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Exploring the change of semiconductor hole mass under Coulomb scattering
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Semiconductor valence holes are known to have heavy and light effective masses, but the consequence of
this mass difference on Coulomb scatterings has been considered intractable and thus ignored up to now. The
reason is that the heavy/light index is quantized along the hole momentum that changes in a Coulomb scattering,
so a heavy hole can turn light, depending on the scattering angle. This mass change has never been taken into
account in many-body problems, and a single “average” hole mass has been used instead. To study the missed
consequences of this crude approximation, the first necessary step is to determine the Coulomb scatterings with
valence holes in a precise way. We here derive these scatterings from scratch, starting from the threefold valence-
electron spatial level, all the way through the spin-orbit splitting, the Kohn-Luttinger effective Hamiltonian, its
spherical approximation, and the phase factors that appear when turning from valence electron to hole operators,
that is, all the points of semiconductor physics that render valence holes so different from a naïve positive charge.
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I. INTRODUCTION

Semiconductors continue to be of high technological inter-
est in many industrial sectors [1,2]. The prime advantage of
these materials is their complex, yet controllable, band struc-
ture [3–5], with energy levels that produce desirable effects
for electronic and optoelectronic applications.

Among the band structure complexities, one is linked to
the upper valence states. These states come from a degenerate
spatial level which is partly split by the spin-orbit interaction.
This interaction, which in the case of atomic electrons [6]
takes the familiar L̂ · Ŝ form in terms of their orbital angular
momentum L̂ = r × p̂, demands a totally different approach
for electrons in periodic Bloch states because the potential
felt by these electrons is not spherical, so that the spin-orbit
interaction does not read in terms of r × p̂ in the case of
semiconductor electrons. For this reason, the crystal symme-
try and periodicity are commonly tackled through the group
theory [7–9]. The disadvantage of this approach is to shade the
physical origin of the splitting when spin is added, i.e., when
the “simple” group is transformed into the “double” group.
This is why we have recently proposed a totally different ap-
proach [10]. Through a k · p perturbative procedure [11,12],
we have recovered that the dispersion relation of the upper
spin-orbit valence electrons has two warped surfaces [13–15],
pinned on the crystal axes. They are commonly approximated
as two spheres associated with heavy and light masses [16,17].
Heavy and light holes have been experimentally evidenced
in bulk GaAs by using optically pumped nuclear magnetic
resonance [18,19], despite their small energy difference.
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Getting rid of the warping, which removes the crystal axes
from the electron dispersion relation, is already a big simplifi-
cation toward handling valence electrons. Still, these axes do
not completely disappear from the problem due to Coulomb
interaction. Here enters a “miracle” that most people take
for granted without well-established derivation: The Coulomb
scatterings for intraband processes between Bloch-state elec-
trons in the conduction and valence bands have the same
value as the one for electrons in vacuum—within a dielectric
constant reduction that comes from interband processes [20].
However, these scatterings, derived in the Bloch basis with
states labeled as μ = (x, y, z) along the crystal axes, have the
1/q2 dependence exclusively for processes that are diagonal
in μ. It is in this tricky way that the crystal axes enter the
Coulomb potential in semiconductors.

By contrast, the crystal axes do not appear in the heavy and
light valence states because they are eigenstates of a spheri-
cal Hamiltonian. Thus, only one axis remains to classify the
fourfold valence subspace: the k wave vector of the electron.
Indeed, the heavy and light valence electrons are distinguished
by a fourfold index J = (± 3

2 ,± 1
2 ) with quantization axis

along k. As a direct consequence, a valence electron in a heavy
state when its wave vector is k does not necessarily stay heavy
when its wave vector changes.

The fact that the Coulomb interaction is not diagonal
between valence electron eigenstates has a dramatic con-
sequence on many-body effects involving these electrons:
Because the electron wave vector k changes in a Coulomb
process, so changes the valence electron state along with its
mass. The heavy-light hole mass difference has been deemed
intractable in many-body problems. This is why, up to now, all
many-body effects in bulk semiconductors have been derived
by adopting a single hole mass, obtained from the average of
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the inverse heavy-hole and light-hole masses [21–23]. While
this average seems reasonable when dealing with electron-
hole binding, it is hard to accept for problems in which the
pair center of mass plays a role. Up to now, there is no
satisfactory treatment to this mass problem. Note that the
situation is different in quantum wells because the heavy-hole
and light-hole energies are split by confinement [24]; thus, in
narrow quantum wells, we can just keep Coulomb processes
within the heavy-hole subspace.

Our motivation for deriving the Coulomb scatterings be-
tween heavy and light holes is to reconsider the validity
of using a single hole mass in many-body problems and to
provide some mathematical support to the widely used av-
erage hole mass value. The validity of using a single mass
most probably depends on the problem at hand. A first ques-
tion surely is related to the exciton [20]: Does the Coulomb
coupling between heavy and light holes split the exciton
degeneracy obtained by using a single average hole mass?
In view of the narrow exciton line, such a splitting should
be observable through optical experiments in bulk samples
[18,19].

The very first step to investigate the consequences of us-
ing an average hole mass in bulk many-body effects—which
still is an open problem—is to control how a heavy valence
electron stays heavy or turns light under Coulomb scatter-
ings. This requires us to go back to the microscopic form
of the Coulomb interaction in semiconductors [20], originally
written in terms of valence electrons in Bloch states μ. By
rewriting the creation operators of these electrons in terms of
heavy-mass and light-mass states, we see that the Coulomb
scatterings, diagonal in μ, do not stay diagonal for heavy
and light valence electrons. This is the fundamental reason
why the valence hole mass can change in a Coulomb process.
Quantities of physical interest are the probabilities for mass
change, heavy to heavy (HH) or heavy to light (LH); they
depend on the angle θk′k between the outgoing and incoming
hole wave vectors k′ and k, in an amazingly simple way:

1 − 3

4
sin2 θk′k = PHH = 1 − PLH

= PLL = 1 − PHL. (1)

The fact that there are two heavy states and two light states,
which restores time reversal symmetry, plays a crucial role in
the simplicity of these results. Note that PLH = PHL is easy to
expect physically. It implies the less obvious relation PHH =
PLL, which mathematically follows from the probability sum
equal to 1. Unfortunately, the microscopic scatterings between
heavy and light states, which are the relevant quantities to
derive many-body effects, are not as simple as these proba-
bilities.

We here show that the Coulomb scatterings involving
heavy and light valence electrons read as the Coulomb scat-
tering for conduction electrons 4πe2/εscL3q2 multiplied by
a complex factor k′ 〈J ′|J 〉k that corresponds to the scalar
product of the incoming and outgoing valence electron eigen-
states for k and k′ wave vectors. These J indices, quantized
along the electron wave vector, have been commonly taken
as (± 3

2 ) for heavy electrons and (± 1
2 ) for light electrons [see

Fig. 1(b)], due to similarity with their atomic counterparts.

FIG. 1. (a) When spin is added, the spin-orbit interaction splits
the sixfold level originating from the threefold spatial level μ =
(x, y, z) into a fourfold level Jz with J = (± 3

2 , ± 1
2 ) and a twofold

level with J = ± 1
2 . (b) Within the spherical approximation, the

eigenstates for k electron in the fourfold level are made of two heavy
states J = (± 3

2 )k and two light states J = (± 1
2 )k, quantized along

the k direction.

The k′ 〈J ′|J 〉k factor reduces to δJ ′,J for k′ parallel to k
and to δJ ′,−J for k′ antiparallel to k: For such wave vectors,
the valence electrons keep their mass. Otherwise, there is a
nonzero probability for a mass change.

To the best of our knowledge, we have not found any
derivation of the microscopic Coulomb potential given in
Eq. (57). By using these scatterings, we recover the compact
result given in Eq. (1). These probabilities have been previ-
ously quoted [21,22] but without any derivation [25].

This paper is organized as follows.
In Sec. II, we go all the way from valence electrons, with

spin sz in a threefold degenerate spatial level with Bloch states
labeled as μ = (x, y, z) along the crystal axes, to the spin-
orbit splitting, the dispersion relations for finite electron wave
vector k, and the corresponding eigenstates obtained from the
spherical approximation of the Kohn-Luttinger Hamiltonian,
from which heavy and light valence electrons are obtained.
We pay special attention to the quantum indices that label
these different valence states.

In Sec. III, we consider the Coulomb interaction. It is
diagonal in the Bloch-state basis and stays diagonal in the
spin-orbit basis when the fourfold quantum index is quan-
tized along a crystal axis. The Coulomb interaction becomes
nondiagonal when the spherical spin-orbit eigenstate basis is
introduced because the quantization axis is not along a fixed
crystal axis but along the electron wave vector k.

In Sec. IV, we turn from valence-electron creation operator
to hole destruction operator, taking into account the phase fac-
tors induced by the degeneracies of the spatial and spin states.
We ultimately obtain the microscopic Coulomb potential in
Eq. (57) between an electron and a heavy or light hole.

In Sec. V, we combine these fundamental results of
semiconductor physics to obtain the transition probabilities
between heavy and light holes induced by the Coulomb scat-
terings, given in Eq. (1).

We then conclude.
Before going further, we wish to comment on using no-

tations borrowed from atomic physics when dealing with
semiconductors. Because semiconductor electrons are in a
periodic potential, they do not have the orbital angular
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momentum L̂ = r × p̂ specific to systems with spherical sym-
metry [26], with state parity depending on orbital quantum
number � as (−1)�. A naïve extension of atomic notations to
periodic systems can lead to incorrect results, as, for example,
seen from the fact that the lowest spatial conduction level
in a cubic semiconductor is called S, while all conduction
levels are odd in parity; in the same way, the highest spatial
valence level is called P, while all valence levels are even.
Thus, atomic notations are valid to label level degeneracy—
here, nondegenerate and threefold—but are not valid for state
parity, which plays a crucial role in many electronic transition
problems.

Actually, it is possible to define a vector operator L̂ from
the potential V (r) felt by the electrons:

∇V (r) × p̂ ≡ λ̃ L̂, (2)

that reduces to L̂ when V (r) depends on |r| only, as for
spherical symmetry, but differs from L̂ otherwise. For cubic
symmetry, the commutation relations of the L̂ components
are the same as those for (L̂x, L̂y, L̂z ), provided we align the
arbitrary cartesian axes (x, y, z) of the spherical system along
the cubic crystal axes. When spin is introduced, the matrix
representations of the resulting Ĵ = L̂ + Ŝ operator are iden-
tical to those of the Ĵ = L̂ + Ŝ operator, provided we again
align the axes for (Ĵx, Ĵy, Ĵz ) along the cubic crystal axes.

Because of identical commutation relations for (L̂, L̂) or
(Ĵ , Ĵ) components, we could be led to call angular momen-
tum Ĵ as well as L̂. However, being aware of the lack of
spherical symmetry that L̂ has and the aforementioned parity
problem, we here prefer to securely derive all results from
scratch and only at the end draw connections with the angular
momentum formalism. This is the price to pay for not using
group theory, as commonly done in semiconductor physics.

II. VALENCE ELECTRONS

Electrons in the periodic potential of a semiconductor crys-
tal are characterized by a plane wave with wave vector k,
modulated by a Bloch function un,k(r) that has the crystal
periodicity. The resulting electron wave function in a sample
volume L3 reads

〈r|n, k〉 = eik·r

L3/2
un,k(r), (3)

with a band index n = c for nondegenerate conduction elec-
trons and n = (v, μ) for valence electrons in a threefold
spatial level with states labeled as μ = (x, y, z) along the
cubic crystal axes. In addition to spatial degeneracy, electrons
also have a spin degeneracy.

A. Zero wave vector

As visualized in Fig. 1(a), the spin-orbit interaction splits
[10] the threefold spatial level of valence electron states
|v, k = 0; μ〉 ⊗ |s〉z with spin quantized along the crystal axis
z, into a fourfold level

|v, 0〉 ⊗ |J 〉z with J =
(

±3

2
,±1

2

)
, (4)

and a twofold level

|v, 0〉 ⊗ |J 〉z with J =
(

±1

2

)
. (5)

These spin-orbit eigenstates are labeled in the same way as
the spin-orbit eigenstates for atoms due to their similar forms.
Indeed, if the arbitrary axes of a spherically symmetric system
are taken along the cubic semiconductor axes, they are both
related to the |v, 0; μ〉 ⊗ |s〉z states through

|v, 0〉 ⊗
∣∣∣∣±3

2

〉
z

= |v, 0; ±1〉z ⊗
∣∣∣∣±1

2

〉
z

,

|v, 0〉 ⊗
∣∣∣∣±1

2

〉
z

= 1√
3

(
|v, 0; ±1〉z ⊗

∣∣∣∣∓1

2

〉
z

+
√

2 |v, 0; 0〉z ⊗
∣∣∣∣±1

2

〉
z

)
, (6)

for the fourfold level and

|v, 0〉 ⊗
∣∣∣∣±1

2

〉
z

= ± 1√
3

(√
2|v, 0; ±1〉z ⊗

∣∣∣∣∓1

2

〉
z

− |v, 0; 0〉z ⊗
∣∣∣∣±1

2

〉
z

)
, (7)

for the twofold level, the spatial parts of these states being
related to the |v, 0; μ〉 Bloch states by

|v, 0; ±1〉z = ∓i|v, 0; x〉 + |v, 0; y〉√
2

, (8a)

|v, 0; 0〉z = i|v, 0; z〉, (8b)

with phase factors taken along the Landau-Lifshitz’s phase
factors for spherical harmonics [27].

B. Finite wave vector k

Away from the k = 0 point, the k dependence of the spin-
orbit eigenstates |v, k〉 ⊗ |J 〉z is derived [28] through the
k · p coupling of the |v, 0〉 ⊗ |J 〉z valence states to the two
lowest spatial levels of the conduction band |c, 0〉 and |c, 0; μ〉
that respectively are nondegenerate and threefold.

These couplings lead to a 4×4 matrix in the fourfold
spin-orbit subspace that can be written in a compact form
[29] in terms of Ĵ = (Ĵx, Ĵy, Ĵz ), which have the same val-
ues and thus the same commutation relations as the angular
momentum Ĵ for spherical systems. The resulting effective
Hamiltonian reads

Ĥ (warp)
k = 1

2m0

[
α1k2Ĵ 2 + α2(k · Ĵ )2

+ α3
(
k2

x Ĵ 2
x + k2

y Ĵ 2
y + k2

z Ĵ 2
z

)]
, (9)

the matrix for the Ĵ component along z in the |v, 0〉 ⊗ |J 〉z

basis made of the Ĵz eigenstates, reading, as expected for
eigenstates, as

Ĵz = h̄

⎛
⎜⎜⎜⎝

3
2 0 0 0

0 1
2 0 0

0 0 − 1
2 0

0 0 0 − 3
2

⎞
⎟⎟⎟⎠

z

. (10)
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The Ĥ (warp)
k Hamiltonian has the form of the Kohn-Luttinger’s

Hamiltonian [14,15] when the twofold split-off band is
dropped.

The αn coefficients in Eq. (9) are related [28] to the micro-
scopic couplings ζ1 and ζ3 of the |v, 0; μ〉 states to the |c, 0〉
state and |c, 0; μ′〉 states, as

ζ1 = 2

m0Eg
|〈c, 0| p̂x|v, 0; x〉|2, (11)

ζ3 = 2

m0(Eg + 
c)
|〈c, 0; y| p̂x|v, 0; z〉|2, (12)

where m0 is the free electron mass, Eg is the band gap, and

c is the energy difference between the |c, 0〉 and |c, 0; μ〉
conduction levels. The αn coefficients precisely read

α1 = 4 − 3ζ1 − ζ3

15
, α2 = ζ1 + ζ3

3
, α3 = −2ζ3

3
. (13)

It is of interest to note that the α3 term of the Ĥ (warp)
k

Hamiltonian also reads

k2
x Ĵ 2

x + k2
y Ĵ 2

y + k2
z Ĵ 2

z

= (k · Ĵ )2 − {
kxky[Ĵx, Ĵy]+ + kykz[Ĵy, Ĵz]+

+kzkx[Ĵz, Ĵx]+
}

(14)

with [Ĵx, Ĵy]+ = ĴxĴy + ĴyĴx. When inserting this result
into Ĥ (warp)

k , we find that the above curly bracket is responsible
for the warped contribution to the eigenenergies in (k2

x k2
y +

k2
y k2

z + k2
z k2

x ), while the other terms of Ĥ (warp)
k produce spher-

ical contributions in k2.

C. Heavy and light valence electrons

The warping is commonly neglected by approximating the
Ĥ (warp)

k Hamiltonian by a spherical Hamiltonian

Ĥ (sph)
k = 1

2m0

[
β1k2Ĵ 2 + β2

(
k · Ĵ )2]

, (15)

with β1 = α1 and β2 = α2 + α3, according to Eq. (14).
(i) For k along z, the scalar product (k · Ĵ )

2
is equal to

k2Ĵ 2
z ; thus, Eq. (10) readily gives the eigenvalues of Ĥ (sph)

k as

h̄2k2

2m0

[
3

2

5

2
β1 +

(
3

2

)2

β2

]
= ε

(H )
v,k ≡ h̄2k2

−2mH
, (16a)

h̄2k2

2m0

[
3

2

5

2
β1 +

(
1

2

)2

β2

]
= ε

(L)
v,k ≡ h̄2k2

−2mL
. (16b)

The heavy and light electron eigenstates are noted as
|v, k〉 ⊗ |J = ± 3

2 〉z and |v, k〉 ⊗ |J = ± 1
2 〉z, by analogy

with the fourfold spin-orbit eigenstates of atoms. Since va-
lence electrons have negative effective masses, heavy and
light valence electrons correspond to mH > mL > 0. This is
fulfilled for β2 > 0 > 5β1 + 3β2, that is, ζ1 > ζ3 > 1, as ob-
tained for usual semiconductors, due to coupling and energy
differences of the |c, k〉 and |c, k; μ〉 spatial levels in the
conduction band.

(ii) For arbitrary wave vector k with Euler angles (θk, ϕk)
in the (x, y, z) crystal frame, k · Ĵ is equal to

k · Ĵ = k
(
sin θk cos ϕkĴx + sin θk sin ϕkĴy + cos θkĴz

)
≡ kĴk. (17)

The operator Ĵk follows from Ĵz through a rotation of the
quantization axis from z to k. The above definition gives its
4×4 matrix representation in the |J 〉z eigenstate basis, with
J = ( 3

2 , 1
2 ,− 1

2 ,− 3
2 ), as

Ĵk = h̄

⎛
⎜⎜⎜⎜⎝

3
2 ck

√
3

2 s∗
k 0 0

√
3

2 sk
1
2 ck s∗

k 0

0 sk − 1
2 ck

√
3

2 s∗
k

0 0
√

3
2 sk − 3

2 ck

⎞
⎟⎟⎟⎟⎠

z

, (18)

with ck = cos θk and sk = eiϕk sin θk.
It is easy to check that the Ĵk eigenvalues also are

(±3h̄/2,±h̄/2). We thus conclude that the eigenenergies of
the spherical Hamiltonian Ĥ (sph)

k do not depend on the k
direction; they are the heavy and light electron energies given
in Eq. (16a). By contrast, the heavy and light electron eigen-
states |J 〉k, which respectively correspond to J = ± 3

2 and
J = ± 1

2 , depend on the k direction through its Euler angles
(θk, ϕk ). A brute-force calculation gives these eigenstates [30]

Ĵk|J 〉k = h̄J |J 〉k, (19)

in the |J 〉z basis, for Ĵk defined in Eq. (18), as∣∣∣∣J = 3η

2

〉
k

=
∑

σ=±1

d2
ση,η;k

(
dση,η;k

∣∣∣∣3σ

2

〉
z

+
√

3 d−ση,η;k

∣∣∣∣σ2
〉

z

)
, (20)

for the two heavy electron states J = 3η/2 with η = ±1,
while for the two light electron states J = η/2, they are given
by ∣∣∣∣J = η

2

〉
k

= η
∑

σ=±1

σdση,η;k

[
(1 − 3|d−ση,η;k|2)

∣∣∣∣σ2
〉

z

−
√

3 dση,η;kd∗
−ση,η;k

∣∣∣∣3σ

2

〉
z

]
. (21)

The dσ,η;k coefficients depend on the Euler angles as

d1,η;k = cos
θk

2
, d−1,η;k = ηeiηϕk sin

θk

2
. (22)

The phases of the |J 〉k eigenstates have been chosen such that
|J 〉k = |J 〉z for k along z; indeed, d1,η;k = 1 and d−1,η;k = 0
when θk = 0.

The above equations allow us to obtain the valence electron
eigenstates within the spherical approximation [Fig. 1(b)] in
the |J 〉z basis as

|v, k〉 ⊗ |J 〉k =
∑

J ′=(±3/2,±1/2)

|v, k〉 ⊗ |J ′〉z z〈J ′|J 〉k.

(23)
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D. Physical understanding of k′ 〈J ′|J 〉k

In the following, it will be useful to know the scalar
products of spin-orbit eigenstates for heavy and light valence
electrons, namely,

k′ 〈J ′|J 〉k =
∑
J ′′

k′ 〈J ′|J ′′〉z z〈J ′′|J 〉k. (24)

Using Eqs. (20) and (21), we can show that these scalar
products take a compact form

k′

〈
3η′

2

∣∣∣∣3η

2

〉
k

= (Dη′,k′;η,k )3,

k′

〈
η′

2

∣∣∣∣3η

2

〉
k

= (Dη′,k′;η,k )2(
√

3 D−η′,k′;η,k ), (25)

k′

〈
η′

2

∣∣∣∣η2
〉

k
= η′η(Dη′,k′;η,k )(1−|

√
3 D−η′,k′;η,k|2),

with Dη′,k′;η,k defined as

Dη′,k′;η,k =
∑

σ=±1

d∗
ση′,η′;k′dση,η;k. (26)

(i) For k′ parallel to k, Eq. (22) gives d1,η′;k = d1,η;k
whatever (η, η′), while d−1,η′;k = d−1,η;k when η′ = η, but
d−1,η′;k = −d∗

−1,η;k when η′ = −η. This ultimately gives
Dη′,k;η,k = δη′,η. For such (k′, k), the scalar products of
Eq. (25) reduce to

δη′,η =
k

〈
3η′

2

∣∣∣∣3η

2

〉
k

=
k

〈
η′

2

∣∣∣∣η2
〉

k
, (27a)

0 =
k

〈
η′

2

∣∣∣∣3η

2

〉
k
. (27b)

(ii) For k′ antiparallel to k, that is, for k′ with Euler angles
(π + θk, ϕk ), Eq. (22) gives

d1,η;k′ = d1,η;−k = cos
θk+π

2
= − sin

θk

2
, (28)

d−1,η;k′ = d−1,η;−k = ηeiηϕk sin
θk+π

2

= ηeiηϕk cos
θk

2
. (29)

For such (k′, k), the scalar products of Eq. (25) reduce to

−k

〈
3η′

2

∣∣∣∣3η

2

〉
k

= (−ηeiηϕk )3δη′,−η, (30a)

−k

〈
η′

2

∣∣∣∣η2
〉

k
= ηeiηϕkδη′,−η, (30b)

−k

〈
η′

2

∣∣∣∣3η

2

〉
k

= 0. (30c)

This shows that, while heavy and light electron states re-
main orthogonal, the −k〈J ′|J 〉k matrix in the heavy-electron
subspace or in the light-electron subspace are completely off-
diagonal.

(iii) For arbitrary k and k′, the angle θk′k between k and k′
reads in terms of the k and k′ Euler angles as

cos θk′k = cos θk′ cos θk + sin θk′ sin θk cos(ϕk′ − ϕk ). (31)

By noting from Eqs. (22) and (26) that

Dη,k′;η,k = cos
θk′

2
cos

θk

2
+ sin

θk′

2
sin

θk

2
eiη(ϕk−ϕk′ ), (32)

D−η,k′;η,k = η

(
cos

θk′

2
sin

θk

2
eiηϕk− sin

θk′

2
cos

θk

2
eiηϕk′

)
,

(33)

we can check that the Dη′,k′;η,k moduli reduce to

|Dη,k′;η,k|2 = 1 + cos θk′k

2
= cos2 θk′k

2
, (34a)

|D−η,k′;η,k|2 = 1 − cos θk′k

2
= sin2 θk′k

2
. (34b)

To better understand the scalar products k′ 〈J ′|J 〉k given
in Eq. (25), we can introduce the unitary matrix Âk′,k, which
is identical to the rotation matrix from k to k′ in quantum
mechanics, which is defined in terms of Ĵy as e−iĴyθk′k . It reads
in the (| 3

2 〉z, | 1
2 〉z, |− 1

2 〉z, |− 3
2 〉z ) basis as

⎡
⎢⎢⎢⎣

C3
k′k · · ·

−√
3C2

k′kSk′k Ck′k
(
1−3S2

k′k

) · ·√
3Ck′kS2

k′k Sk′k
(
1−3C2

k′k

)
Ck′k

(
1−3S2

k′k

) ·
−S3

k′k

√
3S2

k′kCk′k −√
3C2

k′kSk′k C3
k′k

⎤
⎥⎥⎥⎦,

(35)

for Ck′k = cos(θk′k/2) and Sk′k = sin(θk′k/2). We note that its
Âk′,k matrix elements fulfill

z〈J ′|Âk′,k|J 〉z = (−1)J
′−J

z〈J |Âk′,k|J ′〉z

= z〈−J |Âk′,k|−J ′〉z. (36)

Thus, by using Eqs. (25) and (34a), we find that the modules
of the Âk′,k matrix elements reduce to

|z〈J ′|Âk′,k|J 〉z| = |k′ 〈J ′|J 〉k|. (37)

Since from the closure relation for |J 〉k eigenstates∑
J ′=(±3/2,±1/2)

|k′ 〈J ′|J 〉k|2 =
∑
J ′

k〈J |J ′〉k′ k′ 〈J ′|J 〉k

= 1, (38)

as can also be checked by summing up the squared column
elements of the Âk′,k matrix, we deduce that |k′ 〈J ′|J 〉k|2 can
be physically understood as the probability for the |J 〉k state
to end in the |J ′〉k′ state.

III. COULOMB SCATTERINGS BETWEEN HEAVY
AND LIGHT ELECTRONS

A. Without spin-orbit coupling

In the absence of spin-orbit interaction, the kinetic part of
the valence electron Hamiltonian reads∑

k

∑
μ=(x,y,z)

∑
s=±1/2

εv,kâ†
v,k;μ,sâv,k;μ,s, (39)
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where â†
v,k;μ,s creates a valence electron with wave vector

k and spin s in one of the three spatial states μ, the wave
function of this electron 〈r|v, k; μ〉 being given in Eq. (3).

The repulsive Coulomb interaction between valence and
conduction electrons reads in terms of their creation operators
as

V̂cv =
∑
q �=0

vq

∑
k1k2

∑
s1s2

∑
μ2=(x,y,z)

×â†
c,k1+q;s1

â†
v,k2−q;μ2,s2

âv,k2;μ2,s2 âc,k1;s1 , (40)

with vq � 4πe2/L3εscq2 in the small wave-vector transfer
limit. Note that the electrons keep their quantum indices s or
(μ, s) in this direct Coulomb process.

B. With spin-orbit coupling

The problem is more complicated when the spin-orbit in-
teraction is included because the spin-orbit eigenstates |J 〉k
depend on the k direction. This fundamentally means that,
when the k wave vector of the electron changes, as in a
Coulomb process, its eigenstates also change.

The kinetic part of the valence electron Hamiltonian in the
spherical approximation Ĥ (sph)

k is diagonal in its eigenstate
basis |v, k〉 ⊗ |J 〉k:∑

k

∑
J=±3/2

ε
(H )
v,k â†

v,k;Jk
âv,k;Jk +

∑
k

∑
J=±1/2

ε
(L)
v,k â†

v,k;Jk
âv,k;Jk ,

(41)

where â†
v,k;Jk

creates a valence electron with wave vector k
in the J = ± 3

2 spin-orbit level for heavy electrons and in the
J = ± 1

2 level for light electrons:

|v, k〉 ⊗ |J 〉k = â†
v,k;Jk

|vac〉, (42)

where |vac〉 denotes the vacuum state.
By contrast, the Coulomb part is not diagonal in the |J 〉k

basis; a heavy valence electron can scatter into a heavy-mass
state but also into a light-mass state. To derive these scatter-
ings in a secure way, let us go step by step from the operator
â†

v,k;μ,s that appears in Eq. (40) to the succession of opera-

tors â†
v,k;Lz,sz

, â†
v,k;Jz

, and ultimately to â†
v,k;Jk

that appears in
Eq. (41).

From Eq. (8a), that leads to

â†
±1z

= ∓iâ†
x + â†

y√
2

, â†
0z

= iâ†
z , (43)

we can check that∑
L=(±1,0)

â†
Lz

âLz =
∑

μ=(x,y,z)

â†
μâμ. (44)

Next, we introduce the spin and use Eq. (6) to write the
creation operators for spin-orbit eigenstates as

â†
±3/2z

= â†
±1z ;±1/2z

, (45a)

â†
±1/2z

= 1√
3

(
â†

±1z ;∓1/2z
+

√
2 â†

0z ;±1/2z

)
, (45b)

â′†
±1/2z

= ± 1√
3

(√
2 â†

±1z ;∓1/2z
− â†

0z ;±1/2z

)
. (45c)

These relations fulfill∑
J=(±3/2,±1/2)

â†
Jz

âJz +
∑

J=±1/2

â′†
Jz

â′
Jz

=
∑

L=(±1,0)

∑
s=±1/2

â†
Lz,sz

âLz,sz . (46)

In the following, we will drop the split-off twofold subband
with creation operators â′†

Jz
and concentrate on the fourfold

level with creation operators â†
Jz

for J = (± 3
2 ,± 1

2 ) [see
Fig. 1(a)].

Using the above relation, we can rewrite the V̂cv Coulomb
interaction between conduction and valence electrons given in
Eq. (40) as

V̂cv =
∑
k1k2

∑
k′

2 �=k2

vk′
2−k2

∑
s=±1/2

∑
J=(±3/2,±1/2)

×â†
c,k1+k2−k′

2;sz
â†

v,k′
2;Jz

âv,k2;Jz âc,k1;sz , (47)

The above form is diagonal in the |J 〉z spin-orbit basis, but
these states do not have a well-defined kinetic energy within
the spherical Hamiltonian Ĥ (sph)

k .
By noting that

â†
v,k;Jz

|vac〉 = |v, k〉 ⊗ |J 〉z

= |v, k〉 ⊗
∑

J ′=(±3/2,±1/2)

|J ′〉k k〈J ′|J 〉z

=
∑

J ′=(±3/2,±1/2)

k〈J ′|J 〉z â†
v,k;J ′

k
|vac〉, (48)

we can turn from â†
v,k;Jz

to â†
v,k;Jk

, through
∑
J

â†
v,k′;Jz

âv,k;Jz =
∑
J ′J ′′

â†
v,k′;J ′

k′
âv,k;J ′′

k

×
∑
J

k′ 〈J ′|J 〉z z〈J |J ′′〉k, (49)

with the J sum reducing to the scalar product k′ 〈J ′|J ′′〉k
given in Eq. (25). Thus, the V̂cv interaction ends by reading
in terms of heavy and light valence electrons as

V̂cv =
∑

k1

∑
k2

∑
k′

2 �=k2

vk′
2−k2

×
∑

s=±1/2

∑
(J ,J ′ )=(±3/2,±1/2)

k′
2
〈J ′|J 〉k2

× â†
c;k1+k2−k′

2;sz
â†

v,k′
2;J ′

k′
2

âv,k2;Jk2
âc;k1;sz . (50)

A few points about this interaction are worth noting:
(i) For k′

2 parallel to k2, the scalar product k′
2
〈J ′|J 〉k2 is

equal to δJ ′,J according to Eq. (27a). Thus, we only have
transitions between the same heavy electrons or between the
same light electrons.

(ii) For k′
2 antiparallel to k2, the scalar product k′

2
〈J ′|J 〉k2

is equal to δJ ′,−J within a phase factor. Thus, we only have
transitions between different heavy electrons or between dif-
ferent light electrons.

(iii) For k′
2 not along k2, transitions between the two types

of heavy electrons, between the two types of light electrons,
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FIG. 2. Effective Coulomb scattering between a conduction electron (k1, s) and a heavy or light valence hole (k2,Jk2 ). The sum over the
dummy index J ′′ in k′

2
〈J ′|J ′′〉z z〈J ′′|J 〉k2 that has to be performed in the gray box leads to k′

2
〈J ′|J 〉k2 . This scalar product shows up in the

electron-hole scattering (diagram on the left) and renders this scattering not diagonal between heavy holes Jk = ± 3
2 and light holes Jk = ± 1

2 .

or between heavy and light electrons are possible. For such
wave vectors, the valence electron mass can change under a
Coulomb scattering.

IV. FROM VALENCE ELECTRONS TO HOLES

The last step is to turn from valence electrons to holes.
Because tricky phase factors appear due to level degeneracy,
let us repeat the procedure all over again.

A. Procedure

The change from valence electron destruction operator to
hole creation operator in a cubic crystal is based on two fun-
damental relations in the spatial and spin subspaces, namely,

âv,k;μ = b̂†
−k,μ, â±1/2 = ±b̂†

∓1/2. (51)

Equation (43) then readily gives

â±1z = ±iâx + ây√
2

= b̂†
∓1z

, â0z = −b̂†
0z
. (52)

When used in Eq. (6), we obtain

â±3/2z = â±1z,±1/2z = ±b̂†
∓1z,∓1/2z

= ±b̂†
∓3/2z

. (53)

In the same way,

â±1/2z = ∓b̂†
∓1/2z

, â′
±1/2z

= ∓b̂′†
∓1/2z

. (54)

B. Coulomb potential in terms of holes

Since the Coulomb interaction between conduction and
valence electrons, as given in Eq. (47), is diagonal in the
Jz index, the phase factors that would appear in Eq. (50)
cancel. As b̂−k′

2
b̂†

−k2
= −b̂†

−k2
b̂−k′

2
since k′

2 �= k2, we find that
this interaction, when written in terms of electrons and holes,
becomes [31]

V̂cv = −
∑
k1k2

∑
k′

2 �=k2

vk′
2−k2

∑
s=±1/2

∑
J=(±3/2,±1/2)

×â†
k1+k2−k′

2,s
b̂†

k′
2,Jz

b̂k2,Jz âk1,s. (55)

The last step is to turn to heavy and light holes, follow-
ing the procedure we have used for heavy and light valence
electrons, that is,

b̂†
k,Jz

=
∑
J ′

b̂†
k,J ′

k
k〈J ′|J 〉z. (56)

By summing over J , we end with the Coulomb interaction
between electron and heavy or light hole reading

V̂eh = −
∑

k1

∑
k2

∑
k′

2 �=k2

vk′
2−k2

×
∑

s=±1/2

∑
(J ,J ′ )=(±3/2,±1/2)

k′
2
〈J ′|J 〉k2

× â†
k1+k2−k′

2,s
b̂†

k′
2,J ′

k′
2

b̂k2,Jk2
âk1,s. (57)

This interaction is visualized in the diagram of Fig. 2.
The minus sign evidences that it is attractive, as expected
between electrons and holes, but not diagonal between heavy
and light holes, except for processes in which k′ is parallel or
antiparallel to k.

V. PROBABILITIES FROM HEAVY TO LIGHT HOLES

The above Eq. (57) shows that a heavy hole Jk = 3η/2
can keep its spin-orbit index or scatter into the other heavy
hole state Jk = −3η/2. It can also scatter into one of the two
light hole states Jk = ± 1

2 . As mentioned below Eq. (38), the
squared modulus of the overlap k′ 〈J ′|J 〉k can be physically
understood as the probability to go from |J 〉k to |J ′〉k′ . The
probability for the Jk = 3η/2 hole to stay heavy thus reads

PHH =
∑

η′=±1

∣∣∣∣
k′

〈
3η′

2

∣∣∣∣3η

2

〉
k

∣∣∣∣
2

= cos6 θk′k

2
+ sin6 θk′k

2

= 1 − 3

4
sin2 θk′k, (58)

with θk′k being the (k′, k) angle, while the probability for the
3η/2 heavy hole to turn light is

PLH =
∑

η′=±1

∣∣∣∣
k′

〈
η′

2

∣∣∣∣3η

2

〉
k

∣∣∣∣
2

= 3 cos4 θk′k

2
sin2 θk′k

2
+ 3 sin4 θk′k

2
cos2 θk′k

2

= 3

4
sin2 θk′k. (59)
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In the same way, the probability for the η/2 hole to stay
light is

PLL =
∑

η′=±1

∣∣∣∣
k′

〈
η′

2

∣∣∣∣η2
〉

k

∣∣∣∣
2

= cos2 θk′k

2

(
1−3 sin2 θk′k

2

)2

− sin2 θk′k

2

(
1−3 cos2 θk′k

2

)2

= 1 − 3

4
sin2 θk′k, (60)

while the probability for the η/2 light hole to turn heavy is
given by

PHL =
∑

η′=±1

∣∣∣∣
k′

〈
3η′

2

∣∣∣∣η2
〉

k

∣∣∣∣
2

= PLH. (61)

These probabilities show that, when k′ is parallel or an-
tiparallel to k, the heavy holes stay heavy and the light holes
stay light, in agreement with the results given in Eqs. (27a)
and (30a). For arbitrary (k′, k), we end with the remarkably
simple result given in Eq. (1). Its precise derivation given
here is very instructive, as it covers many tricky aspects of
semiconductor physics.

VI. CONCLUSIONS

In view of the notorious complexity of many-body effects
in semiconductor physics, it has been common practice to
start with an electron-hole Hamiltonian that is free from the
crystal axes (spherical approximation) and to moreover take a
single hole mass. These approximations are the ones that lead
to an exciton looking very much like a hydrogen atom, and
that renders many-body effects in semiconductors possible to
handle.

The existence of a hole mass difference has a dramatic con-
sequence on Coulomb scatterings because these scatterings
are not diagonal with respect to heavy and light holes. As a
direct consequence, a heavy hole can turn light or vice versa,
depending on the deflection angle in the scattering process
at hand. In this paper, we give a detailed derivation of the
microscopic Coulomb scatterings between an electron and a
heavy or light hole. This groundwork is the necessary first
step toward exploring many-body effects resulting from the
difference in heavy and light hole masses. We expect the
Coulomb-mediated channel allowing heavy-light hole transi-
tion to have an impact on the hole population distributions,
the formation of mixed heavy-light hole excitons, and the
dephasing in quantum beat phenomena [32,33], to name a few.
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