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Experimental and theoretical studies of laser-induced breakdown in dielectrics provide conflicting conclusions
about the possibility to trigger ionization avalanche on the subpicosecond time scale and the relative importance
of carrier-impact ionization over field ionization. On the one hand, current models based on a single ionization-
rate equation do not account for the gradual heating of the charge carriers, which, for short laser pulses, might not
be sufficient to start an avalanche. On the other hand, kinetic models based on microscopic collision probabilities
have led to variable outcomes that do not necessarily match experimental observations as a whole. In this paper,
we present a rate-equation model that accounts for the avalanche process phenomenologically by using an
auxiliary differential equation to track the gradual heating of the charge carriers and define the collisional impact
rate dynamically. The computational simplicity of this dynamical rate-equation model offers the flexibility to
extract effective values from experimental data. This is demonstrated by matching the experimental scaling
trends for the laser-induced damage threshold of several dielectric materials for pulse durations ranging from a
few fs to a few ps. Through numerical analysis, we show that the proposed model gives results comparable to
those obtained with multiple rate equations and identify potential advantages for the development of large-scale,
three-dimensional electromagnetic methods for the modeling of laser-induced breakdown in transparent media.
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I. INTRODUCTION

Computer modeling of strong-field optical phenomena in
dielectrics driven by intense laser radiation is essential to
understand the fundamental processes in play, e.g., during
laser micromachining, laser surgery, and high-harmonic gen-
eration in solids, to name a few. Mechanisms for laser-induced
breakdown were identified and studied in various contexts
[1–12]. In the accepted picture, plasma formation in laser-
driven dielectrics proceeds as follows. (i) Charge carriers are
first created by field ionization (FI). (ii) The charge carriers
absorb energy from the laser field [a process we generically
refer to as laser heating (LH)]. (iii) The hot charge carriers cre-
ate new, cold ones through collisional ionization (CI). (iv) The
cold carriers created by CI in turn gain energy from the laser
field and create new carriers, and so on. The multiplication of
charge carriers in (ii)–(iv) leads to an exponential growth of
the carrier density, often referred to as an ionization avalanche.
This picture applies well when the avalanche sequence (LH-
CI) has enough time to unfold, e.g., when the pulse duration
is in the picosecond range or above. However, current experi-
mental and theoretical studies of laser-induced breakdown in
dielectrics provide conflicting conclusions about the relative
importance of LH-CI over FI and the possibility to trigger
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ionization avalanche on the subpicosecond time scale (com-
pare, e.g., Refs. [13,14] or [15,16]).

We emphasize that FI and LH-CI are two different chan-
nels through which damage is potentially induced. Although,
in certain ranges of pulse durations and laser intensities, FI
or LH-CI may dominate, in general they both contribute in
comparable proportions (see, e.g., Ref. [17]).

Effectively, laser-induced breakdown emerges as a com-
plex interplay between optical and dynamical processes, both
influenced by a wealth of microscopic phenomena. Con-
flicting interpretations are not surprising, provided that: (i)
current and past experiments involve different measurement
techniques, materials, and laser parameters, making direct
comparison difficult; (ii) assessing laser-induced breakdown
is a highly nonlinear, nonperturbative problem difficult to
address both analytically and numerically; (iii) theoretical
predictions typically rely on simplified models that may miss
important dynamical contributions; and (iv) numerical analy-
sis to predict the damage threshold is sensitive and inherently
bound to steady-state microscopic parameters whose defini-
tion and value vary significantly across the literature and/or
may be hard to determine experimentally/theoretically (e.g.,
through direct measurement or ab initio simulations).

A major challenge thus lies in the development of sim-
plified theoretical models that can reproduce experimental
observations reliably as a whole, without a priori bias toward
FI or avalanche (LH-CI). In this context, models based on
ionization rates are appealing, as they offer the possibility
to match experimental data with reasonable agreement using
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effective parameters, without having to include the contribu-
tions from individual microscopic processes explicitly (see,
e.g., Refs. [17,18]). However, current implementations of the
avalanche process in rate-equation models rely on open sets of
differential equations and microscopic probability parameters
to define the LH and CI rates, which is not an ideal situation
as stated in point (4) above. For example in Refs. [2,6,10,19],
simulations were performed within similar theoretical frame-
works, but led to conflicting conclusions as different values
for the LH rates were used.

In this paper, we present a rate-equation model that ac-
counts for the avalanche process (LH-CI) with a simpler
mathematical approach than previous methods. By using an
auxiliary differential equation to track the gradual LH of the
charge carriers, it allows us to define the CI rate dynami-
cally from the fraction of carriers whose kinetic energy is
high enough to potentially create new carriers through CI.
The computational simplicity of this dynamical rate equa-
tion (DRE) model offers the flexibility to extract effective
values from experimental data. This will be demonstrated
by matching the experimental scaling trends for the laser-
induced damage threshold of several dielectric materials for
pulse durations ranging from a few fs to a few ps. The nu-
merical implementation of the proposed model gives results
comparable to those obtained with multiple rate equations
(see Secs. II B and IV) and highlights the potential advan-
tages for the development of large-scale, three-dimensional
electromagnetic methods for the modeling of laser-induced
breakdown in transparent media.

The paper is organized as follows. First in Sec. II we
present an overview of two popular rate-equation models.
Next in Sec. III, we describe the proposed DRE model in
details. In Sec. IV, numerical analysis is used to compare the
three models presented in the previous sections. In Sec. V,
the DRE model is used to fit experimental data and extract
effective values for the damage threshold in several dielectric
materials. In Sec. VI, we discuss some of the limitations of
the DRE model and, ultimately, we conclude in Sec. VII.
Appendixes gather some of the technical aspects of the model
and of its implementation. All calculations were performed
using a PYTHON package that we made available online [20].

II. OVERVIEW OF CURRENT RATE EQUATION MODELS
FOR LASER-INDUCED PLASMA FORMATION

IN DIELECTRICS

The modeling of the laser-induced polarization and break-
down dynamics in solid-state dielectrics typically involves
three complementary ingredients: in a two-band perspective
(i) the polarization dynamics from bound electrons; (ii) the
free currents associated with the motion of holes and electrons
in the valence and conduction bands; and finally, (iii) the
dynamics of the valence and conduction bands populations
(ionization and recombination). Rigorous treatment would
rely, e.g., on the semiconductor Bloch equations [18,21,22].
However, a split-model approach based on rate equations for
the band population dynamics coupled with models for bound
(e.g., Lorentz) and free (e.g., Drude) currents effectively pro-
vides a fair, phenomenological description of laser-induced
breakdown on a cycle-averaged, statistical level (see, e.g.,

Ref. [17]). This simplified and intuitive approach is widely
used in plasma physics for instance, as it offers both mod-
eling flexibility and simplicity (see, e.g., Refs. [15,23,24]).
For examples of bound and free currents models see, e.g.,
Refs. [17,22,25–27]. Next, we give an overview of two
popular and established rate-equation models for the band-
population dynamics.

A. Single rate equation

The single rate equation (SRE) model offers a phe-
nomenological description of the band-population dynamics
in dielectrics driven by intense laser light. It is charac-
terized by an equation of the following form (see, e.g.,
Refs. [15,17,18,23]):

dρ

dt
= W

ρu

ρmat︸ ︷︷ ︸
FI

+αρI
ρu

ρmat︸ ︷︷ ︸
CI

− γrρ︸︷︷︸
REC

, (1)

where ρ is the charge-carrier number density. The first term on
the right-hand side is associated with field ionization (FI) at a
rate νfi = W/ρmat, where ρmat is the material number density.
The intensity-dependent density-rate W is typically calculated
using the Keldysh theory [28] or recent improvements [18,29–
31] (see also Appendix A). The second term is associated with
collisional ionization (CI) at a density-rate αρI , where α is the
impact rate coefficient, and I = cε0n0E2/2 is the laser inten-
sity, with E being the amplitude of the electric field, n0 the
linear refractive index of the dielectric material, c the speed
of light in vacuo, and ε0 the electric constant. Finally, the last
term of Eq. (1) accounts for the spontaneous recombination
(REC) at a rate γr .

In the formulation above, FI and CI are weighted by the
fraction of unionized material ρu/ρmat, where ρu = ρmat − ρ,
to include saturation of ionization (if we account for single
ionization at most). Typically, during laser-induced break-
down the carrier density ρ remains small compared with
the material density ρmat, i.e., ρu/ρmat � 1. As a result, this
weighting factor is often omitted (see, e.g., Refs. [18]). In this
paper, we keep ρu to ensure a proper link to other models [see,
in particular, Eq. (10)].

In Eq. (1), the CI rate is proportional to the carrier density
ρ, which implies that all charge carriers can contribute to
CI, regardless of their energy. This causes an overestimation
of CI, especially at low fluence. This intrinsic bias can be
partly compensated by an effective value for the impact rate
coefficient α. However, a better strategy is to improve SRE
to account for the gradual heating of the carriers until they
absorb enough energy from the laser field to bring new elec-
trons above the band gap. The multiple rate equations (MRE)
(see Sec. II B) and the dynamical rate equation (DRE) (see
Sec. III) models address this issue, although with somewhat
different emphasis.

B. Multiple rate equations

The multiple rate equations (MRE) model implements
laser heating (LH) and subsequent collisional ionization (CI)
by using auxiliary differential equations to track the energy
distribution of the electrons in the conduction band [2,32].
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Effectively, an electron needs to acquire a minimum energy
Ec to be able to bring a new valence electron across the
band gap to the conduction band. To respect both energy and
momentum conservation, this critical kinetic energy is [1]

Ec =
(

1 + mr

mh

)
(Eg + Ep), (2)

where m−1
r = m−1

e + m−1
h is the reduced mass, me is the ef-

fective electron mass, mh is the effective hole mass, Eg is the
band gap energy and Ep is the ponderomotive energy. (See
Appendix B for the definition of Ep).

Technically, MRE includes the LH-CI sequence by dis-
cretizing the energy distribution in k + 1 energy levels, where
k = �Ec/h̄ω�, such that the upper level k sits above Ec (the
counting starts at 0). These levels are separated by increments
of photon energy h̄ω and associated with an individual popu-
lation such that:

ρ =
k∑

j=0

ρ j . (3)

The following rate equations for the level densities are then
solved:

dρ0

dt
= νfiρu − γlhρ0 + 2γuρk − γrρ0, (4a)

...

dρ j

dt
= γlh(ρ j−1 − ρ j ) − γrρ j ; for 1 � j < k, (4b)

...

dρk

dt
= γlhρk−1 − γuρk − γrρk . (4c)

This set of coupled equations is interpreted as follows.
First, the population of the zeroth level ρ0 (the bottom of
the conduction band) is seeded by FI [the first term on the
right-hand side of Eq. (4a)]. As electrons absorb photons at a
rate γlh, they pass to the next level, as described by Eq. (4b).
After having absorbed k photons, some electrons reach the
upper level k, above the critical energy Ec, defined by Eq. (2).
At this level, laser heating is artificially stopped to limit the
number of rate equations. From then on, electrons can collide
with neutral, unionized material and cause CI events at a rate
γu [see Eq. (10) for definition]. They then lose their kinetic
energy and fall back to the zeroth level while bringing a
new electron from the valence band to the conduction band,
as represented by the third term on the right-hand side of
Eq. (4a). Recombination at the rate γr is also included across
all energy levels.

By combining Eqs. (3) and (4), it is easily shown that MRE
is equivalent to the following rate equation:

dρ

dt
= νfiρu + γuρk − γrρ, (5)

which is identical to SRE [see Eq. (1)], except for the second
term, associated with CI. In SRE, the CI rate is proportional
to the total charge carrier density ρ, whereas in MRE it is
proportional to the upper-level population ρk , which quantifies
the fraction of electrons whose kinetic energy is greater than
the critical energy Ec. Since CI can only occur after the first

electrons have absorbed at least k photons, the avalanche
sequence (LH-CI) is effectively delayed with respect to FI.
We emphasize that this delay, and the relative contribution of
avalanche ionization to breakdown, is directly influenced by
both the photon absorption rate γlh and the collisional impact
rate γu. Mathematical expressions for these two parameters
are given later in Eqs. (9) and (10), respectively.

III. DYNAMICAL RATE EQUATION MODEL

The development of the MRE model was motivated by
the observation in kinetic simulations (see, e.g., Ref. [1])
of sharp density peaks at multiples of the photon energy
(h̄ω, 2h̄ω, 3h̄ω, . . .). In these simulations, however, it was also
observed that within about 10 fs these peaks quickly broaden
and disappear, due to collisions driving the carriers towards
an internal thermal equilibrium. Following a different strategy
than for MRE, where no thermalization actually takes place,
we make the approximation that on a few-laser-cycle time
scale, carrier thermalization has progressed enough such that
the energy distribution can be approximated by a continuous
distribution, instead of a spiky one. This translates into a sim-
plified rate equation model that accounts for the LH process
by using only one auxiliary differential equation.

At thermal equilibrium, assuming a Maxwellian distribu-
tion, the fraction of electrons ξ � 1 that have an energy higher
than the critical energy Ec [see Eq. (2)] is calculated analyti-
cally as

ξ =
∫ ∞
Ec

E1/2 exp[−3E/2Ekin]dE∫ ∞
0 E1/2 exp[−3E/2Ekin]dE

(6a)

= erfc(r) + 2r√
π

exp(−r2), (6b)

where r = √
3Ec/2Ekin. Note that the average kinetic energy

Ekin is related to the electron temperature T by the equiparti-
tion theorem, i.e., Ekin = 3kBT/2, where kB is the Boltzmann
constant. The corresponding rate equation is readily obtained
by replacing ρk in Eq. (5) by ξρ, which gives

dρ

dt
= νfiρu + γuξρ − γrρ. (7)

The other terms, associated with field ionization (νfiρu) and
electron-hole recombination (γrρ) are left unchanged [com-
pare with Eqs. (1) and (5)].

We emphasize that Eq. (6) is used to track only the tail
of the energy distribution that lies beyond Ec. The use of
a classical distribution, instead of Fermi-Dirac, is justified
because the electron gas is usually not very dense (typically
a few percent of the material density) and hot enough such
that Ekin � EF , where EF is the Fermi energy. (See also Fig. 2
and accompanying text for further discussion.)

Inspection of Eq. (6b) shows that the fraction ξ , which also
defines the CI rate in the second term on the right-hand side
of Eq. (7), is parameterized by the average kinetic energy Ekin.
The laser-heating process (LH) is thus conveniently intro-
duced by tracking Ekin with the ordinary differential equation
that follows (see Appendix C for a formal derivation]:

dEkin

dt
= γlh h̄ω − γuξEc − Ekin

[
νfi

ρu

ρ
+ γuξ

]
. (8)
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The first term on the right-hand side is associated with photon
absorption at a rate γlh [see also Eqs. (4a)–(4c)]. The second
term represents the kinetic energy lost during impact events
occurring at a rate γuξ . The final term (proportional to Ekin)
accounts for the variation of the electron population (see,
again, Appendix C for details). The use of Eq. (8) to define
dynamically the fraction ξ [Eq. (6b)], which in turn modulates
the CI rate in Eq. (7)—inspired the name dynamical rate
equation (DRE).

Next, in Sec. IV, we show that results obtained with DRE
are comparable to those obtained with MRE. However, an
advantage of DRE lies in the possibility to track only the
mean kinetic energy Ekin [Eq. (8)], instead of the multiple level
populations of MRE [Eqs. (4)]. Later in Secs. V and Sec. VI,
we will show that this mathematical simplicity offers advan-
tages to extract effective values from experimental data and
for large-scale, three-dimensional electromagnetic modeling.

IV. NUMERICAL ANALYSIS OF THE RATE MODELS

In previous sections, we have described three rate-equation
models (SRE, MRE, and DRE) that provide a phenomeno-
logical description of the temporal evolution of the electron
density on a field-cycle-averaged, statistical level. We have
shown that they differ only in the way they respectively
account for collisional ionization and, in particular, for the
underlying laser-heating process. In this section, we compare
all three models numerically and provide further insight into
DRE.

To assess the respective behavior of the rate models, we
have computed the ratio of the electron density due to colli-
sional ionization ρci over the total density ρ when a harmonic
electric field Ẽ (t ) = E cos(ωt ) with constant amplitude E is
applied. The ratio ρci/ρ = 0.5 is often seen as the avalanche
turning point where collisional ionization becomes dominant
(i.e., when ρci/ρ > 0.5, see Ref. [17]). For each model, the
laser intensity I = cn0ε0E2/2 (n0 is the refractive index of the
dielectric without ionization) is set accordingly to get ρci/ρ �
0.5 after t = 100 fs, which thereby defines a reference fluence
to reach the avalanche turning point Fav = I · 100 fs.

Field ionization (FI) is described with the Keldysh the-
ory [28] for all the rate-equation models (see Appendix A).
Improved FI models (see, e.g., Refs. [18,30,30,31]) would
do as well. For simplicity, we have neglected recombination
(γr = 0) for this comparison (this contribution will be taken
into account later when we compare DRE with experimental
data).

In presenting the model equations in Secs. II A, II B, and
III, an explicit description of the laser heating rate γlh and
of the free-electron-to-neutral impact rate γu was not given.
Assuming an harmonic laser electric field Ẽ (t ) = E cos(ωt )
as above, the classical Drude model leads to the following
expression for the laser-heating rate [see Appendix B]

γlh = γ

h̄ω

q2E2

2me(γ 2 + ω2)
= 2γ

h̄ω
Ep, (9)

where q and me are the charge and effective mass of the
electron. In Eq. (9), the plasma parameter γ accounts for col-
lisional damping. For collisions between electrons and neutral
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FIG. 1. Relative contribution of collisional ionization (ρci) over
the global ionization yield (ρ = ρfi + ρci) obtained with the SRE,
MRE, and DRE models. In (a), impact ionization in SRE starts
at t = 0, while MRE and DRE show an initial time delay needed
for the first charge carriers to be heated above the critical en-
ergy Ec. (b) shows that the contribution from impact ionization
drops more quickly below the avalanche threshold Fav when a laser
heating mechanism is included (MRE and DRE). For each model,
the fluence F is normalized by the respective Fav value (F SRE

av =
0.314 J/cm2, F MRE

av = 0.554 J/cm2, and F DRE
av = 0.411 J/cm2, see

text for details). Model parameters are laser wavelength λ = 800 nm,
band gap energy Eg = 9 eV, effective masses me = mh = m0 (with
the free electron mass m0 = 9.1094 × 10−31 kg), material density
ρmat = 2 × 1028 m−3, molecular cross section σmat = 10−19 m2, lin-
ear refractive index n0 = 1.5, recombination rate γr = 0, plasma
damping rate γ = 1 fs−1, and impact ionization coefficient (for SRE)
α = 4 cm2/J. Electric field strengths E are 3.974 GV/m (SRE),
5.276 GV/m (MRE), and 4.542 GV/m (DRE).

molecules leading to CI, we used the model of Ref. [17], i.e.,

γu = σmatρu

√
2Ekin

me
, (10)

where the subscript u here stands for unionized and σmat is the
material impact cross section. We emphasize that the results
obtained with DRE do not change significantly whether we
use Eq. (10) or a constant value for the electron-neutral colli-
sion rate γu. This observation is supported by Ref. [2], where
it is shown that the value of γu (or that given by the underlying
model) has a small influence, as long as it is greater than the
plasma heating rate, i.e., if γu � γlh.

Numerical results obtained with SRE, MRE, and DRE for
a model material whose properties are comparable to SiO2 are
shown in Fig. 1. The similarity between the MRE and DRE
results is obvious. Effectively, both predict a transient window
of about 20 fs where very few CI events occur, corresponding
to the initial heating phase of the first cold electrons brought
to the conduction band by FI. In contrast for SRE where LH
is neglected, CI starts right away at t = 0 regardless of the
electron energy, which overestimates systematically the CI
contribution. This has a significant impact on the SRE behav-
ior around the avalanche threshold Fav. As seen in Fig. 1(b),
MRE and DRE effectively predict a sharper transition when
approaching Fav. Above threshold (F > Fav), all three models
show a similar trend.
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We stress that the initial CI delay observed in Fig. 1(a)
does not appear explicitly in the DRE equations. In contrast
with other approaches where a constant value is assumed (see,
e.g., Refs. [33]), it here follows from the temporal depen-
dence of the impact ionization rate introduced dynamically
via Eqs. (6b) and (8). The fact that the DRE results are so
close to those of MRE suggests that the plasma thermalization
dynamics (e.g., as described by Kaiser et al. [1]) has a limited
impact on the avalanche process as a whole. We recall that
MRE was developed in the limit of an infinite thermalization
time, whereas DRE was developed in the limit of an infinites-
imal thermalization time. It is thus reasonable to expect that
results obtained by solving the internal thermalization dynam-
ics rigorously would lie between DRE and MRE.

To get further insight into the DRE model, we have con-
sidered a more realistic scenario where a strong laser pulse
is incident on a model material, again similar to SiO2. The
electric field envelope of the laser pulse in vacuum is modeled
by a Gaussian function:

Evac(t ) = E0 exp

[
−2 ln(2)

( t

τ

)2
]
, (11)

where τ is the full-width at half-maximum (FWHM) duration
of the pulse. The laser intensity and fluence in vacuum are
then

Ivac(t ) = cε0|Evac(t )|2 = cε0E2
0 exp

[
−4 ln(2)

( t

τ

)2
]
, (12)

and

F =
∫ ∞

−∞
Ivac(t )dt = cε0E2

0 τ

2

√
π

ln(2)
, (13)

respectively.
To account for the reflection of electromagnetic radiation

on the sample due to both the intrinsic refractive index n0 of
the material and the laser-induced metallization, we computed
the electric field in the bulk with:

E2
bulk (t ) = E2

vac(t )
1 − R

Re(n)
, (14)

where

R =
∣∣∣∣n − 1

n + 1

∣∣∣∣2

(15)

and

n2 = n2
0 − ω2

p

ω2 + iωγ
. (16)

This last relation is obtained from the Drude model with a
plasma frequency ω2

p = q2ρ/ε0me, where the value of the
electron density ρ is updated dynamically with Eq. (7). As
in Eq. (9), γ is the collisional damping rate.

Results obtained with DRE driven by the electric field
Ebulk (t ) are shown in Fig. 2. For the two presented sce-
narios (τ = 10 fs, F = 1.75 J/cm2 and τ = 300 fs, F =
6.76 J/cm2), it is observed that at the leading edge of the
pulse, most of the plasma comes from FI, as typically ex-
pected [see Figs. 2(a) and 2(d)]. However, as electrons get
heated up and reach the critical energy Ec, CI gradually takes
over.
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FIG. 2. DRE dynamical details. Left column [(a)–(c)], pulse du-
ration τ = 10 fs and laser fluence F = 1.75 J/cm2. Right column
[(d)–(f)], τ = 300 fs and F = 6.76 J/cm2. In both cases, the flu-
ence was set to reach 10% of ionized molecules. (a) and (d) show
the contribution of FI (ρfi) and CI (ρci) to the total charge density
ρ = ρfi + ρci. The density of electrons with kinetic energy greater
than the critical energy Ec (ξρ) and the shape of the laser pulse
(shaded area) are also shown. In (b) and (e) the kinetic energy of the
electron in the conduction band obtained by the numerical integration
of Eq. (8) is compared with the Fermi energy (see text) and the
upper limit obtained analytically [Eq. (17)]. Finally, in (c) and (f)
are shown the electron-neutral collisional rate [γu, Eq. (10)] and the
photon absorption rate [γlh, Eq. (9)]. The electron-electron collision
rate [γee, Eq. (18)] is not part of the DRE model, but is shown for
reference (see text). Parameters are laser wavelength λ = 800 nm,
band gap energy Eg = 9 eV, effective masses me = mh = m0 (with
the free electron mass m0 = 9.1094 × 10−31 kg), material density
ρmat = 2 · 1028 m−3, molecular cross section σmat = 10−19 m2, linear
refractive index n0 = 1.5, recombination rate γr = 0 and plasma
damping rate γ = 1 fs−1.

We compared the average kinetic energy of the electrons
Ekin to the Fermi energy EF = h̄2(3π2ρ)2/3/2me and observed
that over the entire simulations Ekin � EF [see Figs. 2(b) and
2(e)]. This confirms that using a Fermi-Dirac distribution in
Eq. (6) would have a negligible influence.

A rough estimate of the upper limit for the average kinetic
energy Ekin is obtained in the steady-state regime that follows
the initial heating phase and where LH is balanced by the
internal energy lost due to CI, i.e., where γlh h̄ω � γuξEc. For
moderate laser intensity, only a small fraction of electrons
effectively reach the critical energy such that Ekin � Ec at all
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times. Then, r � 1 and ξ � 2r√
π

exp(−r2) [see Eq. (6b)] such
that it is possible, in combination with Eq. (10), to obtain an
explicit upper bound:

Ekin < −3

2
Ec

[
ln

(
γlh h̄ω

2Ecσmatρmat

√
meπ

3Ec

)]−1

. (17)

This approximation is in good agreement with the numerical
results shown in Figs. 2(b) and 2(e) (see dashed lines).

Finally, the laser heating rate γlh and the electron-neutral
collision rate γu are shown in Figs. 2(c) and 2(f). For compar-
ison, we displayed as well the electron-electron collision rate
given by the following formula (see Ref. [6]):

γee = 4πε0

q2

√
6

me

(
2Ekin

3

)3/2

. (18)

It is then observed that γee increases rapidly at the leading
edge of the pulse, as the plasma gets initially build up by
FI. But after CI takes over FI, the internal collision rate γee

levels off to around 1 fs−1, which supports the hypothesis of
an electronic relaxation time scale at the laser-cycle level.
We recall that this observation has motivated the use of a
continuous distribution function to develop DRE.

V. EFFECTIVE DRE PARAMETERS FROM EXPERIMENTS

The DRE model presented in Sec. III depends on a closed
set of parameters. Some of them can be directly linked to ma-
terial properties obtained from experimental measurements or
ab initio calculations (e.g., linear refractive index n0, molec-
ular cross section σmat, etc.). Below we show how effective
values for the remaining parameters can be obtained by fitting
the DRE model to experimental damage-threshold data.

The laser-induced damage threshold is a common ref-
erence to benchmark laser-induced dielectric breakdown
models. It is often referred to as the minimum laser fluence
Fth needed to cause permanent structural modifications to the
material. When working on the plasma formation time scale
as done here, the damage threshold is often associated with
the minimum laser fluence needed to create a plasma density
greater than a critical density ρ � ρc for which the medium
becomes opaque to radiation with photon energy h̄ω. Based
on the complex refractive index given at Eq. (16), equating the
real and imaginary parts gives the critical density as follows:

ρc =
(

ε0me

q2

)
n2

0(ω2 + γ 2). (19)

Alternatively, the total energy deposition was proposed as
a better gauge to assess laser-induced damage (see, e.g.,
Refs. [18,34]). For that matter, we calculate the total energy
absorption as

Eabs =
∫ ∞

−∞
[νfiρuEg + ργlh h̄ω]dt, (20)

where field ionization events add each Eg to the total absorbed
energy, whereas photon absorption by electrons in the con-
duction band adds h̄ω. We emphasize that impact ionization
does not contribute globally to the absorbed energy, because
it involves only a transfer of energy between electrons. Fi-
nally, the damage criterion is defined as the minimal fluence

TABLE I. Dielectric material parameters associated with the
DRE calculations shown in Figs. 3 and 4. Top part of the table are
typical values for the linear refractive index n0, the band gap Eg,
the material density ρmat, and the recombination rate γr as gathered
from Refs. [35,36]. To estimate the molecular cross section σmat, we
have summed the individual cross sections of the constitutive atoms,
calculated as the area of a circle with a radius equal to the covalent
radius. In the bottom part, one finds the values for the collisional
damping rate γ and the effective electron and hole masses me and
mh, respectively, extracted from the data. Masses are expressed in
units of the free electron mass m0 = 9.1094 × 10−31 kg. The fitting
procedure is described in the text. Finally, values in parenthesis in the
SiO2 column are those used for Fig. 4, while the value in parentheses
for TiO2 is for the dashed curve in Fig. 3.

SiO2 Al2O3 HfO2 Ta2O5 TiO2

n0 1.45 1.76 2.09 2.1 2.52
Eg [eV] 9.0 6.5 5.1 3.8 3.3
ρmat [1028/m3] 2.20 2.35 2.77 1.12 3.19
σmat [10−19/m2] 0.661 1.33 1.24 2.50 1.08
γr [ps−1] 4.0 0.0 0.0 0.0 0.0 (1.0)
mh 1.0 (∞) 1.0 1.0 1.0 1.0
me 0.75 (0.8) 0.85 0.7 0.85 0.5
γ [fs−1] 2.0 2.0 2.0 2.0 2.0

required for the absorbed energy to be Eabs � 3 kJ/cm3, based
on values reported in Ref. [34].

First, we compared the results obtained by numerical inte-
gration of the DRE model with the experimental data found
in Ref. [35]. Computations were done as in Sec. IV. For a
given pulse duration τ , the laser fluence F was scanned from
0.1–10 J/cm2. It was stopped when the total energy absorption
Eabs reached 3 kJ/cm3 (see previous paragraph) and the stop
value was identified as the fluence threshold. The same pro-
cedure would then be repeated many times for different pulse
duration values to build relatively smooth curves.

In Table I, we have listed the numerical values of the
DRE parameters used to produce Figs. 3 and 4. Effectively,
there are eight of them, but in practice only two are used as
free parameters: the plasma damping rate γ and the effective
electron mass me. Although the effective hole mass mh has an
influence through the reduced mass mr ; see the expressions
for the critical energy Ec in Eq. (2), the Keldysh rate in
Eq. (A1), and the Keldysh parameter in Eq. (A4)]. We find
that it is always possible to balance its effect by adjusting γ

and me. We have thus decided to assign a fixed value to mh

(m0 = 9.1094 × 10−31 kg for Fig. 3 and ∞ for Fig. 4) and
perform the adjustment with only γ and me. There might be
an opportunity to improve DRE by including hole dynamics
explicitly in the model and to use the effective hole mass
mh as an extra parameter. However, this is likely to increase
the model complexity, as an additional equation similar to
Eq. (8) would be needed to track the holes (plus some extra
bookkeeping). As it stands, the model already offers more
fitting options, e.g., by adjusting the recombination rate γr

(see, in particular, the dashed curve in Fig. 3, associated with
the TiO2 data).

To optimize the search for the best parameter combination,
we have proceeded as follows. First, we set the damping
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FIG. 3. Comparison between DRE calculations (solid curves)
and experimental measurements (shapes) of fluence thresholds Fth

as a function of pulse duration τ for various dielectric materials. The
experimental data sets are from Ref. [35]. The parameters used for
the DRE calculations are given in Table I. The dashed line represents
an alternative fit for TiO2 (see text and Table I).

rate γ to adjust the overall scaling trend. Then, the effective
mass parameter me was chosen to match the height of the
corresponding data set. The parameters are not completely
independent, however, [see, e.g., Refs. Eq. (19)] and it is
sometimes necessary to iterate the procedure. We did not
formally assess the quality of the fits, e.g., by minimizing the
root-mean-square error. Nevertheless, the computed curves
shown in Figs. 3 and 4 do provide compelling evidence that
DRE, used with effective parameters, reproduces the global
trend of the experimental measurements over several orders
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FI only
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Fth ∝ τ 0.73

Fth ∝ τ 0.30

FIG. 4. Laser-induced damage thresholds Fth of SiO2 as a
function of pulse duration τ . The experimental data sets from
Refs. [7,13,35,38–41] are compared to three different DRE calcu-
lations (see also text for details). The blue dash-dotted curve is
obtained with field ionization (FI) only [collisional ionization (CI)
is turned off by setting the molecular cross section σmat = 0] and
laser heating (LH) is neglected by using the density criterion [ρ � ρc,
see Eq. (19)]. The green dashed curve is obtained with FI, but
includes LH by using the energy density criterion [Eabs � 3 kJ/cm3,
see Eq. (20)] (CI is still off with σmat = 0). Finally, the red curve is
obtained with the full DRE model. Model parameters are given in
Table I.

of magnitude of pulse durations and fluence thresholds. We
emphasize that proper error assessment should take into ac-
count the error margins associated with the experimental data,
an information that is not always available in the literature.

The values for material parameters are typically deter-
mined by nondestructive measurement methods, where the
sample integrity is only slightly perturbed. By definition,
assessing the fluence threshold implies driving the material
away from the ground state and potentially inducing sig-
nificant changes to its band structure. The effective values
proposed in Table I should therefore be interpreted with care.
Note also that effective masses are usually tensors, to account
for the anisotropy of the band structure. Simulations with
DRE show that the mass parameters have a significant impact
on the damage threshold, which in turn suggests that the
orientation of the sample with respect to the laser polarization
might also play an important role. This effect is likely to
be more pronounced in anisotropic crystalline structures. For
example, ab initio calculations of the electronic band structure
of HfO2 show that the effective masses along the different
crystal planes can vary by more than an order of magnitude
[37].

Finally, in Fig. 4, we compare DRE with seven experimen-
tal data sets for fused silica (SiO2). Three DRE curves are
shown to illustrate the relative contributions from the differ-
ent parts of the model. First, we have obtained a reasonable
agreement with the complete DRE model (FI + LH + CI).
The corresponding parameters are given in Table I, with the
values in parentheses for the effective masses me and mh. Then
we have used these same values, but have removed the CI
contribution by setting σmat = 0, resulting in the curve labeled
“FI + LH”. Finally, for the curve labeled “FI only” there was
no CI contribution and we assessed damage using the plasma
density criterion [Eq. (19)], which do not properly account for
the energy deposition in the material.

Globally, it is observed that the experimental data follow a
power-law dependence Fth ∝ τ κ , with κ � 0.3. We reproduce
this trend using DRE, when both FI and avalanche (LH-CI)
are included in the model. When disabling CI, the scaling
agreement is systematically lost (then κ � 0.73). Using the
charge density (“FI only”) or the energy deposition (“FI +
LH”) does affect the threshold value, but not the scaling trend.
Overall, this show the importance of the entire avalanche
sequence (LH-CI) during breakdown for pulse duration under
100 fs. Within the limits of the DRE model, it even suggests
that it plays a significant role in the dielectric breakdown
process, even for pulse duration down to the 10-fs range.
Unfortunately, the cycle-average nature of DRE prevents solid
conclusions to be drawn for a shorter pulse duration regime.
More on this in the next section.

VI. DISCUSSION

We have presented the DRE model as an alternative to
MRE to study the breakdown dynamics in dielectrics induced
by femtosecond laser pulses. We have discussed how both
models improve upon SRE by dealing explicitly with the
gradual heating of the charge carriers by the laser radiation.
As a result, charge carriers are created cold and need time to
gain enough kinetic energy to trigger collisional ionization.
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We have shown that DRE and MRE predict similar delays for
the first impact ionization events to occur and for a potential
ionization avalanche to unfold.

There are technical advantages for using DRE instead
of MRE. First of all, the mathematical simplicity of DRE
offers greater flexibility to extract effective values from ex-
perimental data. This has been demonstrated by matching
the experimental scaling trends for the laser-induced dam-
age threshold of several dielectric materials. Also, we have
emphasized that numerical implementation of DRE relies on
integrating only two first-order ordinary differential equa-
tions, limiting computer memory and CPU requirements
to a minimum, e.g., with look-up tables for FI rates and
special functions. This offers interesting possibilities for
large scale, three-dimensional calculations where computa-
tional efficiency is critical. Moreover, in three-dimensional
simulations of laser-induced breakdown, e.g., using the finite-
difference time-domain (FDTD) or the particle-in-cell (PIC)
frameworks, it is common to see high-contrast structures in
the plasma density that strongly enhance or suppress the lo-
cal electromagnetic field (see, e.g., Ref. [42]). This causes
significant variations in the local ponderomotive energy and,
in turn, of the critical energy for collisional ionization [see
Eq. (2)]. For MRE, this implies that numerical convergence
is entangled with the number of rate equations that are used.
With the original MRE formulation, this number must be
chosen beforehand to account for the peak value of the critical
energy Ec over the entire simulation and throughout the ma-
terial domain. This is an important drawback that should not
be overlooked. It was proposed to adjust MRE dynamically
[6]. However, special care should be paid for integration in
time-domain electromagnetic simulations such as FDTD, as
discrete jumps in the numerical calculations can cause severe
instability issues. DRE offers a convenient alternative by pro-
viding a closed set of equations.

We acknowledge that DRE, as well as the other rate equa-
tion models presented above (see also Refs. [2,15]), rely on
several approximations and physical simplifications usually
accounted for by other popular modeling approaches, e.g.,
by solving the full set of kinetic Boltzmann equations (see,
e.g., Refs. [1,9,11,23]). In particular, rate equations do not
account explicitly for several microscopic aspects such as
Auger recombination, self-trapping, and phonon coupling that
can play significant roles in laser-induced dielectric break-
down. Nevertheless, rate equation models are useful to obtain
a phenomenological description of real materials, without the
need to introduce all possible contributions in an explicit
form, e.g., defects, lattice anisotropy, multibody effects, etc.
Rates are then properly interpreted as the effective balance
between competing microscopic mechanisms, e.g., collisional
ionization versus Auger recombination [9]. To a certain ex-
tent, rate equations can be improved to extend their scope,
but it should be done with care (see, e.g., Ref. [9] for Auger
recombination, [43] for self-trapping and reionization, and
[44] for sub-band transitions). We guide the interested reader
toward Refs. [3,23] for comparative studies of a rate equation
model and the kinetic approach.

We emphasize that DRE does not depend on a specific
photoionization or electron-impact cross-section model. It
thus appears as a potential test bench. On the one hand,

important progress was made to establish universal FI mod-
els, improving on the initial work of Keldysh [28] (see, e.g.,
Refs. [18,29,31]). On the other hand, kinetic models based on
microscopic collision probabilities have helped gain physical
insight into the charge carriers dynamics and interactions un-
derlying the ionization avalanche (LH-CI) process (see, e.g.,
Refs. [1,9,11,15,16]). Testing these FI and LH-CI models
within DRE might be useful to identify promising modeling
combinations.

Finally, it is important to recall that DRE, like other rate
equation models, describe laser-induced breakdown at the
field-cycle-averaged level. Studies using DRE with pulse du-
ration below 10 fs should thus be interpreted with some
care. In that particular regime, subcycle effects (see, e.g.,
Refs. [18,45]) and other processes such as photon-assisted
avalanche—often referred to as cold ionization avalanche
(see, e.g., Ref. [46])—may have a significant impact. More
effort is needed to identify whether or not the phenomenology
of few-fs pulse effects can actually be captured by DRE, or
implemented.

VII. CONCLUSION

In this paper, we have presented a rate-equation model that
accounts for the ionization avalanche process phenomeno-
logically by using an auxiliary differential equation to track
the gradual heating of the charge carriers. Effectively, this
extra equation defines the collisional impact rate dynamically
from the fraction of electrons that gained enough energy from
the laser field to potentially trigger an ionization avalanche.
The computational simplicity of this dynamical rate equa-
tion model offers the flexibility to extract effective values
from experimental data. This has been shown by matching
the experimental scaling trends for the laser-induced damage
threshold of several dielectric materials for pulse durations
ranging from a few fs to a few ps. Through numerical analysis,
we have ascertained that the proposed model gives results
comparable to those obtained with multiple rate equations,
while offering significant advantages for the development
of large-scale, three-dimensional electromagnetic methods
for the modeling of laser-induced breakdown in transparent
media.
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APPENDIX A: KELDYSH MODEL FOR FIELD
IONIZATION IN SOLID-STATE DIELECTRICS

The production rate of electron-hole pairs (in m−3s−1)
induced by a strong laser field Ẽ (t ) = E cos(ωt ) in a solid-
state dielectric with band gap energy Eg is given by the
Keldysh relation (for details, see Ref. [17], Sec. 2.3.1 and [47],
Sec. 2.3)

W = 4ω

9π

(
mrω

h̄
√

x1

)3/2(
π

2K(x2)

)1/2 ∞∑
n=0

e−(k+n)α �(x3),

(A1)

where

x1 = �2

1 + �2
; x2 = 1

1 + �2
; x3 =

√
β(2ν + n) (A2)

α = π
K(x1) − E (x1)

E (x2)
; β = π2

2K(x2)E (x2)
; ν = k − x

(A3)

� = ω
√

mrEg

qE
; x = 2

π

E (x2)√
x1

Eg

h̄ω
; k = 
x + 1� (A4)

with K() and E () being the complete elliptic integrals of
the first and second kind, respectively, �() being Dawson’s
integral, and 
. . .� denoting the integer part of the argument.
To get an FI rate νfi, the Keldysh density rate W (in m−3s−1) is
divided by the number density ρmat (in m−3) of the material,
resulting in an single-molecule ionization rate νfi = W/ρmat.

APPENDIX B: DRUDE DESCRIPTION OF THE
LASER-PLASMA DYNAMICS

Basic expressions for the ponderomotive energy Ep and the
laser heating (LH) rate γlh can be derived from the Drude
model. At the statistical-continuum level, the instantaneous
current ĩ(t ) associated with the motion of a charge carrier
driven by an electric field Ẽ (t ) and whose motion is damped
by collisions is described by the following equation:

dĩ(t )

dt
= −γ ĩ(t ) + q2

m
Ẽ (t ), (B1)

where fast oscillating variables are marked with a tilde. Pa-
rameters q and m are the charge and mass of the charge carrier,
respectively. Collisions are included phenomenologically via
the damping rate γ .

With Ẽ (t ) = E cos(ωt ), the steady-state solution for the
single-carrier current is:

ĩ(t ) = q2E

m(γ 2 + ω2)
[ω sin(ωt ) + γ cos(ωt )]. (B2)

In turn, the power transferred instantaneously from the laser
field to the charge carrier is given by

P̃(t ) = ĩ(t ) · Ẽ (t ),

= q2E2

m(γ 2 + ω2)

[
ω sin(ωt ) cos(ωt ) + γ cos2(ωt )

]
.

(B3)

The two terms in the square brackets are associated with the
ponderomotive energy and laser heating, respectively. Both
are developed below.

1. Ponderomotive energy

The first term in the square brackets of Eq. (B3) represents
a carrier that gains a certain amount of energy during half of an
optical cycle, before losing it during the other half, resulting
in no net energy gain or loss. This is often referred to as
the ponderomotive energy, whose instantaneous expression is
given by the integral of the first term in Eq. (B3), such that

Ẽp(t ) =
∫

q2E2 ω sin(ωt ) cos(ωt )

m(γ 2 + ω2)
dt,

= q2|Ẽ (t )|2
2m(γ 2 + ω2)

. (B4)

In general, the ponderomotive energy is expressed instead in
terms of its cycle-averaged expression

Ep = 〈Ẽp(t )〉 = q2E2

4m(γ 2 + ω2)
, (B5)

which reduces to the usual, free-particle expression
E0 = q2E2/4mω2 in the limit where the plasma damping rate
γ = 0.

2. Laser heating

The last term of Eq. (B3) is associated with the absorption
of electrical power from the laser field resulting in a net energy
gain after each optical cycle. The rate at which a quantum
of light is absorbed is obtained by dividing the last term of
Eq. (B3) by the energy of a photon h̄ω, thus defining an
instantaneous laser-heating rate as

γ̃lh(t ) = γ

h̄ω

q2|Ẽ (t )|2
m(γ 2 + ω2)

= 2γ

h̄ω
Ẽp(t ). (B6)

When averaged over a field cycle:

γlh = 〈γ̃lh(t )〉 = γ

h̄ω

q2E2

2m(γ 2 + ω2)
= 2γ

h̄ω
Ep. (B7)

Insight into the continuum expressions Eqs. (B5) and (B7)
obtained from the Drude model is provided in Fig. 5. Optimal
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FIG. 5. Insight into the continuum expressions obtained with the
Drude model for the ponderomotive energy Ep [Eq. (B5)] and laser-
heating rate γlh [Eq. (B7)]. Both curves are normalized by their peak
amplitudes, E0 and E0/h̄, respectively.

045201-9



DÉZIEL, DUBÉ, AND VARIN PHYSICAL REVIEW B 104, 045201 (2021)

heating occurs when the damping rate equals the laser angular
frequency, i.e., when γ = ω.

APPENDIX C: FORMAL DERIVATION OF THE DRE’S
AUXILIARY DIFFERENTIAL EQUATION TO TRACK Ekin

The development of the DRE model is based on the as-
sumption that at thermal equilibrium, the number of carriers
with energy E is given by the following distribution (see
Sec. III for discussion):

N (E ) = N
2√
π

β3/2
√
Ee−βE , (C1)

where N is the total number of carriers and β = 1/(kBT ). The
carrier temperature T is related to the average kinetic energy
via the equipartition theorem, i.e., Ekin = 3kBT/2, where kB is
the Boltzmann constant.

The total energy within the carrier gas is thus

Etot =
∫ ∞

0
EN (E )dE (C2a)

= N
2√
π

β3/2
∫ ∞

0
E3/2e−βEdE (C2b)

= N
3

2

1

β
≡ NEkin. (C2c)

Taking the time derivative of the total energy Etot gives:

dEtot

dt
= N

dEkin

dt
+ Ekin

dN

dt
, (C3)

which leads to:
dEkin

dt
= 1

N

dEtot

dt
− Ekin

1

N

dN

dt
. (C4)

The first term on the right-hand side of Eq. (C4) is associated
with the average variation of the total energy within the carrier
gas, whereas the second is due to the variation of the carrier
population. We get from Eq. (7) that

1

N

dN

dt
≡ 1

ρ

dρ

dt
= νfi

ρu

ρ
+ γuξ − γr . (C5)

Also,

1

N

dEtot

dt
= γlh h̄ω − γuξEc − γrEkin, (C6)

where the different terms are interpreted as follows. In the
first term, a carrier can gain kinetic energy by absorbing a
photon of energy h̄ω at a rate γlh [see also Eqs. (4)]. The
second term is associated with impact ionization occurring
at a rate γuξ , where a hot carrier with kinetic energy greater
than the critical energy Ec [see Eq. (2)] gives away Ec to
bring a new electron to the conduction band (the bottom of
the conduction band corresponds to E = 0). The third term
describes recombination at a rate γr , where an electron with
kinetic energy Ekin falls back to the valence band, converting
Ekin of energy into radiation or phonon excitation.

Combining Eqs. (C4), (C5), and (C6) gives

dEkin

dt
= γlh h̄ω − γuξEc − Ekin

[
νfi

ρu

ρ
+ γuξ

]
. (C7)

Note that the recombination terms cancel out.
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E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A.
Melninkaitis, J. Appl. Phys. 117, 223103 (2015).

[11] T. Apostolova, J. Perlado, and A. Rivera, Nucl. Instr. Meth.
Phys. Res. B 352, 167 (2015), Proceedings of the 12th Interna-
tional Conference on Computer Simulation of Radiation Effects
in Solids, Alacant, Spain, 8–13 June, 2014.

[12] N. Brouwer and B. Rethfeld, Phys. Rev. B 95, 245139 (2017).

[13] M. Lebugle, N. Sanner, N. Varkentina, M. Sentis, and O. Utéza,
J. Appl. Phys. 116, 063105 (2014).

[14] S. Guizard, N. Fedorov, A. Mouskeftaras, and S. Klimentov,
AIP Conf. Proc. 1278, 336 (2010).

[15] B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and
M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995).

[16] N. S. Shcheblanov, E. P. Silaeva, and T. E. Itina, Appl. Surf. Sci.
258, 9417 (2012).

[17] P. Balling and J. Schou, Rep. Prog. Phys. 76, 036502 (2013).
[18] P. A. Zhokhov and A. M. Zheltikov, Sci. Rep. 8, 1824 (2018).
[19] A. Bourgeade, C. Mézel, and O. Saut, J. Sci. Comput. 44, 170

(2010).
[20] J.-L. Déziel, L. J. Dubé, and C. Varin, Dynamical rate

equation model, https://github.com/cvarin/Dynamical-Rate-
Equation-Model.

[21] G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug,
P. B. Corkum, and T. Brabec, Phys. Rev. Lett. 113, 073901
(2014).

[22] A. N. Pfeiffer, J. Phys. B: At., Mol. Opt. Phys. 53, 164002
(2020).

[23] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W.
Shore, and M. D. Perry, Phys. Rev. B 53, 1749 (1996).

[24] D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki,
J.-C. Kieffer, O. Nada, and I. Brunette, J. Opt. Soc. Am. A 24,
1562 (2007).

045201-10

https://doi.org/10.1103/PhysRevB.61.11437
https://doi.org/10.1103/PhysRevLett.92.187401
https://doi.org/10.1103/PhysRevB.73.035101
https://doi.org/10.1103/PhysRevB.73.054105
https://doi.org/10.1364/OE.17.012269
https://doi.org/10.1103/PhysRevB.79.155424
https://doi.org/10.1103/PhysRevB.84.094104
https://doi.org/10.1016/j.apsusc.2012.01.070
https://doi.org/10.1364/JOSAB.31.000C28
https://doi.org/10.1063/1.4922353
https://doi.org/10.1016/j.nimb.2014.11.098
https://doi.org/10.1103/PhysRevB.95.245139
https://doi.org/10.1063/1.4892158
https://doi.org/10.1063/1.3507119
https://doi.org/10.1103/PhysRevLett.74.2248
https://doi.org/10.1016/j.apsusc.2011.12.129
https://doi.org/10.1088/0034-4885/76/3/036502
https://doi.org/10.1038/s41598-017-18624-z
https://doi.org/10.1007/s10915-010-9375-0
https://github.com/cvarin/Dynamical-Rate-Equation-Model
https://doi.org/10.1103/PhysRevLett.113.073901
https://doi.org/10.1088/1361-6455/ab94cb
https://doi.org/10.1103/PhysRevB.53.1749
https://doi.org/10.1364/JOSAA.24.001562


DYNAMICAL RATE EQUATION MODEL FOR FEMTOSECOND … PHYSICAL REVIEW B 104, 045201 (2021)

[25] A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-
Góngora, and M. Kolesik, Eur. Phys. J.: Spec. Top. 199, 5
(2011).

[26] M. Kolesik and J. V. Moloney, Rep. Prog. Phys. 77, 016401
(2014).

[27] C. Varin, G. Bart, T. Fennel, and T. Brabec, Opt. Mater. Express
9, 771 (2019).

[28] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys.
JETP 20, 1307 (1965)].

[29] V. E. Gruzdev, Phys. Rev. B 75, 205106 (2007).
[30] P. A. Zhokhov and A. M. Zheltikov, Phys. Rev. Lett. 113,

133903 (2014).
[31] N. S. Shcheblanov, M. E. Povarnitsyn, P. N. Terekhin, S.

Guizard, and A. Couairon, Phys. Rev. A 96, 063410 (2017).
[32] E. Smetanina, P. González de Alaiza Martínez, I. Thiele, B.

Chimier, A. Bourgeade, and G. Duchateau, Phys. Rev. E 101,
063206 (2020).

[33] A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, Appl. Phys. B:
Lasers Optics 81, 1015 (2005).

[34] S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G.
Geoffroy, and G. Vilmart, Appl. Surf. Sci. 336, 206 (2015).

[35] M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Phys.
Rev. B 71, 115109 (2005).

[36] E. D. Palik (ed.), Handbook of Optical Constants of Solids
(Academic Press, Burlington, 1997).

[37] J. C. Garcia, L. M. R. Scolfaro, J. R. Leite, A. T. Lino, V. N.
Freire, G. A. Farias, and E. F. da Silva, Appl. Phys. Lett. 85,
5022 (2004).

[38] T. Q. Jia, Z. Z. Xu, X. X. Li, R. X. Li, B. Shuai, and F. L. Zhao,
Appl. Phys. Lett. 82, 4382 (2003).

[39] A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G.
Mourou, Phys. Rev. Lett. 82, 3883 (1999).

[40] M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G.
Mourou, W. Kautek, and F. Krausz, Phys. Rev. Lett. 80, 4076
(1998).

[41] H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F.
Noack, and E. E. B. Campbell, Appl. Phys. A 62, 293
(1996).

[42] J.-L. Déziel, L. J. Dubé, S. H. Messaddeq, Y. Messaddeq, and
C. Varin, Phys. Rev. B 97, 205116 (2018).

[43] B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H.
Hoffmann, Appl. Phys. A 101, 19 (2010).

[44] L. Barilleau, G. Duchateau, B. Chimier, G. Geoffroy, and V.
Tikhonchuk, J. Phys. D 49, 485103 (2016).

[45] C. R. McDonald, G. Vampa, P. B. Corkum, and T. Brabec, Phys.
Rev. Lett. 118, 173601 (2017).

[46] P. P. Rajeev, M. Gertsvolf, P. B. Corkum, and D. M. Rayner,
Phys. Rev. Lett. 102, 083001 (2009).

[47] A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47
(2007).

045201-11

https://doi.org/10.1140/epjst/e2011-01503-3
https://doi.org/10.1088/0034-4885/77/1/016401
https://doi.org/10.1364/OME.9.000771
https://doi.org/10.1103/PhysRevB.75.205106
https://doi.org/10.1103/PhysRevLett.113.133903
https://doi.org/10.1103/PhysRevA.96.063410
https://doi.org/10.1103/PhysRevE.101.063206
https://doi.org/10.1007/s00340-005-2036-6
https://doi.org/10.1016/j.apsusc.2014.11.036
https://doi.org/10.1103/PhysRevB.71.115109
https://doi.org/10.1063/1.1823584
https://doi.org/10.1063/1.1583857
https://doi.org/10.1103/PhysRevLett.82.3883
https://doi.org/10.1103/PhysRevLett.80.4076
https://doi.org/10.1007/BF01575098
https://doi.org/10.1103/PhysRevB.97.205116
https://doi.org/10.1007/s00339-010-5780-3
https://doi.org/10.1088/0022-3727/49/48/485103
https://doi.org/10.1103/PhysRevLett.118.173601
https://doi.org/10.1103/PhysRevLett.102.083001
https://doi.org/10.1016/j.physrep.2006.12.005

