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Quantum Hall effect induced by chiral Landau levels in topological semimetal films
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Motivated by recent transport experiments, we theoretically study the quantum Hall effect in topological
semimetal films. Owing to the confinement effect, the bulk subbands originating from the chiral Landau levels
establish energy gaps that have quantized Hall conductance and can be observed in relatively thick films. We
find that the quantum Hall state is strongly anisotropic for different confinement directions not only due to the
presence of the surface states but also because of the bulk chiral Landau levels. As a result, we re-examine the
quantum Hall effect from the surface Fermi arcs and chiral modes in Weyl semimetals and give a more general
view into this problem. Also, we find that when a topological Dirac semimetal is confined in its rotational
symmetry axis, it hosts both quantum Hall and quantum spin Hall states, in which the helical edge states are
protected by the conservation of the spin-z component.
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I. INTRODUCTION

Weyl orbits [1,2] in topological semimetals are unique
magnetic orbits that involve two Fermi arcs on opposite
surfaces connected via the chiral Landau levels running
through the bulk. Experiments studying the quantum os-
cillation and quantum Hall effect (QHE) related to such
orbits have been carried out in recent years [3–13] and have
sparked heated debates among research groups. For instance,
as most of the experiments were conducted with the topo-
logical Dirac semimetal (DSM) candidate Cd3As2 [14–18],
some works attribute the QHE in those Cd3As2 films to the
surface Dirac cones instead of the Weyl orbits [11,19]. This
is because the surface states of Cd3As2 are shown to be
two-dimensional (2D) Dirac cones by the angle-resolved pho-
toemission measurements [20–22] instead of the open Fermi
arcs as theoretically predicted [14]. In order to distinguish the
two mechanisms of QHE in Cd3As2, it is proposed as a key
that the QHE based on Weyl orbits depends on the film thick-
ness [2,3,7,8], which was observed in a wedge-shaped film of
Cd3As2 [3]. However, a recent study suggests that the QHE
in such wedge-shaped films may come from a completely
different mechanism [23], and thus the existence of Weyl
orbits remains elusive. As another example for the debates,
some experiments [3,4] find that the energy levels of Weyl or-
bits are related to the quantum confinement subbands, which
contradicts some other works [6,24,25] distinguishing Weyl
orbits with the confinement effect. Hence, further studies are
still needed in order to understand the nature of both Weyl
orbits and the surface states of Cd3As2.

Motivated by the connection between Weyl orbits and
the quantum confinement effect, and by the progress in
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fabricating high-quality nanostructures of Cd3As2 [26,27], we
investigate the QHE induced by confinement subbands of the
chiral Landau levels in topological semimetal films. We study
the QHE in Weyl semimetals (WSMs) in two cases of the con-
finement direction: with and without the surface states. While
in the former, the energy levels agree with the results obtained
from the semiclassical analysis as expected, we show that the
chiral Landau subbands behave differently in the latter. By
examining the difference between those two cases, we find a
more general expression for the energy levels of Weyl orbits in
a WSM. Furthermore, we find that in DSM films confined in
their rotational symmetry axis, the quantum Hall and quantum
spin Hall states coexist due to the spin conservation.

This paper is organized as follows. In Sec. II, we introduce
the models describing our WSM and DSM. In Sec. III, we
revisit the QHE based on Weyl orbits by considering a WSM
film with chiral surface states on their boundaries. We then
carry out the same calculation but in a film confined in a
direction so that it has no surface states. In Sec. IV, we explain
the results obtained in the preceding section and examine the
QHE in a WSM confined in an arbitrary direction. We also
study the QHE in a DSM confined in its rotational symmetry
axis and consider a specific case of (001) Cd3As2 film to
show that the effect is experimentally observable. Finally, our
results will be summarized in Sec. V.

II. MODELS

In this work, we describe a WSM by the minimal
model [28,29]

HW(k) =t (sin kxσx + sin kyσy)

+ [M + t ′(cos kx + cos ky + cos kz )]σz (1)

with σi being the Pauli matrices. Notice that the dimensionless
ki denote the product qiai, where qi are the usual crystal

2469-9950/2021/104(4)/045302(12) 045302-1 ©2021 American Physical Society

https://orcid.org/0000-0003-1498-367X
https://orcid.org/0000-0001-7223-607X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.045302&domain=pdf&date_stamp=2021-07-08
https://doi.org/10.1103/PhysRevB.104.045302


NGUYEN, KOBAYASHI, WICHMANN, AND NOMURA PHYSICAL REVIEW B 104, 045302 (2021)

FIG. 1. (a) WSM/DSM with two Weyl/Dirac nodes (orange
points) aligned along the z axis. (b),(c) A slab confined in the x/z
direction in a perpendicular magnetic field B.

momenta and ai lattice constants. This cubic lattice model
is centrosymmetric and breaks the time-reversal symmetry.
Hereafter, we use t = t ′ = 1 and M = −2.5 so that the Hamil-
tonian gives a pair of Weyl nodes at kW = (0, 0,±π/3), as
depicted in Fig. 1(a). If we confine this WSM in the x di-
rection, the topological surface states called Fermi arcs will
appear. In our minimal model, the arcs are straight lines con-
necting the projections of the two bulk Weyl cones.

When the Weyl points are located close to the � point, we
can expand the Hamiltonian to obtain a continuum model

HW(k) = t (kxσx + kyσy) + [
m − t ′(k2

x + k2
y + k2

z

)
/2

]
σz,

(2)
where m = M + 3t ′. We will use the lattice Hamiltonian for
numerical calculations and its continuum counterpart for ob-
taining the analytical expressions.

On the other hand, the DSM is described by an effective
Hamiltonian of Cd3As2 and Na3Bi [14,30]

HD(q) = Ẽ0(q) +

⎛
⎜⎜⎜⎜⎝
M̃(q) Aq+ 0 0

Aq− −M̃(q) 0 0

0 0 M̃(q) −Aq−
0 0 −Ak+ −M̃(q)

⎞
⎟⎟⎟⎟⎠
(3)

with q± = qx ± iqy, Ẽ (q) = C0 + C1q2
z + C2(q2

x + q2
y ), and

M̃(q) = M0 + M1q2
z + M2(q2

x + q2
y ). We transform this into

a tetragonal lattice model using the substitution

qi → 1

ai
sin ki, q2

i → 2

a2
i

(1 − cos ki ). (4)

Here, ax = ay = a and az = c are the tetragonal lattice con-
stants. The Hamiltonian then becomes

HD(k) = c0 + c1 cos kz + c2(cos kx + cos ky)

+ t (sin kxσzτx − sin kyτy)

+ [m0 + m1 cos kz + m2(cos kx + cos ky)]τz, (5)

where the Pauli matrices σi and τi represent the spin and
orbital degrees of freedom, respectively. These models of
DSMs preserve both time-reversal and inversion symmetries,
and have a rotational symmetry axis parallel to the z axis. If
we confine the DSM in any direction not parallel to z, each
of its surfaces has two disconnected Fermi arcs with opposite
spin and chirality. From now on, unless stated otherwise, we
choose the parameters c0 = c1 = c2 = 0, t = m1 = m2 = 1

and m0 = −2.5 so that the material has a pair of Dirac points
at kD = (0, 0,±π/3) [Fig. 1(a)].

We will examine the WSM and DSM in a slab geometry
confined in the i (i = x or z) direction, as shown in Figs.
1(b) and 1(c), with periodic boundary conditions (PBCs) in
the other two directions. The slabs are subjected to a uni-
form magnetic field B‖î, whose magnitude can be written
in terms of the magnetic flux � threading a unit cell as
B = �/(ajak ) = �0φ/(a jak ). Here, i �= j �= k, �0 = h/e is
the magnetic flux quantum, and φ = �/�0.

III. QUANTUM HALL EFFECT IN WEYL SEMIMETAL
FILMS

A. Films confined in the x direction

First, we consider the WSM confined in the x direction
[Fig. 1(b)] with a magnetic field B‖x̂ represented by vec-
tor potential A = (0, 0, Bay), where y is dimensionless. The
Hamiltonian of our WSM is then modified in accordance with
the Peierls substitution as (Appendix A)

HW =
∑
x,y,k

1

2
{d†

xyk[M + t ′ cos(k + 2πφy)]σzdxyk

+ d†
xyk (t ′σz − itσx )d(x+1)yk

+ d†
xyk (t ′σz − itσy)dx(y+1)k} + H.c. (6)

with d†
xyk (dxyk) being creation (annihilation) operator, k mo-

mentum in the z direction. This Hamiltonian gives an energy
spectrum [Fig. 2(a)] that was shown in Ref. [31] with a similar
model to have the energy levels in agreement with those of
Weyl orbits [1,2]

εn = πt

ka/(2πφ) + Nx + 1
(n + γ ), n = 0, 1, . . . (7)

Here, ka is the length of the surface Fermi arcs, Nx the number
of lattice sites in the x direction, and γ is the phase offset
that depends on the distance between the Weyl points [32].
Additionally, to confirm the quantum Hall state of this system,
we compute the Chern numbers of some energy gaps formed
by the discrete levels of Weyl orbits using the Streda formula
[33] (Appendix B). The nonzero Chern numbers indicate the
existence of a quantized Hall conductance and are equal to the
number of chiral modes at the edges of our system. Moreover,
such a quantum Hall state depends on the film thickness as the
energy levels do [Eq. (7)], which is regarded as a signature of
the quantum Hall effect based on Weyl orbits [3,7,8].

As mentioned in some experiments [3,4], the Weyl orbit
levels are related to the quantum confinement effect in topo-
logical semimetal films. In order to illustrate this idea, we
consider those levels [Eq. (7)] in the absence of the Fermi arcs
(ka = 0) but keep the Weyl nodes unchanged (γ unchanged).
In other words, we consider only the tunneling process of
the quasiparticles via the bulk chiral Landau levels. In this
case, we see that the energy levels take the form ε′

n = πt (n +
1)/(Nx + 1) and do not change with the magnetic field. On
the other hand, we know that in the bulk WSM the linear
dispersion of the chiral Landau levels at the Weyl points is
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FIG. 2. Energy spectra against the magnetic flux φ for (a) a WSM slab confined in the x direction [Eq. (6)], and (b) a WSM bulk [Eq. (9)]
with kx = πζ/(Nx + 1). The green lines represent semiclassical result determined by Eq. (7) for (a) ka = 2π/3 and γ = 0.7, (b) ka = 0 and
γ = 1. (c) The bulk Landau bands of a WSM confined in the x direction and subjected to a magnetic flux φ = 0.01. The green dots indicate
confinement subbands formed from the chiral Landau bands. The Chern numbers of some energy gaps are shown in (a) and (b). All the results
are computed with Nx = 20.

given by

Ec = ±tkx. (8)

A comparison between ε′
n and Ec indicates that the momen-

tum kx is quantized in a similar way to an infinite quantum
well problem, i.e., kx = (n + 1)π/(Nx + 1). This shows that
the energy levels of Weyl orbits in the limit ka = 0 are confine-
ment subbands stemming from the chiral Landau levels. To
further substantiate this argument, we carry out some numeri-
cal calculations as follows. We impose an additional PBC on
the Hamiltonian (6) in the x direction to eliminate the surface
states and preserve only the bulk spectrum. The Hamiltonian
is then given by

HW =
∑

kx,y,kz

1

2
(d†

kxykz
{t sin kxσx + [M + t ′ cos kx

+ t ′ cos(kz + 2πφy)]σz}dkxykz (9)

+ d†
kxykz

(t ′σz − itσy)dkx (y+1)kz ) + H.c.

In order to obtain only the bulk spectrum of our WSM slab,
i.e., to add the effect of quantum confinement, we apply the
particle-in-a-box method (PiBM) (Appendix C) by diagonal-
izing this Hamiltonian only at the momenta

kx = πζ

Nx + 1
, ζ = 1, 2 . . . , Nx. (10)

The spectrum is shown in Fig. 2(b), where we see that distinct
energy gaps still exist even in the absence of surface states.
The energy levels also agree well with the semiclassical result
given by Eq. (7) for ka = 0, as denoted by the green lines. To
find their origin, we show the Landau bands obtained from
Hamiltonian (9) for a fixed magnetic flux [Fig. 2(c)]. Then,
by adding the confinement effect [Eq. (10)], each continuous
Landau band becomes a set of discrete confinement subbands.
We see that the energy levels in Fig. 2(b) are actually the
confinement subbands formed from the chiral Landau levels,
as we have predicted. In the presence of boundaries, these
chiral Landau subbands hybridize with the surface Fermi arcs

and bend towards zero energy in the low field regime, giving
rise to the Weyl orbit levels shown in Fig. 2(a). As a result, we
can conclude that the quantization of Weyl orbits gives energy
levels that are chiral Landau subbands hybridizing with the
surface Fermi arcs.

From this interpretation of the Weyl orbit levels, we gain
two new perspectives about the QHE in topological semimetal
films. First, the QHE induced by Weyl orbits is intrinsically
2D instead of 3D as being claimed before [6,24,25,34,35]
since the energy levels originate from the quantum confine-
ment effect. Further evidence for this 2D nature is that the Hall
resistance of our WSM film is a factor of the Klitzing constant
RK = h/e2, in agreement with the experiments, whereas in a
so-claimed 3D QHE induced by the charge-density wave [36],
the Hall resistance is much smaller than RK . Second, if our
material somehow has the bulk chiral Landau levels but with
no open Fermi arcs on its surfaces, e.g., the arcs are combined
into a closed Fermi loop [1], the gaps between the chiral
Landau subbands still remain. Hence, a thickness-dependent
QHE or quantum oscillation in relatively thick topological
semimetal films is not conclusive evidence for observing ei-
ther Weyl orbits or surface Fermi arcs, in contrast to the usual
expectation [3,7,8,13]. Moreover, since such a QHE can take
place even without the surface Fermi arcs, a question then
naturally arises; is the QHE observable in our WSM when it
is confined in the z direction, which has no nontrivial states on
its boundaries?

B. Films confined in the z direction

We now consider a WSM confined in the z direction
[Fig. 1(c)] with a magnetic field B‖ẑ given by vector poten-
tial A = (0, Bax, 0). Similar to the previous case, the bulk
spectrum of our WSM decomposes into 1D Landau bands
dispersing along the z direction, as shown in Fig. 3(b), and the
chiral level still evolves differently from other bands. If we
introduce confinement in z, we expect that the chiral Landau
subbands also form energy gaps distinct from others, and the
QHE in relatively thick films will thus be observable. The
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FIG. 3. (a) Energy spectrum against the magnetic flux φ for a
WSM slab confined in the z direction. The green lines represent
energy levels determined by Eq. (19). The Chern numbers of some
energy gaps are shown. (b) The bulk Landau bands of a WSM
confined in the z axis and subjected to a magnetic flux φ = 0.01.
The green dots indicate confinement subbands formed from the chiral
Landau band. All the results are computed with Nz = 20.

Hamiltonian of our system now reads

HW =
∑
x,k,z

1

2
(d†

xkz{[M + t ′ cos(k + 2πφx)]σz

+ t sin(k + 2πφx)σy}dxkz + d†
xkzt

′σzdxk(z+1) (11)

+ d†
xkz(t ′σz − itσx )d(x+1)kz ) + H.c.

with k being momentum in the y direction. The energy spec-
trum of this Hamiltonian is shown in Fig. 3(a). Since this slab
does not have topological surface states, we can also obtain
its spectrum analytically by using the PiBM. We start with
adding the effect of magnetic field B on the continuum model
[Eq. (2)], which is done by replacing the momenta kx and ky

with ladder operators l , l† as

kx →
√

πφ(l† + l ), ky → −i
√

πφ(l† − l ). (12)

The Hamiltonian then becomes

HW(kz ) =
( M(kz ) 2

√
πφt l

2
√

πφt l† −M(kz )

)
, (13)

with M(kz ) = m − t ′k2
z /2 − 2πφt ′(l†l + 1

2 ). Then, using the
trial wave functions (α1 |ν − 1〉 , α2 |ν〉)T for ν = 1, 2, . . . and
(0, |0〉)T for ν = 0, where ν is the band index, we can obtain
the spectrum of HW(kz ) from the secular equations as

det

∣∣∣∣ Kνkz + πt ′φ − E 2
√

πφt
√

ν

2
√

πφt
√

ν − Kνkz + πt ′φ − E

∣∣∣∣ = 0, (14)

for ν = 1, 2, . . ., and

−K(ν=0)kz + πt ′φ − E = 0, for ν = 0. (15)

Here, Kνkz = m − t ′
2 k2

z − 2πt ′φν. The 1D Landau bands of
the WSM are then given by

E0(kz ) = −m + t ′

2
k2

z + πt ′φ, (16)

Eν (kz ) = ±
√

K2
νkz

+ 4πt2φν + πt ′φ. (17)

Now, we can transform the dispersion of the zeroth level into
a lattice version by substituting k2

z → 2(1 − cos kz ), which
yields

E0(kz ) = −M − 2t ′ − t ′ cos kz + πt ′φ. (18)

Finally, we take into account the effect of quantum confine-
ment by employing the PiBM, i.e., replacing kz = πζ/(Nz +
1) with ζ = 1, 2, . . . , Nz. The subbands of the chiral Landau
level read

ε0(ζ ) = −M − 2t ′ − t ′ cos
πζ

Nz + 1
+ πt ′φ, (19)

and they evolve linearly with respect to the magnetic flux φ,
as shown by the green lines in Fig. 3(a). On the other hand,
the Landau bands with ν > 0 move away from 0 and make
the gaps between the chiral Landau subbands observable.
These gaps also have nonzero Chern numbers, indicating the
existence of the QHE.

IV. DISCUSSION

Based on the spectrum in Fig. 3(a), we make two
inferences:

First, we see that when our WSM is confined in the z
direction, the dependence of its chiral Landau subbands on
φ deviates considerably from that of the slab perpendicular
to the x axis. In particular, if confinement is in the x direc-
tion, and we neglect the surface Fermi arcs, the subbands
stay constant as the field strength increases [Fig. 2(b)], which
agrees with the semiclassical equation. On the other hand, if
the WSM is confined in z, the subbands depend linearly on
the flux and are unevenly spaced, and thus behave differently
from Eq. (7). From Eq. (19), we know that such a difference
stems from the second-order terms in k of Hamiltonian (2)
while Eq. (7) was obtained by using a linear dispersion of
the chiral Landau levels [1]. However, another problem then
comes up: those quadratic terms contribute substantially to the
spectrum in Fig. 3(a) but does not affect the one in Fig. 2(b).
We investigate this problem and revisit the semiclassical Weyl
orbits in Sec. IV A.

Second, since a DSM can be regarded as a combination
of two WSMs with opposite spin and chirality, we expect
that a (001) film of DSM will have a spectrum with nonzero
spin Hall conductance. We demonstrate this idea in Sec. IV B,
and show that such a quantum spin Hall effect (QSHE) is
observable in the DSM candidate Cd3As2.

A. Dependence of the chiral Landau levels on the k2-terms
in HW(k)

We study how the k2 terms in Hamiltonian (2) affect the
dispersion of the zeroth Landau bands by finding their analyt-
ical expressions when the magnetic field B is applied along an
arbitrary direction. We transform the vectors (kx, ky, kz ) of the
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crystal frame into the (k1, k2, k3) of the magnetic frame (k̂3‖B)
using a 3D rotation matrix. For simplicity and without loss of
generality, we assume that B ⊥ k̂y and rotate the vectors about
the y axis (k2 ≡ ky) as⎛

⎜⎝
k1

k2

k3

⎞
⎟⎠ =

⎛
⎜⎝

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

⎞
⎟⎠

⎛
⎜⎝

kx

ky

kz

⎞
⎟⎠ (20)

with θ being the angle between k3 and kz. The continuum
Hamiltonian of our WSM then reads

HW(k) = t (cos θk1 + sin θk3)σx + k2σy + M(k)σz, (21)

where M(k) = m − t ′(k2
1 + k2

2 + k2
3 )/2. The eigen-

values of this Hamiltonian are given by E =
±

√
M2 + t2[(cos θk1 + sin θk3)2 + k2

2], and the Weyl
points are located at (−kW sin θ, 0, kW cos θ ) and
(kW sin θ, 0,−kW cos θ ), kW = √

2m/t ′.

1. Bulk chiral Landau levels

To find the chiral Landau bands analytically, we consider
the parameters {t, t ′, m} that satisfy the constraint t ′kW /t =
η = ±1, which keeps the velocity at the Weyl points isotropic.
In the vicinity of the first Weyl point (−kW sin θ, 0, kW cos θ ),
the Hamiltonian reads

HW(k′) = tk′
1(cos θσx + η sin θσz ) + tk2σy + tk′

3(sin θσx − η cos θσz ) − t ′

2

(
k′2

1 + k2
2 + k′2

3

)
σz, (22)

where k′
1 = k1 + kW sin θ and k′

3 = k3 − kW cos θ . When a magnetic field B is applied, the momenta k1 and k2 are quantized in
terms of the ladder operators similar to Eq. (12). We then have HW(kz ) = H1(kz ) + H2(kz ), where the first-order term is

H1(kz ) = tk′
3

(−η cos θ sin θ

sin θ η cos θ

)
+ t

√
πφ

(
η sin θ (l† + l ) cos θ (l† + l ) − (l† − l )

cos θ (l† + l ) + (l† − l ) −η sin θ (l† + l )

)
, (23)

and the second-order one reads

H2(kz ) = − t ′

2

[
2πφ(2l†l + 1) + k′2

3

]
σz. (24)

We now make an approximation by solving the chiral
Landau level from H1 and treating H2 as a perturbation.
With the eigenvector |Lc+〉 = [1/

√
2(1 + cos θ )](η sin θ, 1 +

cos θ )T |0〉, the chiral Landau level at the first Weyl point is
given by E (0)

+ (k′
3) = ηtk′

3. The first-order correction from the
perturbation H2 is

E (1)
+ (k′

3) = 〈Lc1|H2|Lc1〉 = t ′
(

πφ + k′2
3

2

)
cos θ. (25)

The dispersion of the zeroth Landau level is then expressed as

E+(k3) = ηt (k3 − kW cos θ )

+t ′
[
πφ + (k3 − kW cos θ )2

2

]
cos θ. (26)

The first-order correction from H2 allows us to reproduce both
Eq. (8) and Eq. (18), and hence we neglect all higher-order
corrections.

A similar calculation yields the chiral Landau level cross-
ing the second Weyl point (− sin kW , 0, cos kW ) as

E−(k3) = −ηt (k3 + kW cos θ )

+ t ′
[
πφ + (k3 + kW cos θ )2

2

]
cos θ. (27)

These expressions demonstrate that the contribution from H2

to the chiral Landau levels vanishes when the magnetic field is
perpendicular to the line connecting the two Weyl points, i.e.,
B‖x̂. Besides, the effect of H2 becomes more significant when
the magnetic field direction approaches the z axis. To assess
the reliability of these results, we compare Eqs. (26) and (27)

with the Landau bands obtained from the lattice model of
Eq. (21), as shown in Fig. 4.

2. QHE in a WSM slab confined in an arbitrary direction

After getting a more general expression for the chiral
Landau bands to explain the difference between Figs. 2(b)
and 3(a), it is interesting to seek an expression for the Weyl
orbit levels taking into account the effect of the k2-terms. The
Onsager-Bohr-Sommerfeld quantization for a classical orbit
reads ∮

p · dr = 2π h̄(n + γ ). (28)

A few calculations (Appendix D) gives

εn = B

t ′ cos θ

[
A + B −

√
2AB + B2 + t2 − 2πφt ′2 cos2 θ

]
(29)

with

A = t ′
[
π (n + γ )

L′
z

cos θ + kW sin2 θ

]
and B = 2πφt

L′
z

ka
.

(30)
Here, L′

z = (Nz + 1)/ cos(� − θ ) is dimensionless, ka =
2kW sin �, θ and � determine the directions of magnetic field
and confinement, respectively. In the limits � = θ → 90◦ and
� = θ → 0◦, this equation reproduces Eq. (7) and Eq. (19).

We now compare Eq. (29) with the results obtained from
the lattice model of Hamiltonian (21). A WSM confined in the
k3 direction and subjected to a perpendicular magnetic field is
described by

HW =
∑

x1,k,x3

1

2
(a†

x1kx3
{t sin(k + 2πφx1)σy

+ [M + t ′ cos(k + 2πφx1)]σz}ax1kx3
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FIG. 4. Landau bands of our WSM bulk in a magnetic field with (a) θ = 60◦, (b) θ = 45◦, and (c) θ = 30◦. The Landau bands (magenta
lines) are obtained from the lattice model of Hamiltonian (21). The green lines represent the analytical results given by Eqs. (26) and (27). The
blue lines are also those equations but being modified to a lattice version by Eq. (4). The green and blue lines approach each other as the Weyl
points come close to the � point.

+ a†
x1kx3

(t ′σz − it cos θσx )a(x1+1)kx3

+ a†
x1kx3

(t ′σz − it sin θσx )ax1k(x3+1)) + H.c. (31)

The energy spectra of this WSM are shown in Fig. 5 for differ-
ent tilting angles, which shows a transition from Fig. 2(a) to
Fig. 3(a), and agree well with Eq. (29). When the confinement
direction deviates from the x axis, both the spacing and the
dependence on magnetic flux φ of the chiral Landau subbands
change. Interestingly, we can see how the subbands evolve by
computing the Chern numbers of the gaps between them.

In DSMs, we assume that the physics is somewhat similar.
As the experiments about Weyl orbits are often conducted in
(112) films of Cd3As2, this result may give better explanations
to those magnetotransport studies, e.g., the high values of the
Landau indices in the quantum Hall measurements.

B. Quantum spin Hall effect in topological Dirac
semimetal thin films

Finally, we show how the QHE and QSHE induced by
chiral Landau subbands take place in the DSM films. For our

DSM [Eq. (5)], a magnetic field B‖ẑ preserves the spin-z com-
ponent (Sz) and lifts the spin degeneracy even in the absence
of Zeeman coupling. A DSM film grown along its rotational
symmetry axis (z) and subjected to B is described by

HD =
∑
x,k,z

1

2
{d†

xkz[m0τz + m2 cos(k + 2πφx)τz

− t sin(k + 2πφx)τy + λzφσzτg]dxkz

+ d†
xkz(m2τz − itσzτx )d(x+1)kz

+ d†
xkzm1τzdxk(z+1)} + H.c.,

(32)

where λz = h2

8πmea2 and

τg =
(

gs 0
0 gp

)
, (33)

gs and gp are the effective g factors for s and p orbitals, re-
spectively. For simplicity, we choose λzgs = 2 and λzgp = 1.
Solving the eigenvalues of HD numerically gives an energy
spectrum as shown in Fig. 6(a), which is composed of two

FIG. 5. Energy spectra against the magnetic flux φ for a WSM slab confined in the k3 direction determined by (a) � = 60◦, (b) � = 45◦,
and (c) � = 30◦. The green lines represent semiclassical result determined by Eq. (29) with γ = 0.7. The Chern numbers of some energy gaps
are shown. All the results are computed with a thickness corresponding to N3 = 20.
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FIG. 6. (a) Energy spectrum against the magnetic flux φ for a
DSM slab. The red lines denote spin-up chiral Landau subbands
given by Eq. (36a). The blue lines denote spin-down chiral Landau
subbands given by Eq. (36b). The Chern numbers of some energy
gaps are shown. (b) Bulk Landau bands of the DSM confined in the
z axis and subjected to a magnetic flux φ = 0.01. The red and blue
dots indicate confinement subbands formed from the chiral Landau
bands. All the results are computed with Nz = 20.

sets of chiral Landau subbands with opposite chirality and
spin polarization. They evolve in different directions with
respect to the magnetic field and thus cross each other to
form the energy gaps that can be seen as an overlap of two
separate gaps. This spectrum is also explained by the quantum
confinement picture as shown in Fig. 6(b). According to this
figure, we should notice that the two sets of subbands cross if
π/(Nz + 1) < |kD|, i.e.,

Lz >
π

|qD| . (34)

To find how the chiral Landau subbands depend on the mag-
netic field, we also follow the same calculation as presented in
Sec. III B and get an analytical expression of those subbands

ε0↑(qz ) = C0 + M0 + (C1 + M1)q2
z

+ (C2 + M2)
eB

h̄
+ μBgsB

2
, (35a)

ε0↓(qz ) = C0 − M0 + (C1 − M1)q2
z

+(C2 − M2)
eB

h̄
− μBgpB

2
. (35b)

To make a comparison with the lattice model spectrum
[Fig. 6(a)], we let Ci = 0 and transform the equations using
Eq. (4), which gives

ε0↑(ζ ) = m0 + 2m2 + m1 cos
πζ

Nz + 1
− πm2φ + λzgsφ,

(36a)

ε0↓(ζ ) = −m0 − 2m2 − m1 cos
πζ

Nz + 1
+ πm2φ − λzgpφ.

(36b)

These expressions show that the presence of Zeeman inter-
action still keeps the chiral Landau subbands evolving linearly
with the magnetic flux but changes their slopes. Specifically,

the gs factor modifies the slope of the spin-up chiral Landau
subbands whereas gp affects the spin-down ones, which re-
flects the band inversion of DSMs.

Due to our choice of parameters, the spin-up chiral Landau
subbands are holelike, and the spin-down ones are elec-
tronlike. As a result, when our material has an additional
boundary, the spin-up subbands are bent downward and give
right-handed edge states while those with spin-down disperse
upward giving left-handed edge states. The combination of
these edge modes gives rise to the coexistence of chiral and
helical edge states. For example, we consider an energy gap
of Chern number C = 1, which is a combination of C↓ = 7
and C↑ = −6 gaps. When the Fermi level lies within this gap,
the spin Hall conductance is quantized as [37,38]

σs = −Cs
e

2π
(37)

with Cs = (C↑ − C↓)/2 = −6.5. At the boundary, energy lev-
els are bent and form seven left-handed spin-down and six
right-handed spin-up edge states, which would result in a total
of one chiral edge state and six helical edge states. Hence,
both quantum Hall and quantum spin Hall phases coexist
in our system whose time-reversal symmetry is broken by
the magnetic field. In this case, the helical edge states exist
because Sz is approximately conserved [39]. This scenario
is well known in graphene [40–42], where the helical edge
states are protected by an additional symmetry instead of the
time-reversal symmetry as in topological insulators.

Estimation for Cd3As2

Since a quantized Hall conductance has recently been ob-
served in (001) films of Cd3As2 [19] under a strong magnetic
field, we roughly estimate whether the QHE and QSHE in-
duced by the chiral Landau subbands can be observed in such
films. Depending on the growth condition, Cd3As2 can be
either centrosymmetric or noncentrosymmetric [43]. Here, we
consider a centrosymmetric Cd3As2, which is more popular
and can be described by Hamiltonian (3) with parameters
obtained by fitting with the ab initio calculation [44]. Addi-
tionally, as the distance between the Dirac points of Cd3As2

obtained by the Landau level spectroscopy measurements
[45–48] is one order smaller than the ab initio calculations
[14,49,50], we also consider the hyperbolic model proposed
by Ref. [46]. A detailed procedure is presented in Appendix E.
The spectra computed for these two models are shown in
Fig. 7, where, in both cases, we use gs = 18.6 [46] and choose
gp = 10 for simplicity.

In general, both spectra have three types of gaps formed
by the chiral Landau subbands: those with nonzero spin
Chern number, those with nonzero Chern number and zero
spin Chern number, and one with vanishing Chern and spin
Chern numbers. We are interested in the gaps with nonzero
spin Chern number, which do not exist if the film is too thin
but is not observable if the film is too thick. If we assume
an energy gap �ε � 10 K ∼1 meV to be observable, the
majority of gaps in Fig. 7(a) and all gaps in Fig. 7(b) satisfy
the condition. Hence, the QHE induced by the chiral Landau
subbands can be observed in relatively thick films compared
to the conventional quantum wells (5–20 nm).
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FIG. 7. Energy spectra against the magnetic flux φ for a (001)
film of Cd3As2 described by two different models: (a) Hamiltonian
(3) with parameters given by Ref. [44], the film thickness is 50 nm,
and (b) the hyperbolic model proposed by Ref. [46], the film thick-
ness is 120 nm. Some Chern numbers are shown in both figures by
comparing with Fig. 6(a).

If we use this simple model [Fig. 7(a)] to explain the
QHE observed in Ref. [19], it may capture two features of
the experiment, i.e., the absence of ν = 1 plateau and the
high resistance at strong magnetic field. Nevertheless, just like
the explanation given in that reference, it is also unable to
clarify the difference in activation energy between the states
at even and odd filling factors. On the other hand, if the actual
distance between the Dirac nodes agrees with the Landau level
spectroscopy measurements, the QHE induced by chiral Lan-
dau subbands may not be observable in such a quantum Hall
experiment since the film thickness does not satisfy Eq. (34).

V. CONCLUSION

Our study gives a generic and simplified picture of the
QHE induced by confinement subbands stemming from the
chiral Landau levels in topological semimetal films. Using
a minimal model of WSM, we have demonstrated that the
energy levels of Weyl orbits originate from the confinement
subbands of the chiral Landau levels that hybridize with the
surface Fermi arcs. We have then studied how the k2 terms in
a WSM Hamiltonian affect the evolution of the chiral Landau
bands with respect to the magnetic field. We have found a
general expression for the Weyl orbit levels and shown how
the QHE takes place in a WSM film confined in an arbitrary
direction. Furthermore, when examining a DSM confined in
its rotational symmetry axis, we may have not only explained
the QHE recently observed but also predicted the coexistence
of both quantum Hall and quantum spin Hall states in such a
system.
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APPENDIX A: LATTICE HAMILTONIAN
IN A MAGNETIC FIELD

We present how to obtain the Hamiltonian in Eq. (6) and
write its explicit form. First, we take the Fourier transform of
the lattice model (1) into real space as

HW = −1

2

∑
m

[d†
m(t ′σz − itσx )dm+x̂ + d†

m+x̂(t ′σz + itσx )dm

+ d†
m(t ′σz − itσy)dm+x̂ + d†

m+1y
(t ′σz + itσy)dm

− 4d†
mMσzdm + d†

mt ′σzdm+ẑ + d†
m+ẑt

′σzdm], (A1)

where m = (x, y, z) is a dimensionless position vector. In the
presence of a magnetic field B, the Hamiltonian is modified
by the Peierls substitution so that it remains invariant under
the U (1) gauge transformation. In particular, the hopping
integrals are changed, such as

d†
m+ŷtdm −→ d†

m+ŷt exp
(
iϑ (y)

m

)
dm (A2)

with ϑ
(y)
m = − 2π

�0

∫ m+ŷ
m A · ŷady. Using the vector potential

A = (0, 0, Bay), we get ϑ (x)
m = ϑ

(y)
m = 0 and ϑ (z)

m = −2πφy.
Inserting these phases into Eq. (A1) and taking Fourier trans-
form along the z direction, we obtain Eq. (6).

Since the vector potential breaks the translation symmetry
along the y direction, the momentum ky is no longer a good
quantum number, and we are not able to take the Fourier
transform in this direction. We can retain the translation sym-
metry by introducing the so-called magnetic unit cells and the
corresponding magnetic Brillouin zone. Nevertheless, keep-
ing the Hamiltonian in the real space representation along the
y direction is a simpler choice for our work. The operator can
then be written explicitly as

HW =
∑

k

⎛
⎜⎜⎜⎜⎜⎝

�
†
1k

�
†
2k

...

�
†
Nxk

⎞
⎟⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎝

� � 0 · · · 0

�† � � · · · 0
. . .

. . .
. . .

. . .
...

0 0 · · · �† �

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�1k

�2k

...

�Nxk

⎞
⎟⎟⎟⎟⎠,

(A3)
where �xk are 2Ny spinors, and the two 2Ny × 2Ny matrices �

and � are given by

� =

⎛
⎜⎜⎜⎜⎜⎝

D1 O1 0 · · · O†
Ny

O†
1 D2 O2 · · · 0

. . .
. . .

. . .
. . .

...

ONy 0 · · · O†
Ny−1 DNy

⎞
⎟⎟⎟⎟⎟⎠ (A4)

with Dy = [M + cos(k + 2πφy)]σz, Oy = (σz + iσy)/2, and
� = 1Ny×Ny ⊗ (σz − iσx )/2. Notice that we keep the peri-
odic boundary condition in the y direction, which requires
2πφNy = 2nπ or Ny = n/φ with n = 1, 2, . . .. On the other
hand, as we can write the magnetic flux as a ratio of two
integers, i.e., φ = p/q, we choose n = p and thus q = Ny for
simplicity. This choice corresponds to a magnetic Brillouin
zone that has only one k point in the y direction.
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APPENDIX B: COMPUTING CHERN NUMBERS

To illustrate the quantum Hall effect induced by chiral Lan-
dau levels, we compute Hall conductance of the gaps between
them using the Streda formula [33] for a 3D system of sizes
Lx × Ly × Lz. For instance, when the Fermi energy lies in a
gap, the Hall conductivity of films perpendicular to the x axis
can be determined by

σyz = −e
∂n(EF )

∂Bx
(B1)

with n(EF ) being the particle density. We transform this for-
mula as

σyz = −e
�n(EF )

�Bx
= −e2

h

�N (EF )

Lx�p

qay

Ly

az

Lz
. (B2)

Here, N (EF ) is the number of states below Fermi energy,
�yz/�0 = p/q, and the magnetic field is varied by changing
p and keeping q constant. The Hall conductance is then given
by

Gyz = σyzLx = −e2

h

�N (EF )

�p

1

Nyz
, (B3)

where Nyz is the number of k points in the 2D magnetic
Brillouin zone. Similarly, for slabs perpendicular to z, the Hall
conductance reads

Gxy = σxyLz = −e2

h

�N (EF )

�p

1

Nxy
. (B4)

However, in order to show a connection with the edge states
forming in such QHE, instead of finding the Hall conductance
we compute the Chern numbers defined by

C (xy) = �N

�p

1

Nxy
and C (yz) = �N

�p

1

Nyz
. (B5)

These Chern numbers give the number of chiral edge modes
in our quantum Hall system.

APPENDIX C: PARTICLE-IN-A-BOX METHOD

When solving the slab geometry of a lattice Hamiltonian
which does not have surface states, we can obtain its spectrum
simply by quantizing the momentum along the confinement
axis as in the particle-in-a-box problem.

To illustrate this idea, we consider a particular instance,
i.e., the WSM given by Eq. (1) confined in the z direction with
thickness Lz. To obtain its spectrum, we often Fourier trans-
form Eq. (1) along z into real space and get the Hamiltonian

HW =
∑
k,z

{
d†

kz[(2 − cos kx − cos ky)σz − sin kxσx

− sin kyσy]dkz − d†
kz

σz

2
dk(z+1) − d†

k(z+1)

σz

2
dkz

}
.

(C1)

This matrix has a size of 2Nz × 2Nz with Nz being the number
of lattice sites, z = 1, 2, . . . Nz. The open boundary condition,
or hard-wall boundary condition, is imposed by setting the
hopping terms between sites 1 and Nz to be zero, which
implies that the wave functions always vanish at sites 0 and

(Nz + 1). Hence, the width of our quantum well, or the film
thickness, is Lz = (Nz + 1)az. This boundary condition is an
appropriate approximation since we are mainly interested in
the low-energy limit of our model. Diagonalizing H gives the
energy spectrum of our WSM film.

A more convenient way to get the same result is the afore-
mentioned PiBM, which is to set kz → πζ/(Nz + 1) with
ζ = 1, 2, . . . in our lattice Hamiltonian Eq. (1). Notice that the
periodicity of our lattice restricts 0 < ζπ/(Nz + 1) < π [51],
and thus we have the integers ζ ∈ [1, Nz]. Using this substitu-
tion, we can obtain the exact energy spectrum of Hamiltonian
Eq. (C1) just by diagonalizing the matrices

hζ (k) = − sin kxσx − sin kyσy

+
[

M − cos kx − cos ky − cos

(
πζ

Nz + 1

)]
σz.

(C2)

The eigenvalues are simply

εζ (k) = ±
[

sin2 kx + sin2 ky

+
(

M − cos kx − cos ky − cos
πζ

Nz + 1

)2] 1
2

. (C3)

Nevertheless, if nontrivial edge states are present, e.g., the
WSM confined along x, this method becomes a rough approx-
imation as it is unable to demonstrate the localized edge states,
but it is still sufficient to demonstrate the formation of bulk
subbands due to the quantum confinement.

APPENDIX D: SEMICLASSICAL QUANTIZATION

Chiral Landau levels at the two Weyl points are given by

Ec(k3) = ηt (k3 − kW cos θ )

+t ′
[

1

2
(k3 − kW cos θ )2 + πφ

]
cos θ, (D1)

Ec(k3) = −ηt (k3 + kW cos θ )

+t ′
[

1

2
(k3 + kW cos θ )2 + πφ

]
cos θ. (D2)

To obtain the semiclassical quantization of Weyl orbits, we
apply the Bohr-Sommerfeld-Onsager quantization condition,
i.e.,

∮
p · r = 2π h̄(n + γ ). We split the line integral into two

parts.
(i) The integration along the Fermi arcs:∫

arcs
p · dr = h̄2

eBa2
Sk ≈ h̄2

e�
ka2

E

t
= h̄

πφ

kaE

t
, (D3)

where Sk/a2 is the k-space area enclosed by the two Fermi
arcs, � is the angle determining the confinement direction,
and ka = 2kW sin �.

(ii) The integration along the bulk chiral Landau levels

∫
lls

p · dr = h̄k32L′
z = 2h̄L′

z

(−t ′kW sin2 θ + √
�

t ′ cos θ

)
. (D4)
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Here, L′
z = Nz+1

cos(�−θ ) is dimensionless, θ is the angle

for the direction of magnetic field, and � = t2 −
2t ′ cos θ (πt ′φ cos θ − E ).

Using these equations, we get the energy levels of Weyl
orbits as given in Eq. (29).

APPENDIX E: LAUDAU QUANTIZATION
OF TOPOLOGICAL DIRAC SEMIMETALS

We consider the continuum model of DSM given by
Eq. (3). In the presence of a magnetic field B‖ẑ, the momenta
(qx, qy) are replaced by the ladder operators as

qx → 1√
2lB

(l† + l ), qy → −i√
2lB

(l† − l ), (E1)

and the Zeeman interaction is added. The Hamiltonian then
becomes

HD(kz ) =
(

H↑
D (kz ) 0

0 H↓
D (kz )

)
(E2)

with

H↑
D (qz ) = Eqz +

(
M(qz ) + μBgsB

2

√
2A

lB
l†

√
2A

lB
l −M(qz ) + μBgpB

2

)

and

H↓
D (qz ) = Eqz +

(
M(qz ) − μBgsB

2 −
√

2A
lB

l

−
√

2A
lB

l† −M(qz ) − μBgpB
2

)
.

Here, we have E (qz ) = C0 + C1q2
z + C2l−2

B (2l†l + 1)
and M(qz ) = M0 + M1q2

z + M2l−2
B (2l†l + 1). According

to Ref. [44], the parameters are A = 0.889 eVÅ,
M0 = −0.0205 eV, M1 = 18.77 eVÅ2, M2 = 13.5 eVÅ2,
C0 = −0.0145 eV, C1 = 10.59 eVÅ2, and C2 = 11.5 eVÅ2.

A numerical diagonalization of HD(kz ) yields the spectrum in
Fig. 7(a). Besides, using the eigenvectors (|0〉 , 0, 0, 0)T and
(0, 0, 0, |0〉)T , we can analytically obtain the chiral Landau
bands

ε0↑(qz ) =C0 + M0 + (C1 + M1)q2
z

+ (C2 + M2)
eB

h̄
+ μBgsB

2
(E3)

and

ε0↓(qz ) = C0 − M0 + (C1 − M1)q2
z

+ (C2 − M2)
eB

h̄
− μBgpB

2
. (E4)

On the other hand, the hyperbolic model of Cd3As3 pro-
posed by Ref. [44] can be obtained simply by replacing the
function M̃(q) with

M̃( j)(q) = M ( j)
0 +

√(
M ( j)

3

)2 + (
M ( j)

1 qz
)2 + M ( j)

2

(
q2

x + q2
y

)
.

(E5)

Here, the parameters are A( j) = 2.75 eVÅ, M ( j)
0 = −0.06 eV,

M ( j)
1 = 96 eVÅ2, M ( j)

2 = 18 eVÅ2, M ( j)
3 = 0.05 eVÅ2,

C( j)
0 = −0.219 eV, C( j)

1 = −30 eVÅ2, C( j)
2 = −16 eVÅ2. Fol-

lowing the same calculation as before, we get the spectrum in
Fig. 7(b) and the analytical expressions

ε0↑(qz ) = C0 + M̃0 + C1q2
z +

√
M2

3 + M̃1k2
z

+ (C2 + M2)
eB

h̄
+ μBgsB

2
, (E6)

ε0↓(qz ) = C0 − M̃0 + C1q2
z −

√
M2

3 + M̃1k2
z

+ (C2 − M2)
eB

h̄
− μBgpB

2
. (E7)
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