, the
general shape is reproduced very well in the calculation. This
good agreement lends support to the hypothesis that PBE
calculations yield very good vibrational frequencies, but un-
derestimate geometry relaxation.

Nevertheless, we see small discrepancies. For example,
the calculation shows a small peak at 2.11 eV, indicated by
“#” in the plot. It originates from a localized phonon mode
just above the bulk phonon spectrum (less than 1 meV in
our calculations), and this small peak seems to be absent in
the experimental spectrum. [Interestingly, a localized phonon
mode just above the bulk band has been observed in the
infrared absorption spectrum for the 1E → 1A1 transition [55]
(see Fig. 1), even though, clearly, different electronic states are
involved in that transition.] This localized mode is present in
both PBE and HSE calculations (Fig. 11). The energy of this
localized mode is very sensitive to the parameters of our cal-

FIG. 13. Calculated normalized absorption lineshape, compared
with the experimental lineshape (both in units eV−1). In the calcu-
lations we used scaled PBE spectral densities S′

a1
= ζSa1 (h̄ω) and

S′
e = ζSe(h̄ω), with ζ = 1.2. Experimental spectrum as in Fig. 11.

The experimental peak marked “�” is the ZPL of another defect and
should be disregarded in the comparison. The feature marked “#” in
the calculated curve is discussed in the text.

culations and its localized nature might be an artifact. Despite
these two issues, the calculations show very good agreement
with experiment. In particular, if we look at the asymmetry
of luminescence and absorption lineshapes in experiment, we
see that this asymmetry is reproduced very well.

We are now in the position to discuss why the lumines-
cence lineshape, presented in our previous work (Ref. [8]),
already showed good agreement with the experimental curve,
in spite of the fact that the methodology in that study was
not as sophisticated as what is presented in the current paper.
The good agreement in Ref. [8] was largely due to fortu-
itous cancellation of two factors. (i) In Ref. [8] only the
coupling to symmetric modes a1 was considered. As we now
know from Table IV, the contribution of e modes to lumi-
nescence is ≈16–18%. Neglect of e modes should have led
to an underestimation of the theoretical Huang-Rhys factor
compared to the experimental one. (ii) In Ref. [8], forces
were calculated with HSE, but vibrational frequencies of the
defect system were calculated using PBE, due to the high
computational cost of HSE. Vibrational frequencies in HSE
are higher than in PBE, as we have seen in the current paper.
Thus, using HSE forces with PBE frequencies in Eqs. (25)
and (33) leads to an overestimation of partial Huang-Rhys
factors for coupling to a1 modes. The two factors (i) and
(ii) fortuitously compensated each other to a large degree,
leading to a good agreement of the calculated lineshape with
experiment.

X. CONCLUSIONS

In conclusion, we have presented a theoretical study of the
vibrational and vibronic structure of the negatively charged
nitrogen-vacancy center in diamond. Our main focus was
the calculation of luminescence and absorption lineshapes.
We have approached the dilute limit by embedding the NV
center in supercells of up to 64 000 atoms. This resulted
in converged spectral densities of electron-phonon coupling
throughout the whole phonon spectrum. We have developed
a computationally tractable methodology to account for the
dynamical multimode Jahn-Teller effect, and have shown that
the use of this methodology is particularly important when
studying absorption at NV centers. Our calculations show that
the vibrational structure determined with the PBE functional
agrees slightly better with experiment than the one determined
with the HSE functional. Nevertheless, the geometry relax-
ation between the two electronic states of the NV center is
slightly underestimated in PBE, and slightly overestimated
in HSE (judging from the comparison of the calculated total
Huang-Rhys factor with the experimental one). This indicates
that, while being overall accurate, presently available density
functionals are still not “perfect” for describing subtle features
in optical lineshapes. We can obtain excellent agreement with
experiment for both luminescence and absorption by using
PBE spectral densities of electron-phonon coupling but scal-
ing them with a factor ζ = 1.2.

Looking forward, our paper indicates that the continuing
development of more accurate density functionals, as well as
computational advances for a rigorous but tractable treatment
of excited states, will be an essential feature of quantitative
first-principles calculations for point defects. The methodol-
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ogy presented here advances first-principles calculations of
electron-phonon coupling [59] for defects and will be useful
in the study and identification of other point defects in solids.
In particular, it is our hope that the methodology will help in
identifying and designing [60] new quantum defects.
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APPENDIX: COMPARISON OF JAHN-TELLER AND
HUANG-RHYS TREATMENT IN EMISSION

In Sec. VII we have shown that in the case of luminescence
at T = 0 K the spectral functions Ae(h̄ω) calculated by means
of the diagonalization of the vibronic Hamiltonian, on the one
hand, and based on a simpler Huang-Rhys approach, on the
other, are very close to each other (Fig. 8). In this Appendix
we provide a rationale for this behavior and show that the
agreement is to a large degree accidental for the NV center.

Let us consider a single e doublet with frequency ω. In the
notation of Sec. VII the harmonic part of the Hamiltonian is
[cf. Eq. (36)]

Ĥ0 = Ĉz

∑
γ∈x,y

(
− h̄2

2

∂2

∂Q2
γ

+ 1

2
ω2Q2

γ

)
. (A1)

The linear Jahn-Teller interaction, Eq. (37), can be rewritten
employing the parameter Se introduced in Sec. VII as

ĤJT =
√

2Seh̄ω3(ĈxQx + ĈyQy). (A2)

When the Jahn-Teller interaction is weak, Se � 1, one can
apply first-order perturbation theory. The ground-state eigen-
functions of the unperturbed Hamiltonian, Eq. (A1), are
|00; E±〉 in the notation of Sec. VII. They correspond to
two angular momentum components j = ± 1

2 . As the total
vibronic Hamiltonian for different values of j is decoupled,
we can apply a simple nondegenerate perturbation theory to
obtain first-order corrections of ground-state vibronic wave
functions due to the presence of Jahn-Teller interactions

Eq. (A2):∣∣χ JT
0 ; j = ± 1

2

〉 = A(|00; E±〉 −
√

2Se|1 ± 1; E∓〉). (A3)

Here A = 1/
√

1 + 2Se is the normalization factor.
Our goal is to compare the JT treatment with the HR

treatment. Therefore, we need to find a Hamiltonian of the
type Eq. (23) that would yield the same Huang-Rhys factor Se

as above. There are many ways to achieve this; the final result
is independent of this choice. One particular realization is

ĤHR = Ĉz

√
Seh̄ω3(Qx + Qy), (A4)

to be compared with Eq. (A2). We will treat this as a perturba-
tion to the Hamiltonian Eq. (A1). The linear coupling of this
form does not couple the two orbital states, so we can only
consider the vibrational part of the wave function. Using the
|nxny〉 basis for our vibrational states, we find that first-order
perturbation theory gives wave functions:

∣∣χHR
0

〉 = A
(

|00〉 −
√

Se

2
|10〉 −

√
Se

2
|01〉

)
, (A5)

with the normalization factor A = 1/
√

1 + Se.
Using the above expressions we can now derive the inten-

sity of the first phonon replica (labeled w1) in the normalized
luminescence spectrum. When Se � 1, we get

wJT
1 = 2Se

1 + 2Se
= 2Se + O

(
S2

e

)
,

wHR
1 = Se

1 + Se
= Se + O

(
S2

e

)
.

Thus, for the same value of the parameter Se the JT theory
yields that the intensity of the first phonon peak is twice as
large as the HR theory.

In Fig. 14 the analysis is extended for larger values of Se,
where we compare the intensity of the ZPL w0 as well as of
the first two phonon replicas in the two theories. In the case of
the HR theory an analytical result [Eq. (24)] was used, while
numerical diagonalization of the vibronic Hamiltonian was
performed for the JT theory. For very small Se, the numerical
results confirm the conclusions of the perturbation theory, i.e.,

FIG. 14. Intensities of the zero-phonon line (w0) and the first
two phonon replicas (w1 and w2) in the JT (solid lines) and the HR
(dashed lines) treatments as a function of the Huang-Rhys factor Se.
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that the intensity of the first phonon replica is twice as large
in the JT treatment. However, for Se ≈ 0.5–1.0, the values of
w0, w1, and w2 are very close to each other. For example, for
Se = 0.75 w0 and w1 differ by less than 4%, while the values
of w2 (which are smaller) differ by 15%. The actual values of
Se for the NV center fall in this range (Table IV), rationalizing

the similarity of the HR and JT treatments for luminescence.
When Se is increased above this range, the HR theory still per-
forms rather well and can be considered as an approximation
to the JT treatment. However, one should be extremely cau-
tious applying the HR approach for JT systems with Se < 0.5,
especially if the focus is on the phonon sideband.
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