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Homotopy invariant in time-reversal and twofold rotation symmetric systems
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The primary goal of this paper is to study topological invariants in two-dimensional twofold rotation and
time-reversal symmetric spinful systems. In this paper, first we build a new homotopy invariant based on the
lifting of the Wilson loop to the universal covering group of the special orthogonal group. Furthermore, we
prove that the invariant we built agrees with the K theory invariant. We go beyond the previous understanding of
the Wilson loop unwinding in more than two occupied bands by finding an obstruction of such unwinding. Then,
within this formalism, we show two examples that have the same Wilson loop spectrum but belong to different
topological classes. Finally, we present a tight-binding model realizing the nontrivial phase.
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I. INTRODUCTION

Over the past few decades, there have been many studies
on topological phases beyond the Landau paradigm [1–4],
in particular on the subject of topological insulators and
topological superconductors [5–9,36]. Symmetries play an
important role in research. The internal symmetries imple-
mented in fermionic systems are summarized by the 10
Altland-Zirnbauer (AZ) symmetry classes [10,11]. The classi-
fication of noninteracting topological phases in 10 AZ classes
was systematically achieved by the K theory method [12,13].
In the past few years, topological insulators and superconduc-
tors that are protected not only by internal symmetries but
also by crystalline symmetries have been studied intensively.
Topological insulators protected by crystalline symmetries are
called topological crystalline insulators (TCIs) [14]. TCIs give
rise to interesting new features, such as the presence of gapless
surface Dirac cones pinned to mirror planes [15,16], and high-
order topological insulators (HOTIs) featuring corner charges,
corner states, or hinge states [17–20]. In the study of TCIs,
one important goal is finding topological invariants protected
by symmetries. Many methods other than the Berry curva-
ture method have been discovered to formulate topological
invariants, for instance symmetry indicators at high symme-
try points [20–24], Wilson loop methods [15,18,25–28], and
elementary band representations [24,29].

The focus of this paper is to survey two-dimensional time-
reversal (TR) and twofold rotation symmetric spinful systems.
The K theory classification of this system was completed [30],
and the result implies the existence of a new Z2 topological
invariant. This topological invariant is described by a vor-
tex configuration at the high symmetry point in Ref. [31].
However, to generate a vortex configuration, a smooth gauge
is needed that is usually hard to implement. This system
was also studied in Ref. [28], but the topological invariant
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described in that paper is more focused on Wannier band
topology of the system and its obstructed atomic insulator
nature, and the Wilson loop spectrum considered there is
gapped. In this paper, we will show a phase with a nontriv-
ial new topological invariant having a gapless Wilson loop
spectrum instead. Until now, there has been a gap between the
formulation of the new topological invariant and the K theory
classification.

In this paper, we develop a new topological invariant using
homotopy theory, and we prove that it agrees with the K the-
ory invariant. We build this new homotopy invariant based on
the lifting of the Wilson loop to the universal covering group.
We will show in our formulation that the topology origin of
the new Z2 topological invariant is disconnectedness of some
fixed point set, hence its meaning is transparent. We further
show that while nontrivial Wilson loop winding in the space
of two occupied bands is protected by symmetries, and that
Wilson loop unwinding can occur when embedded in higher-
dimensional band space (as discussed in Refs. [32,33]), there
is an additional obstruction in a particular case of four oc-
cupied bands whose existence prevents the unwinding of the
Wilson loop spectrum. This is characterized by the new Z2

topological invariant presented herein.
The paper is organized as follows: In Sec. II, we review the

topological classification of two-dimensional twofold rotation
and TR-symmetric systems and three known topological in-
variants of these systems. In addition, we present a picture
of what the new Z2 topological invariant is describing. In
Sec. III, we build our theory on cases of two and four occupied
bands. In Sec. III B 1, a new homotopy invariant is formulated,
and we provide proof that this homotopy invariant agrees with
the K theory invariant. Then we show in Sec. III B 2 two exam-
ples distinguished by two symmetry categories that have the
same Wilson loop spectrum but belong to different topological
classes. In Sec. IV, we introduce a Hamiltonian that analyti-
cally implements the Wilson loops in the previous sections,
we present some numerical results on its tight-binding model,
and we discuss the physical meaning of the new topological
invariant. Finally, we give our conclusions in Sec. V.
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II. TOPOLOGICAL CLASSIFICATION OF T AND C2

SYMMETRIC SYSTEM

In this paper, we focus on twofold rotation symmetric
two-dimensional systems in AZ class AII. The classification
of these systems has been obtained in Ref. [30], since all
symmetries here are order 2 symmetries. The system has two
Z2 strong indices and two Z2 weak indices. The two Z2 weak
indices are partial polarizations introduced by Fu and Kane
along the x- and y-directions, respectively [8,28,34,35], which
are expressed as

ν�X = 1

π

[∫ π

0
dkxTrAx(kx, 0)+ iln

P f [w(π, 0)]

P f [w(0, 0)]

]
mod 2,

ν�Y = 1

π

[∫ π

0
dkyTrAy(0, ky)+ iln

P f [w(0, π )]

P f [w(0, 0)]

]
mod 2,

(1)

where wmn(kx, ky ) = 〈um(−kx,−ky )| T |un(kx, ky)〉 is the
sewing matrix of the TR-symmetry, um(kx, ky) is the periodic
part of the Bloch wave function, and Ax(kx, ky) [Ay(kx, ky)]
are Berry connections along the x (y) -direction. Note that
these two partial polarizations are quantized by the twofold
rotation symmetry. As for the two Z2 strong indices, one
of the two Z2 strong indices is Fu-Kane-Mele invariant
in time-reversal invariant insulators [5,8,36]. Another one
has been suggested to be characterized by vortices at high
symmetry points [31], the topological invariant defined at
each C2-symmetric channel [37,38]. However, topological
invariants defined in this way have not been shown directly
related to the K theory classification, and their Z2 topological
nature is not transparent. We adopt a homotopic method to
study this new Z2 strong index in this paper. For convenience,
we simply denote this new Z2 strong topological invariant as
νnew.

Now, we introduce the concept and notation of
Refs. [39,40]. For a system with space-group action G,
the space-group action on a Hamiltonian has a “twist”
(τ, c), where τ is the factor system of the symmetry group
and c(g) = 1(−1) indicates that the symmetry element g
is a symmetry (antisymmetry). Antiunitary symmetries are
specified by a Z2-valued function φ for group elements.
Then an Abelian group φK (τ,c)

G (X ) which characterizes
the classification of the system can be introduced. The K
group φK (τ,c)

G (T 2) for the Brillouin zone torus T 2 provides
a topological classification of two-dimensional crystalline
insulators subject to symmetry group G.

Make a cell decomposition with respect to symmetries as
in Fig. 1. We show in Appendix A that the remaining new
Z2 strong index νnew corresponds to the relative K group
φK (τ,c)

G (X2, X1) in the framework of twisted equivariant K
theory [39–41]. The classification K group of the system is

φK (τ,c)
G (T 2) ∼= Z ⊕ Z3

2 ⊕ φK (τ,c)
G (X2, X1), (2)

where the first Z summand is characterized by the num-
ber of occupied bands of the system (an even integer),
and the second three Z2 summands are characterized by
three topological invariants ν�X , ν�Y , νFKM, as we have
mentioned. Hence, topological invariants ν�X , ν�Y , νFKM are
topological obstruction invariants without which the reduced

FIG. 1. (a) Two-dimensional skeleton X2 is shown, which is the
whole Brillouin zone. (b) One-dimensional skeleton X1 is shown in
red. When ν�X = ν�Y = νFKM = 0, the Hamiltonian of the system
can be continuously deformed to a Hamiltonian that is constant on
X1. (c) The effective half Brillouin zone is shown in gray, which
can further collapse to a sphere (the boundary of the effective half
Brillouin zone collapses to a point) corresponding to one of two
components of the space X2/X1.

K group is only expressed in terms of the relative K
group φK (τ,c)

G (X2, X1).
We also point out here that when the system

satisfies ν�X = ν�Y = νFKM = 0, since φK (τ,c)
G (X2, X1) ∼=

φ
K̃ (τ,c)

Z
TC2
2

[(X2/X1)1] ∼= K̃O(S2) ∼= Z2, where (X2/X1)1 denotes

one of the two components of X2/X1, the Hamiltonian of the
system can be continuously deformed [42] to a Hamiltonian
whose value is constant on the boundary of the effective half
Brillouin zone BZ 1

2
. Then we can view the whole system as

two Hamiltonians over two disjoint two-dimensional spheres
which are time-reversal related. The other three topological
invariants ν�X , ν�Y , νFKM are topological obstructions of such
deformation. The new Z2 strong index is characterized by
the second Stiefel-Whitney number of Hamiltonians over the
effective half Brillouin zone BZ 1

2
since the K group element

in
φ
K̃ (τ,c)

Z
TC2
2

[(X2/X1)1] ∼= K̃O(S2) is captured by the second

Stiefel-Whitney number over the sphere [27,43], which
can be read from the Wilson loop spectrum [27]. We call
the second Stiefel-Whitney number over the effective half
Brillouin zone the K theory invariant. However, we cannot
compute the new topological invariant νnew in this way in
general as the deformation of the Hamiltonian is not easy to
find. In this paper, we will develop a general Wilson loop
method to compute νnew and prove that it agrees with the K
theory invariant.

Now, we review how to read the other three topological
invariants ν�X , ν�Y , νFKM from the Wilson loop spectrum.
We first make a notation convention that is used throughout
this paper. Denote the Wilson loop operator W(kx,ky+2π )←(kx,ky )

used in Ref. [18] by We2,ky (kx ). The path is a straight line
from the starting point (kx, ky) to the end point (kx, ky + 2π )
along the ky-direction. The Wannier centers v

y
j (kx ) and vx

j (ky),
where kx, ky ∈ [−π, π ], can be read from the Wilson loop
spectrum with respect to any chosen branch, say (− 1

2 , 1
2 ].

Then,

ν�X =
∑

j

vx
j (ky = 0) mod 2,

ν�Y =
∑

j

v
y
j (kx = 0) mod 2,
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νFKM =
∑

j

[
vx

j (ky = 0) + vx
j (ky = π )

]
mod 2

=
∑

j

[
v

y
j (kx = 0) + v

y
j (kx = π )

]
mod 2. (3)

The Wannier centers of a T,C2-symmetric system satisfy
symmetry constraints

{v j (kx )} T= {v j (−kx )}, {v j (kx )} TC2= {−v j (kx )}. (4)

Since the system is TC2-symmetric, we can compute the
second Stiefel-Whitney number w2 over the whole Brillouin
zone [27]. However, it is not an independent topological in-
variant since it is actually equal to the Fu-Kane-Mele invariant
νFKM. To prove this fact, note that the second Stiefel-Whitney
number w2 is equal to the parity of the total number of cross-
ing at v j = 1

2 , which is simply
∑

j[v
y
j (kx = 0) + v

y
j (kx = π )]

mod 2 [44]. The symmetry constraint {v j (kx )} T= {v j (−kx )}
has been used to show that crossing at v j = 1

2 at momentum kx

other than kx = 0 and kx = π comes in pairs, i.e., v
y
j (kx ) = 1

2

implies v
y
j′ (−kx ) = 1

2 for some Wannier center index j′.

III. GENERAL THEORY

In this section, we present a general theory to compute the
new topological invariant νnew under the assumption that three
obstruction topological invariants ν�X , ν�Y , νFKM vanish. This
assumption can be weakened in our homotopic treatment;
however, we will keep this assumption to prove that our topo-
logical invariant agrees with the cohomology element in the
K group.

In the following two subsections, we discuss cases of two
occupied bands and four occupied bands. We distinguish these
two cases based on the differences in their homotopy classifi-
cation, although their K theory classification is the same.

A. The case of two occupied bands

In this case, the Wilson loop matrix belongs to the O(2)
group due to TC2 composite symmetry; its first homotopy
group is π1[O(2)] ∼= Z. Hence, the homotopy classification is
Z instead of Z2 in the K theory classification. The Z-valued
topological invariant is the Euler number of the system. The
Euler number can be written in terms of Berry curvature in a
real gauge [27],

e[BZ] = 1

2π

∫
BZ

F12dkxdky, (5)

where e is the Euler class, [BZ] is the fundamental class
of the base manifold BZ in the homology group, and their
cap product e[BZ] is an integer called the Euler number.
From the viewpoint of the Wilson loop spectrum, the Eu-
ler number is equal to a protected nontrivial winding, as
discussed in Refs. [32,33]. This nontrivial winding number
cannot be changed under a symmetry-protected deformation
of the Hamiltonian without closing the energy gap. As dis-
cussed in Ref. [33], when one embeds the system with two
occupied bands into a system having four or more occupied
bands, the winding number in the Wilson loop spectrum can
be changed. However, there is still a Z2-valued topological

number that cannot be changed in the case of four occupied
bands, and we will discuss this topic in the next subsection.

Now, we want to associate the Z-valued homotopy invari-
ant e[BZ] with the Z2-valued K theory invariant νnew when
embedding the system into one with more occupied bands.
Since the three obstruction invariants vanish, we can deform
the Hamiltonian in a symmetric way such that the deformed
Hamiltonian is constant on the boundary of the effective half
Brillouin zone. During this deformation, the Euler number
e[BZ] does not change. After this deformation, the Hamilto-
nian can be viewed as two Hamiltonians over the two effective
half Brillouin zones, which are related by TR-symmetry. The
Euler number is then expressed as

e[BZ] = 1

2π

∫
BZ

F12dkxdky

= 1

2π

∫
BZ(1)

1
2

F12dkxdky + 1

2π

∫
BZ(2)

1
2

F12dkxdky

= e
[
BZ(1)

1
2

] + e
[
BZ(2)

1
2

]
, (6)

where BZ(1)
1
2

and BZ(2)
1
2

are the two effective half Brillouin

zones. Since Hamiltonians over BZ(1)
1
2

and BZ(2)
1
2

are related

by TR-symmetry, one can obtain

e
[
BZ(1)

1
2

] = e
[
BZ(2)

1
2

]
. (7)

The K theory topological invariant νnew is the second Stiefel-
Whitney number over the effective half Brillouin zone BZ 1

2
,

which is a mod 2 version of the Euler number [43], that is,

νnew = w2
[
BZ(1)

1
2

]
= e

[
BZ(1)

1
2

]
mod 2

= e[BZ]

2
mod 2. (8)

It should be noted that e[BZ(1)
1
2

] is always an integer; in

other words, the Euler number e[BZ] is always an even num-
ber. We have made the assumption that νFKM = 0, which
implies that the second Stiefel-Whitney number over the
whole Brillouin zone vanishes and the Euler number over
the whole Brillouin zone is an even number. Thus νnew is
well-defined.

This “proof” of the correspondence between the 2Z-valued
Euler number e[BZ] and the Z2-valued topological invariant
νnew is not rigorous since the deformation of the Hamiltonian
exists only in a stable sense. Due to this Z2-valued topological
invariant, νnew is only useful when the space of two occu-
pied bands is embedded in a space with higher-dimensional
occupied bands. We will provide rigorous proof of this corre-
spondence in the next subsection, which discusses the case of
four occupied bands.

B. The case of four occupied bands

1. Homotopy invariant

We present a new homotopy invariant for the case of four
occupied bands in this section. The Wilson loop matrix in
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this case belong to the SO(4) group due to TR-symmetry and
twofold rotation symmetry. In this system, we have a loop
of Wilson loop matrices kx 	→ We2,π (kx ) : S1 → SO(4). The
topology information of the system is encoded by this loop
since the Wilson loop matrix actually represents the transition
function of the system (only the information of the partial po-
larization along the x-direction is lost, and it is encoded in the
Wilson loop along another direction). Furthermore, we give a
proof in Appendix D that a homotopy between two Wilson
loops induces a homotopy between two Hamiltonians with
respect to all symmetries. To study the homotopy between
two Wilson loops, we should lift loops in SO(4) to loops in
the universal covering group of SO(4), i.e., the Spin(4) group.

There is a two-to-one covering map from the Sp(1) ×
Sp(1) group to the SO(4) group, where the Sp(1) group is the
one-dimensional symplectic group, i.e., the set of quaternion
numbers of modulus 1. This covering map is

p : Sp(1) × Sp(1) −→ SO(4)

(g, h) 	−→ (x 	→ g−1xh), (9)

where x in the expression is a quaternion number, and x 	→
g−1xh is an R-linear map from R4 to R4. It is a linear map
preserving the norm and having a determinant one, hence it
belongs to SO(4). Furthermore, this map is a group homo-
morphism,

p((g1, h1)(g2, h2)) = p((g1g2, h1h2)) = x 	→ g−1
2 g−1

1 xh1h2

= p((g2, h2)) ◦ p((g1, h1)). (10)

The following theorem [45,46] will be needed in our fur-
ther discussion.

Theorem 1. Take two maps f0, f1 : [0, 2π ] → SO(4),
such that they are homotoptic, i.e., f0 � f1 rel ∂[0, 2π ]. Let
f̃0, f̃1 : [0, 2π ] → Sp(1) × Sp(1) be liftings of f0 and f1

such that f̃0(0) = f̃1(0). Then f̃0(2π ) = f̃1(2π ) and f̃0 �
f̃1 rel ∂[0, 2π ].

The rel ∂[0, 2π ] in the homotopy notation used in the
above theorem means the start and the end point of the
path should be fixed, which in our case we simply set as
f0(0) = f1(0) = f0(2π ) = f1(2π ). This theorem reduces the
problem of finding a homotopy between two Wilson loops to
the problem of finding a homotopy between liftings of the two
Wilson loops.

We first make the assumption that νFKM = w2[BZ] = 0.
This assumption implies [k 	→ We2,π (k)] = 0 ∈ π1(SO(4)),
which implies that the lifting of the Wilson loop is a loop.
That is, W̃e2,π (0) = W̃e2,π (2π ) ∈ Sp(1) × Sp(1). Otherwise,
if νFKM = 1, W̃e2,π (2π ) = −W̃e2,π (0). By theorem 1, Wilson
loops of these two cases are not homotopic since end points
of their liftings are different. This is an obstruction shown by
the Fu-Kane-Mele invariant.

Up to now, we have only considered the constraint imposed
by TC2 symmetry, which requires the Wilson loop to be real.
The constraint imposed by TR-symmetry should be consid-
ered as well. The TR-symmetry imposes that

wWe2,π (kx )w−1 = W −1
e2,π

(−kx ), (11)

where w is the sewing matrix of the TR-symmetry, which can
be taken to be a constant matrix in general; see Eq. (35) in the
next section. The homotopy between two Wilson loops should

respect this constraint as well. Denote it by W (k, t ), where t
is a deformation parameter. It should satisfy

wW (k, t )w−1 = W −1(−k, t ). (12)

Changing the basis if necessary, the sewing matrix of
TR-symmetry can be assumed to be w = ( 0 −I2×2

I2×2 0 ) ∈
SO(4). It maps a quaternion number x0 + x1i + x2 j + x3k
to −x2 − x3i + x0 j + x1k. Since −x2 − x3i + x0 j + x1k =
1−1(x0 + x1i + x2 j + x3k) j, the lifting w̃ of w is ±(1, j) ∈
Sp(1) × Sp(1). The sign of w̃ does not affect the lifting of
Eq. (12), hence we simply take w̃ = (1, j).

Now, we lift this constraint to the covering group Sp(1) ×
Sp(1). The lifting requires fixing the start point, and the lift
of the left-hand side (LHS) of Eq. (12) should be equal to
the lift of the right-hand side (RHS) of this equation. The
start point of the lift of the LHS is p−1(wW (0, t )w−1) =
±w̃−1W̃ (0, t )w̃, and we simply choose it to be w̃−1W̃ (0, t )w̃.
The start point of the lift of the RHS is W̃ −1(0, t ) =
±W̃ (0, t )−1 (we cannot choose the sign of the RHS since
we have already made the sign choice of the LHS). Assume
W̃ (0, t ) = (x0 + x1i + x2 j + x3k, x′

0 + x′
1i + x′

2 j + x′
3k). The

start point of the LHS is equal to the start point of the RHS,

w̃−1W̃ (0, t )w̃ = ±W̃ (0, t )−1

⇐⇒ W̃ (0, t )w̃ = ±w̃W̃ (0, t )−1

⇐⇒ (x0 + x1i + x2 j + x3k, x′
0 + x′

1i + x′
2 j + x′

3k)(1, j)

= ±(x0 − x1i − x2 j − x3k, x′
0 + x′

1i − x′
2 j + x′

3k)(1, j).

First let the above equality hold for the “+” sign. This re-
quires x1 = x2 = x3 = x′

2 = 0, which means W̃ (0, t ) = (x0 +
x1i + x2 j + x3k, x′

0 + x′
1i + x′

2 j + x′
3k) ∈ X0

⊔
Y0, where

X0 = {(1, x′
0 + x′

1i + x′
3k)|(x′

0)2 + (x′
1)2 + (x′

3)2 = 1} and
Y0 = −X0 = {(−1, x′

0 + x′
1i + x′

3k)|(x′
0)2 + (x′

1)2 + (x′
3)2 =

1}. Let W̃ (0, t ) = (1, a + b i + d k), where a2 + b2 + d2 = 1.
Then the matrix form of the Wilson loop W (0, t ) which maps
(x0 + x1i + x2 j + x3k) to 1−1(x0 + x1i + x2 j + x3k)(a +
b i + d k) is

W (0, t ) =

⎛⎜⎜⎜⎝
a −b 0 −d

b a d 0

0 −d a b

d 0 −b a

⎞⎟⎟⎟⎠.

It has eigenvalues a + √
1 − a2 i, a + √

1 − a2 i,
a − √

1 − a2 i, and a − √
1 − a2 i. Hence, the partial

polarization ν�Y = ∑
j v

y
j (kx = 0) mod 2 = 0 mod 2.

Now, let the above equality hold for the “−” sign. This
requires x′

0 = x′
1 = x′

3 = x0 = 0, which means W̃ (0, t ) =
(x0 + x1i + x2 j + x3k, x′

0 + x′
1i + x′

2 j + x′
3k) ∈ X1

⊔
Y1,

where X1 = {(x1i + x2 j + x3k, j)|(x1)2 + (x2)2 + (x3)2 = 1}
and Y1 = {(x1i + x2 j + x3k,− j)|(x1)2 + (x2)2 + (x3)2 = 1}.
Let W̃ (0, t ) = (b i + c j + d k, j), where b2 + c2 + d2 = 1.
Then the matrix form of the Wilson loop W (0, t ) which
maps (x0 + x1i + x2 j + x3k) to (b i + c j + d k)−1(x0 +
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x1i + x2 j + x3k) j is

W (0, t ) =

⎛⎜⎜⎜⎝
c d 0 −b

d −c b 0

0 b c d

−b 0 d −c

⎞⎟⎟⎟⎠.

It has eigenvalues 1, 1, −1, and −1. Hence, the partial po-
larization ν�Y = ∑

j v
y
j (kx = 0) mod 2 = 1 mod 2. From

above, we conclude

w̃−1W̃ (0, t )w̃ = W̃ −1(0, t ) = (−1)ν�YW̃ −1(0, t ). (13)

We have W̃ −1(k, t )W̃ (k, t ) = p−1(I4×4) = ±(1, 1), since
p(W̃ −1(k, t )W̃ (k, t )) = W (k, t )W −1(k, t ) = I4×4. The value
of W̃ −1(k, t )W̃ (k, t ) continuously depends on k, which im-
plies W̃ −1(k, t )W̃ (k, t ) = W̃ −1(0, t )W̃ (0, t ). In the ν�Y = 0
mod 2 case, we have W̃ −1(0, t )W̃ (0, t ) = (1, 1), while in the
ν�Y = 1 mod 2 case we have W̃ −1(0, t )W̃ (0, t ) = (−1,−1).
Combining these relations, from Eq. (12) one obtains

p−1(wW (k, t )w−1) = p−1(W −1(−k, t ))

⇔ w̃−1W̃ (k, t )w̃ = (−1)ν�YW̃ (−k, t ), (14)

where the bar on the right side of the equality means
the conjugation of quaternion numbers, since for a modu-
lus 1 quaternion number a we have a−1 = ā; meanwhile,
W̃ −1(k)W̃ (k) = ±(1, 1) is used for different cases. We
emphasize here that the vanishing of the Fu-Kane-Mele in-
variant νFKM implies

∑
j v

y
j (kx = 0) mod 2 = ∑

j v
y
j (kx =

π ) mod 2, which implies that Eq. (14) has the same sign
at two time-reversal invariant points kx = 0 and kx = π , i.e.,
(−1)ν�Y = (−1)

∑
j v

y
j (kx=0) = (−1)

∑
j v

y
j (kx=π ). We will discuss

the nonzero Fu-Kane-Mele invariant case for comparison at
the end of this section.

We denote the time-reversal operator acting on Sp(1) ×
Sp(1) by T ,

T : Sp(1) × Sp(1) −→ Sp(1) × Sp(1),

(u, v) 	−→ w̃−1(u, v)w̃. (15)

Then Eq. (14) can be written in terms of T as

T (W̃ (k, t )) = (−1)ν�YW̃ (−k, t ). (16)

Note that for k = 0 or k = π , W̃ (k, t ) should be fixed (or
antifixed for the nonzero partial polarization case) by the
time-reversal operator T for any t ∈ [0, 1], i.e., T (W̃ (0, t )) =
(−1)ν�YW̃ (0, t ) and T (W̃ (π, t )) = (−1)ν�YW̃ (π, t ). Hence,
we should study the fixed (antifixed) point set of the time-
reversal operator T .

If ν�Y = 0 mod 2, Eq. (14) becomes T (u, v) = (u, v) and
the solution of it is x1 = x2 = x3 = x′

2 = 0. Hence, the fixed
point set of the map T in Sp(1) × Sp(1) is

[Sp(1) × Sp(1)]T

= {(1, x′
0 + x′

1i + x′
3k)|(x′

0)2 + (x′
1)2 + (x′

3)2 = 1}
×

⊔
{(−1, x′

0 + x′
1i + x′

3k)|(x′
0)2 + (x′

1)2 + (x′
3)2 = 1}

= X0

⊔
Y0, (17)

where X0 = {(1, x′
0 + x′

1i + x′
3k)|(x′

0)2 + (x′
1)2 + (x′

3)2 = 1}
and Y0 = −X0 = {(−1, x′

0 + x′
1i + x′

3k)|(x′
0)2 + (x′

1)2 +
(x′

3)2 = 1} as before. Note that X0 and Y0 are disconnected
in Sp(1) × Sp(1), and each of X0,Y0 is a two-dimensional
sphere.

The lifted Wilson loop has a global sign ambiguity, i.e.,
±W̃ (k) are both lifts of W (k). We always set the start point of
the lifted Wilson loop to be in X0 to avoid this sign ambiguity.
The midpoint of the lifted Wilson loop can be either in X0 or in
Y0. The simplest trivial phase has a constant Wilson loop k 	→
I4×4. The lifting of this Wilson loop is also a constant loop,
which is k 	→ (1, 1). At k = π , it belong to the fixed point
subset X0. Hence, we can conclude the following theorem:

Theorem 2. The TR-symmetric and twofold rotation sym-
metric Hamiltonian with four occupied bands with vanishing
νFKM and ν�Y is topologically trivial if the lifting W̃e2,π (kx )
of its Wilson loop We2,π (kx ) satisfies W̃e2,π (kx = π ) ∈ X0. If
W̃e2,π (kx = π ) ∈ Y0, it is nontrivial.

We present a proof of this theorem in Appendix B. The
basic idea behind this is that the disconnectedness of the fixed
point set is an obstruction to deform the Wilson loop to a
trivial loop. It implies that even in a case of four occupied
bands, the spectrum of some nontrivial Wilson loop cannot
unwind, although its winding number can change. Hence,
the first component in tuple W̃e2,π (kx = π ) is a Z2-valued
homotopy invariant distinguishing the trivial phase and the
nontrivial phase.

If ν�Y = 1 mod 2, Eq. (14) becomes T (u, v) = −(u, v)
and the solution of it is x′

0 = x′
1 = x′

3 = x0 = 0. Hence, the
antifixed point set of the map T in Sp(1) × Sp(1) is

[Sp(1) × Sp(1)]−T

= {
(x1i + x2 j + x3k, j)|(x1)2 + (x2)2 + (x3)2 = 1

}
×

⊔
{(x1i + x2 j + x3k,− j)|(x1)2 + (x2)2 + (x3)2 = 1}

= X1

⊔
Y1, (18)

where X1 = {(x1i + x2 j + x3k, j)|(x1)2 + (x2)2 + (x3)2 = 1}
and Y1 = {(x1i + x2 j + x3k,− j)|(x1)2 + (x2)2 + (x3)2 = 1}
as before. Note that X1 and Y1 are disconnected in
Sp(1) × Sp(1), and each of X1,Y1 is a two-dimensional
sphere.

In this case, we always fix the start point of the lifted
Wilson loop to be in X1 to avoid the sign ambiguity. The
simplest trivial phase in this case has a constant Wilson loop
k 	→ diag(1,−1, 1,−1), whose lift is also a constant loop,
which is k 	→ ( j, j). At k = π , it belong to the fixed point
subset X1. Thus we can conclude the following theorem:

Theorem 3. The TR-symmetric and twofold rotation sym-
metric Hamiltonian with four occupied bands with vanishing
νFKM and nonzero ν�Y is topologically trivial if the lifting
W̃e2,π (kx ) of its Wilson loop We2,π (kx ) satisfies W̃e2,π (kx =
π ) ∈ X1. If W̃e2,π (kx = π ) ∈ Y1, it is nontrivial.

The proof of this theorem is similar to the proof of
theorem 2.

Now, we consider the case in which the Fu-Kane-Mele
invariant νFKM is nonzero. In this case, we lift the Wilson
loop starting at k = 0 along two directions, i.e., we lift along
the (−k)-direction to obtain a path whose parameter k is
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in [−π, 0], and we lift along the (+k)-direction to obtain
a path whose parameter k is in [0, π ]. As a result, we ob-
tain a lifted Wilson loop W̃ (k) ∈ Sp(1) × Sp(1), where k ∈
[−π, π ]. Since the Fu-Kane-Mele invariant νFKM is nonzero,
the lifted Wilson loop satisfies W̃ (π ) = −W̃ (−π ). Hence, the
lifted Wilson loop at k = π is related to the Wilson loop at
k = −π via the relation (14) instead of to itself. If ν�Y =∑

j v
y
j (k = 0) = 0 mod 2, then

∑
j v

y
j (k = π ) = 1 mod 2.

Further, this implies W̃ (k = π ) ∈ X1
⊔

Y1 by the same argu-
ment we made at k = 0. Meanwhile, we have W̃ (k = 0) ∈
X0

⊔
Y0. In the following, we explain why the lifted Wilson

loops at k = 0 and k = π belong to different sets. Because
our sign convention is made at the start point k = 0 and the
sign in the relation (14) which depends on

∑
j v

y
j (k = 0) = 0

mod 2 is “+,” the relation (14) becomes

w̃−1W̃ (k)w̃ = W̃ (−k). (19)

We consider the lifted Wilson loop at k = 0 and k = π . Using
the above relation, we obtain

w̃−1W̃ (0)w̃ = W̃ (0), w̃−1W̃ (π )w̃ = W̃ (−π ).

Due to the assumption that the Fu-Kane-Mele invariant νFKM
is nonzero, the relation W̃ (π ) = −W̃ (−π ) holds. Hence, the
following relations hold:

w̃−1W̃ (0)w̃ = W̃ (0), w̃−1W̃ (π )w̃ = −W̃ (π ),

which imply W̃ (k = 0) ∈ X0
⊔

Y0 and W̃ (k = π ) ∈ X1
⊔

Y1.
To avoid sign ambiguity, if

∑
j v

y
j (k = 0) = 0 mod 2, we

fix the start point of the lifted Wilson loop to be in X0 and
otherwise we fix the start point of the lifted Wilson loop to be
in X1. By the above discussion, we immediately conclude the
following theorem:

Theorem 4. Consider the TR-symmetric and twofold rota-
tion symmetric Hamiltonian with four occupied bands with
nonvanishing νFKM. If

∑
j v

y
j (k = π ) = 0 mod 2, phases

with different νnew invariants are distinguished by two cases:
W̃ (π ) ∈ X0 and W̃ (π ) ∈ Y0. Otherwise, if it is in the case∑

j v
y
j (k = π ) = 1 mod 2, phases with different νnew invari-

ants are distinguished by two cases: W̃ (π ) ∈ X1 and W̃ (π ) ∈
Y1.

2. Examples

In the following, we will prove that the above homotopy
classification agrees with the K theory classification. We show
this using two typical examples with vanishing νnew, ν�X, and
ν�Y. Per the discussion in Appendix C, all examples with
vanishing νnew, ν�X, and ν�Y can be deformed to these two
typical examples. Thus we deform each system with vanishing
νnew, ν�X, and ν�Y into these two examples, and we check
that the K theory invariant in these two examples agrees with
our homotopy invariant. Since the K theory invariant and our
homotopy invariant are both homotopically invariant, i.e., they
are not changed under deformation, this proves that our homo-
topy classification agrees with the K theory classification.

We first distinguish these two examples using two sym-
metry categories. Each system in the first category has two
TR-symmetry related TC2-symmetric channels. It can be ex-

pressed as

E = EI ⊕ EII, TC2EI,II ⊆ EI,II,

T EI ⊆ EII, T EII ⊆ EI, (20)

where E is the space of occupied bands, and EI and EII

are two channels. But each system in the second category is
characterized by

E = EI ⊕ EII, TC2EI,II ⊆ EI,II,

T EI ⊆ EI, T EII ⊆ EII. (21)

Note that each system in these two categories has TR-related
channels. In Appendix G, we present a numerical method
based on the Wilson loop for TR-related channels decompo-
sition. In the following, we will show examples belonging
to these two categories that may have the same Wilson loop
spectrum, but their topological class (trivial or nontrivial) is
different.

We first consider the following example. The Wilson loop
is

We2,ky=π (kx )

=

⎛⎜⎜⎜⎝
cos nkx sin nkx 0 0

− sin nkx cos nkx 0 0

0 0 cos nkx sin nkx

0 0 − sin nkx cos nkx

⎞⎟⎟⎟⎠, (22)

where n is an integer, and the sewing matrix of the TR-
symmetry is

w =
(

0 −I2×2

I2×2 0

)
. (23)

Since the Wilson loop is block diagonal and the sewing matrix
w is block off-diagonal, the Wannier bands can be decom-
posed to two channels such that they are TR-related and each
is TC2-symmetric.

We calculate the lifting of the Wilson loop W̃e2,ky=π (kx ) =
(cos nkx + i sin nkx, 1). Hence the midpoint W̃e2,ky=π (kx = π )
is equal to ((−1)n, 1), which belongs to X0 for even n and
to Y0 for odd n. Then by theorem 2, for even n the system is
topologically trivial and for odd n it is topologically nontrivial.
In other words, the new homotopy invariant is expressed by n
mod 2.

Without loss of generality, we prove the equivalence of this
homotopy topological invariant and the K theory topological
invariant νnew for the n = 1 case. The Wilson loop spectrum
is shown in Fig. 2(a). It can be seen that the spectrum is
not periodic over the effective half Brillouin zone, while the
only known method to calculate the K theory invariant is to
deform the system to a system whose Wilson loop spectrum is
periodic over the effective half Brillouin zone and preserving
all symmetries. The K theory invariant is not changed during
the deformation (it is homotopically invariant), and after the
deformation it is the second Stiefel-Whitney number over the
effective half Brillouin zone. Such a deformation exists, and
the Hamiltonian can be deformed to a Hamiltonian that is
constant on the boundary of the effective half Brillouin zone
since all three obstruction invariants are zero. We present
a deformation in the Wilson loop spectrum level such that
the winding number of each Wannier band is not changed.
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FIG. 2. (a) The original Wilson loop spectrum. There are four
Wannier bands labeled by black, red, dashed black, and dashed red.
The black band coincides with the red band and the black dashed
band coincides with the red dashed band. (b) The deformed Wilson
loop spectrum. The winding number of each Wannier band is not
changed. Furthermore, symmetries of Wannier bands are preserved.

We present the deformed Wilson spectrum in Fig. 2(b). The
deformation preserves all symmetries of the system. Note
that if we denote the space with black Wannier bands as
channel I, and the space with red Wannier bands as channel
II, then these two channels are TR-related and each channel is
TC2-symmetric. Note that on the left effective half Brillouin
zone (kx ∈ [−π, 0]), the black Wannier bands have winding
number 0 and the red Wannier bands have winding number
1. However, the roles of the black Wannier bands and the
red Wannier bands are exchanged on the right effective half
Brillouin zone, i.e., the black Wannier bands have winding
number 1 and the red Wannier bands have winding number
0. Hence, the total second Stiefel-Whitney number νnew =
w2[BZ 1

2
] over the effective half Brillouin zone is 1, which

implies that this phase is nontrivial. Thus we conclude that
the homotopy invariant we obtained above agrees with the K
theory invariant νnew in this example and in all systems.

Now, we elaborate on another example that behaves differ-
ently from the first example. The Wilson loop is

We2,ky=π (kx )

=

⎛⎜⎝ cos mkx sin mkx 0 0
− sin mkx cos mkx 0 0

0 0 cos nkx sin nkx

0 0 − sin nkx cos nkx

⎞⎟⎠, (24)

where m and n are integers, and m + n is even due to the
requirement of vanishing of the Fu-Kane-Mele invariant. The
sewing matrix of the TR-symmetry is

w =

⎛⎜⎝0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎠. (25)

Since both We2,ky=π (kx ) and w are block diagonal, the space
with occupied bands can be decomposed into two T,C2-
symmetric subspaces with two occupied bands, which implies
that this example belongs to the second category. We apply
a basis transformation on the sewing matrix to the previous
standard form w = ( 0 −I2×2

I2×2 0 ). Under this basis transforma-

tion, the Wilson loop becomes

We2,ky=π (kx )

=

⎛⎜⎜⎜⎝
cos mkx 0 sin mkx 0

0 cos nkx 0 sin nkx

− sin mkx 0 cos mkx 0

0 − sin nkx 0 cos nkx

⎞⎟⎟⎟⎠. (26)

By solving the lifting equation, the lifting of this Wilson loop
is

W̃e2,ky=π (kx ) =
(

cos mkx + cos nkx

2 cos
(

m+n
2 kx

) + j
sin mkx − sin nkx

2 cos( m+n
2 kx

)
× cos

(
m + n

2
kx

)
− j sin

(
m + n

2
kx

))
,

(27)

which can be directly verified by[
cos mkx + cos nkx

2 cos
(

m+n
2 kx

) − j
sin mkx − sin nkx

2 cos
(

m+n
2 kx

) ]
× (x0 + x1i + x2 j + x3k)

×
[

cos

(
m + n

2
kx

)
− j sin

(
m + n

2
kx

)]
= (1, i, j, k)We2,ky=π (kx )(x0, x1, x2, x3)T .

The midpoint of the lifting is

W̃e2,ky=π (kx = π ) =
(

(−1)m + (−1)n

2(−1)
m+n

2

, ∗
)

=
(

(−1)m[1 + (−1)n−m]

2(−1)
m+n

2

, ∗
)

= ((−1)m(−1)
−m−n

2 , ∗) = ((−1)
m−n

2 , ∗).

Hence the system is in a trivial phase if and only if m−n
2 is

even. In other words, the new homotopy invariant is expressed
as m−n

2 mod 2. Note that m−n
2 is ensured to be an integer

since m + n is even due to the requirement of vanishing of
the Fu-Kane-Mele invariant.

Now, consider the m = n = 1 case. The Wilson loop spec-
trum is identical to the first example with n = 1, but their
topological classes are different, i.e., the first example is non-
trivial and this example is trivial. This is because these two
examples belong to different categories described above, and
this example can reduce to the problem of two subsystems
with two occupied bands while the first example cannot.

Now, we prove the equivalence of this homotopy invariant
and the K theory invariant νnew in this example. Consider
a nontrivial phase, say, m = 1, n = 3. It can be seen that
the Wilson loop spectrum is not periodic over the effective
half Brillouin zone, and we cannot deform the Wilson loop
spectrum with respect to symmetries without alternating the
winding number of each Wannier band. However, we have
proved that the homotopy class of this example only depends
on m − n. Hence, this phase is equivalent to a phase with
m = 2 + 2 j, n = 4 + 2 j, j ∈ Z. The Wilson loop with m =
2 + 2 j, n = 4 + 2 j has a periodic spectrum over the effective
half Brillouin zone, and the K theory invariant is calculated
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as νnew = w2[BZ 1
2
] = m

2 + n
2 mod 2 = 1 mod 2, which im-

plies that this phase is nontrivial. Therefore, the homotopy
invariant pr1(W̃e2,π (kx = π )) agrees with the K theory invari-
ant νnew, where pr1 in this expression takes the first component
of the tuple. From now on, we identify our homotopy invari-
ant with the K theory invariant νnew and simply denote our
homotopy invariant by νnew.

In this example, the system can be decomposed to two
subsystems with two occupied bands. Therefore, we can
rigorously prove the conclusion νnew = e[BZ]

2 mod 2 for the
case of two occupied bands. Denote occupied spaces of two
subsystems by E1 and E2. Let m, n be even so that each
subsystem has a vanishing Fu-Kane-Mele invariant. Euler
numbers of two subsystems are given by e(E1)[BZ] = m and
e(E2)[BZ] = n, respectively. We simply set n = 0 so that
the subsystem E2 is trivial. Due to linearity, the invariant
of this four-band system is a sum of two invariants of sub-
systems, i.e., νnew(E1 ⊕ E2) = νnew(E1) + νnew(E2). Relations
νnew(E1 ⊕ E2) = m−0

2 mod 2 and νnew(E2) = 0 mod 2 im-
ply νnew(E1) = m

2 = e(E1 )[BZ]
2 mod 2. Conversely, this result

and linearity imply νnew(E1 ⊕ E2) = νnew(E1) + νnew(E2) =
m
2 + n

2 = m−n
2 mod 2 for nonzero n, where in the last equality

the fact that m−n
2 mod 2 = m+n

2 mod 2 for even m, n is used.
We summarize the quantitative results of this section in

this paragraph. Examples belonging to the first category are
characterized by a single Wilson loop winding number n,
and the new topological invariant is expressed by νnew = n
mod 2. Meanwhile, examples belonging to the second cate-
gory are characterized by two Wilson loop winding numbers
m and n, where each winding number is the Euler number of a
T,C2-symmetric subsystem, and the new topological invariant
is expressed by νnew = m−n

2 mod 2.

IV. AN EXAMPLE OF A HAMILTONIAN

In this section, we give an example of a Hamiltonian in
momentum space whose Wilson loop operator can be ana-
lytically computed. The basic idea of this example is that
the Berry connection of this system is flat (zero), hence the
only contribution to the Wilson loop operator is the transition
function between two patches. The eight-band Hamiltonian
is given in the form of the image of a dimension raising
isomorphism,

H (kx, ky) = cos θ

(
0 q(kx )

qT (kx ) 0

)
+ sin θ

(
I4×4 0

0 −I4×4

)
,

(28)

where θ ∈ [−π/2, π/2], and q(kx ) in this expression
equals q1(kx ) for ky ∈ [−π

2 , π
2 ] and equals q0(kx ) for ky ∈

[−π,−π
2 ] ∪ [π

2 , π ]. The map from the value of ky to the value
of θ is shown in Fig. 3. For ky ∈ [−π

2 , π
2 ] (gray region in

Fig. 3),

q(kx ) = q1(kx )

=

⎛⎜⎜⎜⎝
0 0 cos nkx − sin nkx

0 0 sin nkx cos nkx

cos nkx − sin nkx 0 0

sin nkx cos nkx 0 0

⎞⎟⎟⎟⎠,

(29)

FIG. 3. The map from the value of ky to the value of θ . The left
side of the square (Brillouin zone) shows the value of ky, and the
right side of the square shows the value of θ . The value of θ between
two labeled values of θ is linear interpolated. The value of q(kx ) in
Eq. (28) is equal to q1(kx ) in the gray region, and q0(kx ) in the white
region.

where n is an integer. As for ky ∈ [−π,−π
2 ] ∪ [π

2 , π ] (white
region in Fig. 3),

q(kx ) = q0(kx ) =

⎛⎜⎝0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎠. (30)

This Hamiltonian is continuous and periodic on the Brillouin
zone. This system has a TR-symmetry operator T and a
twofold rotation symmetry operator C2, which are

T =
(

0 −σz ⊗ σ0

σz ⊗ σ0 0

)
K,

C2 =
(

0 σz ⊗ σ0

−σz ⊗ σ0 0

)
, (31)

where K is the complex conjugation operator, and the com-
posite symmetry TC2 is equal to K.

Assume this system is half-filling, which makes the system
a gapped system. The Wilson loop operator can be analytically
computed in this system, and we give the computation in
Appendix D. The result is expressed in terms of q1(kx ) and
q0(kx ),

We2,ky=π (kx ) = qT
1 (kx )qT

0 (kx )−1

=

⎛⎜⎜⎜⎝
cos nkx sin nkx 0 0

− sin nkx cos nkx 0 0

0 0 cos nkx sin nkx

0 0 − sin nkx cos nkx

⎞⎟⎟⎟⎠.

(32)

045150-8



HOMOTOPY INVARIANT IN TIME-REVERSAL AND … PHYSICAL REVIEW B 104, 045150 (2021)

The TR-symmetry of the system induces the following rela-
tion on Wilson loop operator [18]:

w(kx, ky)W ∗
e2,ky

(kx )w(kx, ky)−1 = W −1
e2,−ky

(−kx ). (33)

Since the Wilson loop operator in this system is real due to the
composite TC2 symmetry, W ∗ in Eq. (33) can be taken to be
W . Let the start point of the Wilson loop be (kx, ky) = (kx, π ).
The sewing matrix w at the ky = π line can then be shown to
be independent of kx as in Appendix E,

w(kx, π ) = q0(kx )σz ⊗ σ0 =
(

0 −I2×2

I2×2 0

)
. (34)

Equation (33) becomes

wWe2,π (kx )w−1 = W −1
e2,π

(−kx ), (35)

where w = ( 0 −I2×2
I2×2 0 ). Note that the Wilson loop

We2,ky=π (kx ) (32) and the sewing matrix w of TR-symmetry
in this example have been analyzed in the previous section.
The new topological invariant νnew is equal to n mod 2. For
odd n, we have shown in the previous section that Wannier
bands in its Wilson loop spectrum cannot unwind.

We apply a cutoff on the Fourier transformation of the
Hamiltonian (28) with n = 1 in momentum space to obtain
a tight-binding model. The hopping matrices are taken to be

t00 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1
π

0
0 0 0 0 0 0 0 1

π

0 0 0 0 1
π

0 0 0
0 0 0 0 0 1

π
0 0

0 0 1
π

0 0 0 0 0
0 0 0 1

π
0 0 0 0

1
π

0 0 0 0 0 0 0
0 1

π
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

t01 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− i
2 0 0 0 0 0 − 1

4 0
0 − i

2 0 0 0 0 0 − 1
4

0 0 − i
2 0 − 1

4 0 0 0
0 0 0 − i

2 0 − 1
4 0 0

0 0 − 1
4 0 i

2 0 0 0
0 0 0 − 1

4 0 i
2 0 0

− 1
4 0 0 0 0 0 i

2 0
0 − 1

4 0 0 0 0 0 i
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

t02 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1
3π

0
0 0 0 0 0 0 0 1

3π

0 0 0 0 1
3π

0 0 0
0 0 0 0 0 1

3π
0 0

0 0 1
3π

0 0 0 0 0
0 0 0 1

3π
0 0 0 0

1
3π

0 0 0 0 0 0 0
0 1

3π
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

t10 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1
2π

i
2π

0 0 0 0 0 0 − i
2π

1
2π

0 0 0 0 1
2π

i
2π

0 0
0 0 0 0 − i

2π
1

2π
0 0

0 0 1
2π

− i
2π

0 0 0 0
0 0 i

2π
1

2π
0 0 0 0

1
2π

− i
2π

0 0 0 0 0 0
i

2π
1

2π
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

t11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1
8

i
8

0 0 0 0 0 0 − i
8

1
8

0 0 0 0 1
8

i
8 0 0

0 0 0 0 − i
8

1
8 0 0

0 0 1
8 − i

8 0 0 0 0
0 0 i

8
1
8 0 0 0 0

1
8 − i

8 0 0 0 0 0 0
i
8

1
8 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

t12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1
6π

i
6π

0 0 0 0 0 0 − i
6π

1
6π

0 0 0 0 1
6π

i
6π

0 0
0 0 0 0 − i

6π
1

6π
0 0

0 0 1
6π

− i
6π

0 0 0 0
0 0 i

6π
1

6π
0 0 0 0

1
6π

− i
6π

0 0 0 0 0 0
i

6π
1

6π
0 0 0 0 0 0

is

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(36)

where ti j represents the hopping parameter that an electron
hops from site (m, n) to site (m + i, n + j) and it is an 8 × 8
matrix since every unit cell has eight internal degrees of
freedom. Further, hopping matrices in the inverse direction

FIG. 4. The Wilson loop spectrum of the tight-binding model.
Each band has a twofold degeneracy.
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are taken to be conjugate transpositions of these tabulated
hopping matrices, and any other hopping matrices are zero.
The Wilson loop spectrum of this system is plotted in Fig. 4.
In Table IV of Ref. [28], possible atomic insulating states are
listed which all have a gapped Wilson loop spectrum. Hence,
the gapless Wilson loop spectrum presents an obstruction to
the Wannier representation of this phase, and it implies that
this phase is in a fragile topological insulating phase or in a
stable band topology phase [47]. We believe that this phase is
in a stable band topology phase since the topological invariant
νnew is stable.

V. CONCLUSIONS

In this work, we present a new homotopy invariant in a
twofold rotation symmetric system in AZ class AII. We prove
that it agrees with the K theory topological invariant. The
main idea is lifting the Wilson loop to the universal covering
group, and the topology origin of this invariant is the discon-
nectedness of the fixed point set of TR-symmetry acting on
the covering group. We show two examples belonging to two
symmetry categories in a case of four occupied bands that
have the same Wilson loop spectrum but belong to different
topological classes (one is trivial and another nontrivial).

In addition, we have shown in the case of four occupied
bands that even when three other topological invariants (par-
tial polarizations and the Fu-Kane-Mele invariant) vanish,
there is an additional obstruction that prevents the Wilson
loop spectrum from unwinding. This extends the results in
Refs. [32,33], in which the conservation of the Wilson loop
spectrum winding number in the case of two occupied bands
and the unwinding of the Wilson loop spectrum in the case of
more occupied bands are studied.
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APPENDIX A: COMPUTATION OF THE K GROUP

In this Appendix, we present a calculation of the twisted
equivariant K group φK (τ,c)

G (X ) of the system using the spec-
tral sequence method [48]. Another approach using dimension
raising isomorphism also works [13,30,40]. Here we prefer
the spectral sequence method for the convenience of relating
topological invariants to pages in a spectral sequence. We
simply give the calculation here; the details and an explanation
of this method can be found in Ref. [48]. The first step of
this method is processing an equivariant cell decomposition,
which is shown in Fig. 5.

The symmetry group of each zero-dimensional cell is G =
ZC2

2 × ZT
2 . The little group G splits into the disjoint union of

left cosets as

G = G0 � T G0, (A1)

where G0 = {g ∈ G|φ(g) = c(g) = 1} = ZC2
2 is the subgroup

of unitary symmetries. Time-reversal symmetry T ∈ G is a
magnetic symmetry. There are two twisted irreducible repre-

FIG. 5. Cell decomposition of the Brillouin zone T 2. (a) Two-
dimensional cells α, α′ are shown. (b) One-dimensional cells
a, b, c, a′, b′, c′ are shown as red arrows. (c) Zero-dimensional cells
�, X,Y, M are shown as blue points.

sentations of G0 = ZC2
2 : the one-dimensional representation

with C2 = i, and the one-dimensional representation with
C2 = −i. For two such irreducible representations the Wigner
test can be applied, with which we can calculate the following
formula:

W T
α = 1

|G0|
∑
g∈G0

zag,agχα ((ag)2), (A2)

where α denotes the corresponding irreducible representation,
z is the factor system of G, and χα is the character of the
irreducible representation α. For the above two irreducible
representations, we obtain

W T
C2=i = 0, W T

C2=−i = 0, (A3)

which implies that the symmetry classes of these zero-
dimensional cells are AZ class A, and these two irreducible
representations are tied by the magnetic symmetry T . We
can apply the same process for one-dimensional and two-
dimensional cells. Each cell has symmetry group Gk =
{e, TC2}, the subgroup of unitary symmetries G0

k = {e},
and the magnetic symmetry a = TC2. The result of the
Wigner test is W T

trivial = 1, which implies their symmetry
classes are AZ class AI. This can be intuitively under-
stood since TC2 is a magnetic symmetry that satisfies
(TC2)2 = 1. Use the above facts, the first page of the
spectral sequence E p,−n

1 = ∏
j∈I p

orb

φK (τ,c),−(n−p)
G (Xp, Xp−1) =∏

j∈I p
orb

φ|Dp
j K

(τ,c)|Dp
j
,−n

GD
p
j

(Dp
j ) is listed in Table I.

The only nonvanishing differential for n ∈ {0, 1, 2, 3} is
d0,0

1 : E0,0
1 → E1,0

1 , which is the set of compatible relations
of symmetry indicators at high symmetry points. The value of
d0,0

1 : E0,0
1 → E1,0

1 is listed in Table II.
One can calculate the E2 page of the spectral sequence

from the above data via the definition

E p,−n
2 = ker d p,−n

1 /imd p−1,−n
1 . (A4)

TABLE I. The E1 page of the spectral sequence.

E p,−n
1 {�, X,Y, M} {a, b, c} {α}

n = 0 Z + Z + Z + Z Z + Z + Z Z
n = 1 0 Z2 + Z2 + Z2 Z2

n = 2 Z + Z + Z + Z Z2 + Z2 + Z2 Z2

n = 3 0 0 0
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TABLE II. The differential d0,0
1 : E 0,0

1 → E 1,0
1 . The subscript

C2 = ( i 0
0 −i) under each high symmetry point symbol means the

irreducible representations C2 = i and C2 = −i come in pairs due to
time-reversal symmetry.

�[
C2=

(
i 0
0 −i

)] X[
C2=

(
i 0
0 −i

)] Y[
C2=

(
i 0
0 −i

)] M[
C2=

(
i 0
0 −i

)]

2 −2 0 0 a
0 2 0 −2 b
0 0 2 −2 c

The E2 page is listed in Table III. One can see that
all the second-order differentials d p,−n

2 : E p,−n
2 → E p+2,−(n+1)

2
for n < 3 vanish. The third page E3 of the spectral sequence,
which is also the infinite page E∞, is listed in Table IV.

From these pages of the spectral sequence, we conclude

E0,0
∞ = E0,0

2 ⊆ φ|X0 K
(τ,c)|X0
G (X0),

E1,−1
∞ = E1,−1

1 = φ|X1 K
(τ,c)|X1
G (X1, X0), (A5)

E2,−2
∞ = E2,−2

1 = φK (τ,c)
G (X2, X1),

where the first term E0,0
2

∼= Z is characterized by the
filling number of the system, the second term E1,−1

∞ =
φ|X1 K

(τ,c)|X1
G (X1, X0) ∼= Z2 + Z2 + Z2 is characterized by three

Z2-valued topological invariants, which are ν�X , ν�Y and
νFKM, and the third term E2,−2

∞ = φK (τ,c)
G (X2, X1) ∼= Z2 is

characterized by a new Z2-valued topological invariant νnew.
The K group of the system φK (τ,c)

G (X ) relates to the infinite
pages of the spectral sequence by following two short exact
sequences:

0 → F 1,−1 → φK (τ,c)
G (X ) → E0,0

∞ → 0,

0 → E2,−2
∞ → F 1,−1 → E1,−1

∞ → 0. (A6)

Since E0,0
∞ ∼= Z is a free Z-module, the first short exact se-

quence splits, and we obtain
φK (τ,c)

G (X ) ∼= E0,0
∞ ⊕ F 1,−1 ∼= Z ⊕ F 1,−1. (A7)

By the dimension raising isomorphism argument [30], we
already know the reduced version of the K group

φ
K̃ (τ,c)

G (X ) ∼=
Z4

2, which requires that the second short exact sequence also
splits,

F 1,−1 ∼= E2,−2
∞ ⊕ E1,−1

∞ ∼= Z4
2. (A8)

In conclusion,

φK (τ,c)
G (X ) ∼= E0,0

2 ⊕ φ|X1 K
(τ,c)|X1
G (X1, X0) ⊕ φK (τ,c)

G (X2, X1),
(A9)

TABLE III. The E2 page of the spectral sequence.

E p,−n
2 p = 0 p = 1 p = 2

n = 0 Z Z2 + Z2 + Z2 Z
n = 1 0 Z2 + Z2 + Z2 Z2

n = 2 Z + Z + Z + Z Z2 + Z2 + Z2 Z2

n = 3 0 0 0

TABLE IV. The E3 = E∞ page of the spectral sequence.

E p,−n
3 p = 0 p = 1 p = 2

n = 0 Z Z2 + Z2 + Z2 Z
n = 1 0 Z2 + Z2 + Z2 Z2

n = 2 Z + Z + Z + Z Z2 + Z2 + Z2 Z2

where the first component E0,0
2

∼= Z is characterized by
the filling number of the system, the second component
φ|X1 K

(τ,c)|X1
G (X1, X0) is characterized by three Z2-valued topo-

logical invariants, which are ν�X , ν�Y , and νFKM, and the
third component φK (τ,c)

G (X2, X1) is characterized by a new
Z2-valued topological invariant νnew, which is focused on in
this paper.

APPENDIX B: PROOF OF THEOREM 2

Proof. We divide the proof into two parts. The first part
assume that each lifted Wilson loop W̃e2,π (kx ) has a base point
W̃e2,π (kx = 0) = (1, 1). The homotopy in this part should fix
this base point and preserve all symmetries. The second part of
the proof allows a flowing of the base point, i.e., the homotopy
without a base point is studied. In this part, we show that the
two lifted Wilson loops with base points (1,1) and (1, h) ∈
X0 are topologically equivalent, where X0 = {(1, x′

0 + x′
1i +

x′
3k)|(x′

0)2 + (x′
1)2 + (x′

3)2 = 1} as shown in the main text.
Now, we show the first part of the proof. First, we prove

that if W̃e2,π (kx = π ) ∈ Y0, the system is nontrivial. Assume
that a homotopy between kx 	→ We2,π (kx ) and kx 	→ I4×4 ex-
ists, and denote it by W (kx, t ). Since the midpoint of the
lifted Wilson loop is located at the fixed point set X0

⊔
Y0,

we have a continuous path W̃ (π, t ) ∈ X0
⊔

Y0. Its start point
is W̃ (π, 0) ∈ Y0, and its end point is W̃ (π, 1) ∈ X0. Since
X0 and Y0 are disconnected in Sp(1) × Sp(1), they lead to a
contradiction.

Secondly, we prove that if W̃e2,π (kx = π ) ∈ X0, the sys-
tem is trivial. It is sufficient to consider the half path of the
lifting kx 	→ W̃e2,π (kx ), kx ∈ [0, π ]. The other half can be
constructed via the time-reversal operator T ,

W̃e2,π (2π − kx ) = T (W̃e2,π (kx )). (B1)

The topological classification of the half-path of the lifting
kx 	→ W̃e2,π (kx ), kx ∈ [0, π ] is given by the relative homotopy
group π1(Sp(1) × Sp(1), X0), which is trivial, as seen in the
following exact sequence:

[π1(X0) = π1(S2) ∼= 0] → [π1(Sp(1) × Sp(1)) ∼= 0]

→ π1(Sp(1) × Sp(1), X0)

→ [π0(X0) ∼= 0]. (B2)

Hence any lifting path kx 	→ W̃e2,π (kx ) with W̃e2,π (kx = π ) ∈
X0 is homotopic to a constant path kx 	→ (1, 1), which is triv-
ial. It follows that kx 	→ We2,π (kx ) is homotopic to a constant
loop kx 	→ I4×4 with respect to symmetries.

We show the second part of the proof by considering a
lifted Wilson loop W̃e2,π (kx ) with a base point (1,1) that flows
to any base point (1, h) ∈ X0 via a homotopy preserving all
symmetries. Since there is a connected path p(t ), t ∈ [0, 1]
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with the start point (1,1) and the end point (1, h) in X0, we
explicitly construct this homotopy as

W̃ (k, t ) = p(t )W̃e2,π (k). (B3)

In this setting, TR symmetry is preserved, as shown by

w̃−1W̃ (k, t )w̃ = (1,− j)p(t )W̃e2,π (k)(1, j)

= p(t )(1,− j)W̃e2,π (k)(1, j)

= p(t )W̃e2,π (−k)

= p(t )W̃e2,π (−k)

= W̃ (−k, t ), (B4)

where in the second equality the relation (1,− j)a = a(1,− j)
for any a ∈ X0 is used.

Furthermore, the base point of the final lifted Wilson loop
becomes W̃ (0, t = 1) = (1, h)W̃e2,π (k = 0) = (1, h).

APPENDIX C: CANONICAL FORM OF WILSON LOOPS

In Sec. III B 2 of the main text, we give two examples of
Wilson loops which are block diagonal. In this Appendix, we
denote each of them as the canonical form of Wilson loops
in each category. We give a proof on the statement under the
assumption that we consider a system with a vanishing partial
polarization invariant ν�Y and a vanishing FKM invariant, and
that any Wilson loop of such a system is homotopic equivalent
to the canonical form with respect to all symmetries. Further-
more, we give an explicit example of a deformation from a
gapped Wilson loop to a gapless Wilson loop in the canonical
form.

The proof of the existence of a symmetric deformation to
the canonical form can be simply given by using our proved
theorem 2. Consider the vanishing partial polarization invari-
ant ν�Y and the vanishing FKM invariant case. By theorem 2,
any Wilson loop can be deformed to representatives of ho-
motopy equivalent classes with respect to all symmetries. In
this case, there are two homotopy equivalent classes, one that
satisfies νnew = 0 mod 2 and another that satisfies νnew = 1
mod 2. In each symmetry category, these two representatives
can be found in the set of Wilson loops in canonical form.
To avoid confusion, we emphasize here that the first cate-
gory actually contains both representatives, hence to prove
the equivalence of our homotopy invariant and the K theory
invariant, we only need examples belonging to the first cate-
gory (or the second category). The reason that we introduce
both categories is that it provides more examples and shows
that systems with different homotopy invariant νnew may have
the same Wilson loop spectrum.

Here we give an explicit example of a deformation from a
gapped Wilson loop to a gapless Wilson loop in the canonical
form. Consider a Wilson loop and a sewing matrix of TR
symmetry of the following forms:

W = diag(A, B), w =

⎛⎜⎝0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞⎟⎠,

where

A =
⎛⎝ cos(mk + α) sin(mk + α)

− sin(mk + α) cos(mk + α)

⎞⎠
and

B =
⎛⎝ cos(mk − α) sin(mk − α)

− sin(mk − α) cos(mk − α)

⎞⎠.

Note that the above Wilson loop is TR invariant for any
α. By a linear interpolation, this Wilson loop is homotopic
to diag(A, B) with α = 0, which is the canonical form in
Sec. III B 2 of the main text. Also note that when m = 0
and α �= 0, π , the Wilson loop spectrum (Wannier bands) is
gapped. Use the Hamiltonian (28) in the main text, and set
q1(kx ) as

q1(kx ) =
(

0 BT

AT 0

)
, (C1)

where A and B are the same as above. In the deformation
process in which α changes from its initial nonzero value to
zero, the Wannier band gap is closed while the gap of the
Hamiltonian (28) remains open. Hence, the Wannier gap is not
topologically protected in this case, and this gapped Wilson
loop is deformed to the canonical form with respect to all
symmetries.

Now consider a system with a nonzero partial polarization
invariant ν�Y. Its Wilson loop is

W =

⎛⎜⎝ cos mk sin mk 0 0
− sin mk cos mk 0 0

0 0 − cos nk − sin nk
0 0 sin nk − cos nk

⎞⎟⎠, (C2)

and the Wilson loop with m = n = 0 is gapped. Here the
Wannier band gap is still not topologically protected since the
m = n = 0 phase is connected to the m = n = 2 phase, which
is gapless, without closing the gap of the Hamiltonian with
respect to all symmetries.

APPENDIX D: COMPUTATION OF THE WILSON LOOP

In this Appendix, we show two facts used in the main text.
First, we compute the Wilson loop matrix of the example
mentioned in the main text. We show that it can be analytically
computed. Furthermore, we provide an explicit inverse map
of the dimension raising map. Hence we show the second
fact, namely that the classification problem of the Hamiltonian
with respect to symmetries is equivalent to the classification
problem of the path of Wilson loop matrices with respect to
symmetries.

We recall the Hamiltonian in the main text,

H (kx, ky) = cos θ

(
0 q(kx )

qT (kx ) 0

)
+ sin θ

(
I4×4 O
O −I4×4

)
,

(D1)

where θ ∈ [−π/2, π/2], and q(kx ) in the expression equals
q1(kx ) for ky ∈ [−π

2 , π
2 ] and q0(kx ) for ky ∈ [−π,−π

2 ] ∪
[π

2 , π ]. We divide the Brillouin zone into four patches, as
shown in Fig. 6. On each patch, the periodic part of the
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FIG. 6. Four patches in the Brillouin zone. The white patch is
denoted by B0, the orange patch is denoted by B, the yellow patch is
denoted by A, and the gray patch is denoted by A0.

occupied band wave function can be analytically solved. On
patch A,

|uα (kx, ky)〉 = 1√
2 + 2 sin θ

(
cos θq1(kx ) |vα〉
−(1 + sin θ ) |vα〉

)
. (D2)

On patch B,

|uα (kx, ky)〉 = 1√
2 − 2 sin θ

(−(1 − sin θ ) |vα〉
cos θqT

1 (kx ) |vα〉
)

. (D3)

On patch A0,

|uα (kx, ky)〉 = 1√
2 + 2 sin θ

(
cos θq0(kx ) |vα〉
−(1 + sin θ ) |vα〉

)
. (D4)

On patch B0,

|uα (kx, ky)〉 = 1√
2 − 2 sin θ

(−(1 − sin θ ) |vα〉
cos θqT

0 (kx ) |vα〉
)

. (D5)

The |vα〉 , α ∈ {1, 2, 3, 4} in the above equations is the canon-
ical orthonormal basis of C4,

|v1〉 =

⎛⎜⎝1
0
0
0

⎞⎟⎠, |v2〉 =

⎛⎜⎝0
1
0
0

⎞⎟⎠, |v3〉 =

⎛⎜⎝0
0
1
0

⎞⎟⎠, |v4〉 =

⎛⎜⎝0
0
0
1

⎞⎟⎠.

(D6)

We show that this basis is parallel transported along ky

on each patch, in other words, the Berry connection vanishes
along ky. On patch A, the elements of the Berry connection are
expressed as

Aαβ (kx, ky) = 〈uα (kx, ky)| d |uβ (kx, ky)〉

= 1√
2 + 2 sin θ

(〈vα| qT
1 (kx ) cos θ −〈vα| (1 + sin θ ))

[
− cos θ

(2 + 2 sin θ )
3
2

(
cos θq1(kx )|vβ〉
−(1 + sin θ )|vβ〉

)

+ 1√
2 + 2 sin θ

(− sin θq1(kx ) |vβ〉
− cos θ |vβ〉

)
+ 1√

2 + 2 sin θ

(
cos θdq1(kx ) |vβ〉

0

)]
= − cos θ

2 + 2 sin θ
δαβ + cos θ

2 + 2 sin θ
δαβ + cos2 θ

2 + 2 sin θ
〈vα| qT

1 (kx )dq1(kx ) |vβ〉

= cos2 θ

2 + 2 sin θ
〈vα| qT

1 (kx )dq1(kx )|vβ〉, (D7)

and in matrix form,

A(kx, ky) = cos2 θ

2 + 2 sin θ
qT

1 (kx )dq1(kx ). (D8)

Thus the Berry connection vanishes along the θ (ky)-direction
[there is no dθ term in Eq. (D8)]. This conclusion holds on all
patches.

The transition function on the intersection of two patches
can be computed as well,

tAB(kx )αβ = 〈
uα

A(kx, 0)|uβ
B(kx, 0)

〉 = −〈vα|qT
1 (kx )|vβ〉, (D9)

which has the matrix form

tAB(kx ) = −qT
1 (kx ). (D10)

Similarly, all the other transition functions are

tA0B0 (kx ) = −qT
0 (kx ), tA0A(kx ) = I4×4, tBB0 (kx ) = I4×4.

(D11)

The Wilson loop matrix (holonomy) is defined by an inte-
gral of parallel transports on patches and transition functions.
Let {Ui}i=1,...,N be a cover including the loop l . Divide l
into N pieces so that li ⊆ Ui. Let pi be the junction points
of li, namely ∂li = pi+1 − pi. The Wilson loop is defined
by [27,40]

Wl = t1,N (p1)Pe− ∫
lN

AN tN,N−1(pN ) · · · Pe− ∫
l1
A1 , (D12)

where Ai is the Berry connection on Ui, and t i, j is the transi-
tion function on Ui ∩ Uj . In this example, since the connection

vanishes along the ky-direction, all Pe− ∫
li
Ai terms are equal to

I4×4. Hence, the Wilson loop matrix (holonomy) is expressed
by a formula only in terms of transition functions,

We2,π (kx ) = tA0A(kx )tAB(kx )tBB0 (kx )tB0A0 (kx )

= qT
1 (kx )qT

0 (kx )−1, (D13)

which is the result used in the main text.
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Furthermore, this process provides an explicit inverse map
of the dimension raising map. In general, any T,C2-symmetric
Hamiltonian with a vanishing ν�X can be deformed to the form
of Eq. (D1), which suggests the following procedure. Given
a Hamiltonian of a T,C2-symmetric system, we calculate its
Wilson loop matrix We2,π (kx ), which corresponds to a one-
dimensional chiral system whose Hamiltonian is

hchiral(kx ) =
(

0 We2,π (kx )

W T
e2,π

(kx ) 0

)
, (D14)

and the chiral symmetry is

� =
(

I4×4 0

0 −I4×4

)
. (D15)

This one-dimensional chiral-symmetric system is still T,C2-
symmetric, and

T =
(

0 w

w 0

)
, C2 =

(
0 B
B 0

)
, (D16)

where w is the sewing matrix of TR-symmetry as in Eq. (34),
and B is the sewing matrix of twofold rotation symmetry.
This fact implies that the topologically equivalent class of
the Hamiltonian with respect to symmetries is encoded by
the topologically equivalent class of the Wilson loop matrix
with respect to symmetries (only the information of the partial
polarization along the x-direction is lost, and it is encoded by
the Wilson loop along another direction). In the following,
we show that a homotopy of a Wilson loop with respect to
symmetries gives a deformation of the Hamiltonian without
breaking any symmetries.

Assume that we have found a homotopy between two paths
of Wilson loop matrices with respect to symmetries, that is, a
map W : [0, 2π ] × [0, 1] → SO(N ) such that

wW (k, t )w−1 = W −1(−k, t ), W (k, t = 0) = We2,π (k).
(D17)

We keep q0(kx, t ) invariant during the deformation, and
W (k, t ) and q1(kx, t ) are related by

W (k, t ) = qT
1 (k, t )qT

0 (k)−1, (D18)

which in other words says

qT
1 (k, t ) = W (k, t )qT

0 (k). (D19)

Use the expression of the time-reversal operator T =
( 0 −σz ⊗ σ0
σz ⊗ σ0 0 )K. The TR-invariance of the Hamilto-

nian (28) requires

(σz ⊗ σ0)qT (k, t ) = −q(−k, t )(σz ⊗ σ0). (D20)

We check this requirement on q1(k, t ),

(σz ⊗ σ0)q1(k, t )T (σz ⊗ σ0)

= (σz ⊗ σ0)W (k, t )q0(k)T (σz ⊗ σ0)

= (σz ⊗ σ0)W (k, t )(σz ⊗ σ0)(σz ⊗ σ0)q0(k)T (σz ⊗ σ0)

= (σz ⊗ σ0)W (k, t )(σz ⊗ σ0)[−q0(−k)]

= −(σz ⊗ σ0)W (k, t )w−1

= −(σz ⊗ σ0)w−1W T (−k, t )

= −(σz ⊗ σ0)(σz ⊗ σ0)q0W
T (−k, t )

= −q0W
T (−k, t )

= −q1(−k, t ), (D21)

where in the fourth and the sixth equality the relation w =
q0(k)(σz ⊗ σ0) = q0(σz ⊗ σ0) has been used.

Hence the problem of the classification of the Hamiltonian
with respect to symmetries is equivalent to the problem of the
classification of the Wilson loops along the x- and y-directions
with respect to symmetries. For this reason, we focus on the
classification of the Wilson loop matrices in the main text,
as the homotopy between two paths of Wilson loop matrices
induces a deformation of the Hamiltonian.

APPENDIX E: TIME-REVERSAL RELATED CHANNELS
AND THE SEWING MATRIX

The sewing matrix of the TR-symmetry of the example in
the main text is

wαβ (kx, ky = π )

= 〈uα (−kx, π )| T |uβ (kx, π )〉

= 1

2

( 〈vα| qT
0 (kx ) − 〈vα|)( 0 −σz ⊗ σ0

σz ⊗ σ0 0

)
×

(
q0(kx )|vβ〉

−|vβ〉
)

= 〈vα|q0(kx )(σz ⊗ σ0)|vβ〉, (E1)

which in matrix form is

w(kx, ky = π ) = q0(kx )(σz ⊗ σ0) = q0(σz ⊗ σ0). (E2)

Hence, the sewing matrix at the ky = π line is independent
of kx.

Next, we show that the subbundle of occupied bands can
be divided into two channels, which are themselves TC2-
symmetric and are T -related to each other. Let EI (EII) denote
the channel I (II) subbundle,

EI =
⊔

k∈T 2

{

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
a
b
c
d
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|a, b, c, d ∈ C} ∩ Eocc,k,

EII =
⊔

k∈T 2

{

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
b
0
0
0
0
c
d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|a, b, c, d ∈ C} ∩ Eocc,k, (E3)

where Eocc,k is the fiber of the occupied bundle at momentum
k. It is easy to see that these two channels are themselves
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TC2-symmetric and are T -related to each other, that is,

TC2EI,II ⊆ EI,II, T EI ⊆ EII, T EII ⊆ EI. (E4)

They are indeed vector bundles, since if we consider a partic-
ular local patch, say patch A,

EI|A =
⊔
k∈A

spanC{|u1(k)〉 , |u2(k)〉},
(E5)

EII|A =
⊔
k∈A

spanC{|u3(k)〉 , |u4(k)〉},

where uα (k), α = 1, 2, 3, 4 are four occupied bands we solved
in Appendix D.

APPENDIX F: EXPLICIT EXPRESSION OF A
SYMMETRY-PRESERVING HOMOTOPY

BETWEEN TWO WILSON LOOPS

We construct in this Appendix an explicit expression of a
symmetry-preserving homotopy between two Wilson loops.
Wilson loops considered here are in the form of Eq. (26). In
the main text, we stated that the Wilson loop with m = 1, n =
3 is homotopic to the Wilson loop with m = 2, n = 4. We
have obtained an explicit expression of a homotopy between
these two Wilson loops; however, it is quite sophisticated and
we believe it is not suitable as the first demonstration example.
Here, we present a simpler example, i.e., we construct an ex-
plicit expression of a homotopy between the Wilson loop with
m = 1, n = 1 and the Wilson loop with m = 0, n = 0 (these
two phases are all trivial, i.e., they have νnew = 0 mod 2).
The same strategy is still valid for more sophisticated exam-
ples.

The strategy of finding a symmetry-preserving homotopy
between two Wilson loops is first to find the symmetry-
preserving homotopy between their lifts, and then to project
the homotopy back to the SO(4) group via the covering map in
Eq. (9). Let W0(kx ) be the Wilson loop with m = n = 1, and let
W1(kx ) be the Wilson loop with m = n = 0. By Eq. (27), their
lifts are W̃0(kx ) = (1, cos kx − j sin kx ) and W̃1(kx ) = (1, 1),
respectively. Since their first components are the same, we
keep the first component invariant during the deformation.
Plot their second components in the three-dimensional space
spanned by 1, i, j ∈ H as shown in Fig. 7(a). The first loop is a
large circle on a two-dimensional sphere, and the second loop
is a point (constant loop). We consider first the deformation of
the first half of the loop (i.e. kx ∈ [0, π ]), and then map to the
deformation of the other half via TR symmetry as the same
strategy we applied in the proof of theorem 2. The deforma-
tion process is shown in Fig. 7(b). Note that the midpoint is
always in the fixed point set X0. It is easy to calculate the
second component of the homotopy as

pr2(W̃ (kx, t )) =
[
1 − (1 − cos kx ) sin2 π

2
(1 − t )

]
+ (1 − cos kx ) sin

π

2
(1 − t ) cos

π

2
(1 − t ) i

− sin
π

2
(1 − t ) sin kx j for kx ∈ [0, π ].

FIG. 7. The deformation of the second component of the lifted
Wilson loop. (a) The initial (red) and final (green) lifted Wilson loop.
(b) A series of deformation time slices, i.e., pr2(W̃ (kx, t )), where
kx ∈ [0, π ] and t = 0, 0.1, 0.3, 0.5, 0.75, 0.9, and 1.

The deformation of the other half can be obtained via TR
symmetry,

W̃ (kx, t ) = w̃−1W̃ (2π − kx, t )w̃

= (1,− j)W̃ (2π − kx, t )(1, j)

=
(

1,
[
1 − (1 − cos kx ) sin2 π

2
(1 − t )

]
+ (1 − cos kx ) sin

π

2
(1 − t ) cos

π

2
(1 − t ) i

− sin
π

2
(1 − t ) sin kx j

)
for kx ∈ [π, 2π ].
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Actually, the deformation of the lifted Wilson loop in k ∈ [0, π ] and k ∈ [π, 2π ] has the same form, i.e.,

W̃ (kx, t ) =
(

1,
[
1 − (1 − cos kx ) sin2 π

2
(1 − t )

]
+ (1 − cos kx ) sin

π

2
(1 − t ) cos

π

2
(1 − t ) i

− sin
π

2
(1 − t ) sin kx j

)
for kx ∈ [0, 2π ]. (F1)

The deformation of the Wilson loop is obtained by projecting the deformation of the lifted Wilson loop to the SO(4) group
via the covering map in Eq. (9), which is

W (kx, t )

=

⎛⎜⎜⎜⎝
[cos (kx ) − 1] cos2

(
πt
2

) + 1 − sin(πt ) sin2
( kx

2

)
cos

(
πt
2

)
sin

(
kx

)
0

sin(πt ) sin2
( kx

2

)
[cos

(
kx

) − 1] cos2
(

πt
2

) + 1 0 cos
(

πt
2

)
sin

(
kx

)
− cos

(
πt
2

)
sin

(
kx

)
0 [cos

(
kx

) − 1] cos2
(

πt
2

) + 1 sin(πt ) sin2
( kx

2

)
0 − cos

(
πt
2

)
sin

(
kx

) − sin(πt ) sin2
( kx

2

)
[cos

(
kx

) − 1] cos2
(

πt
2

) + 1

⎞⎟⎟⎟⎠
∈ SO(4). (F2)

One can check that W (kx, t ) preserves the TR-symmetry,
the initial Wilson loop W (kx, 0) belongs to the second cate-
gory with m = n = 1, and W (kx, 1) is the final Wilson loop
which equals an identity matrix. The Wilson loop spectrum
of W (kx, t ) has a set of winding numbers {1, 1} at t = 0, and
zero winding numbers at infinitesimal t . Hence the winding
numbers of the Wilson loop spectrum suddenly change at
t = 0, which is shown in Fig. 8.

APPENDIX G: DECOMPOSITION OF BANDS INTO
TWO TIME-REVERSAL RELATED CHANNELS

In this Appendix, we present a method of decomposition of
occupied bands into two time-reversal related channels. Such
an algorithm has already been investigated in [49]. However,
since in this article we apply a Wilson loop approach method,
and we do not require each occupied band to be smooth, an
alternative method will be used instead. We first simply review
the concept of a Wilson loop operator, and then we illustrate
our method. We illustrate our decomposition method for the
case of two occupied bands with only TR symmetry, and the
general case can be treated similarly.

Following the definition in [23], a discrete version of the
Wilson loop operator is

(Wk1k2 )mn

=
∑
a,b...

〈um(k1)|ua(k′
1)〉 〈ua(k′

1)|ub(k′
2)〉 〈ub(k′

2)|· · · |un(k2)〉,

(G1)

where k′
1, k′

2, . . . form a path connecting k1 and k2, and m, n,
a, and b are indices of occupied bands.

This is by definition an Nocc × Nocc matrix. We can also
define an operator Ŵk1k2 [an (Nocc + Nunocc) × (Nocc + Nunocc)
matrix] acting on spin-orbital space associated with this ma-
trix:

Ŵk1k2 =
∑

i, j∈occ

(Wk1k2 )i j |ui(k1)〉 〈u j (k2)|

= |ui(k1)〉 〈ui(k1)|ua(k′
1)〉 · · · |u j (k2)〉 〈u j (k2)|

= P exp

(
i
∫ k1

k2

P̂k∂P̂k · dk
)

, (G2)

where P̂k = ∑
i∈occ |ui(k)〉 〈ui(k)| is the projector onto the

occupied subspace at k, and P in the front of exp means
“path-ordered.” We further denote

Ŵe2,ky (kx ) = Ŵ(kx,ky+2π ),(kx,ky ), (G3)

where the path between the start point (kx, ky) and the end
point (kx, ky + 2π ) is a straight line, and e2 means the path
is along the ky direction. The eigenvalues of this operator
restricted on occupied band subspace have modulus 1, which
can be written as {eiv j (kx )| j = 1, 2, . . . , Nocc} for each fixed kx,
and they are independent of ky [18]. We denote {v j (kx )| j =
1, 2, . . . , Nocc}kx as the Wilson loop spectrum. Furthermore,
each v j (kx ) is a Wannier center (center of the Wannier func-
tion) of the system [18].

We illustrate our decomposition algorithm by a quantum
spin Hall insulator model. This insulator has a corresponding
Hamiltonian

h(k) = sin(kx )(�zx + �xx ) + sin(ky)(�yx + �0y)

+ [2 − m − cos(kx ) − cos(ky)]�0z, (G4)

where �i j = σi ⊗ τ j , and σi(τi ) are Pauli matrices correspond-
ing to the spin (orbital) degrees of freedom. We plot its Wilson
loop spectrum in Fig. 9. In [18], the concept of Wannier bands
is defined as the set of Wannier centers along x as a function
of ky, vx(ky), or, vice versa, as the set of Wannier centers along
y as a function of kx, vy(kx ). We simply denote the green
Wannier band and the red Wannier band in Fig. 9 by bands
I and II, respectively. This system is time-reversal invariant,
and the Wilson loop operator We2,ky (kx ) satisfies [18]

TŴe2,ky (kx )T −1 = Ŵ−e2,−ky (−kx ) = Ŵ †
e2,−ky

(−kx ), (G5)

where T is the time-reversal operator, which is antiunitary.
Hence the set of Wannier centers satisfies the following con-
straint:

{v j (kx )} T= {v j (−kx )}, (G6)
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FIG. 8. The deformation of the Wilson loop spectrum. (a) The
Wilson loop spectrum of W (kx, t = 0). It has nonzero winding num-
bers. (b) The Wilson loop spectrum of W (kx, t = 0.1). It only has
zero winding numbers.

which in our case implies

vI(kx ) = vII(−kx ). (G7)

In our case, the Wilson loop operator Ŵe2,ky (kx ) at each
(kx, ky) has a spectral decomposition on the Hilbert space of
the Hamiltonian,

Ŵe2,ky (kx ) = ei2πvI (kx )PI(kx, ky) + ei2πvII (kx )PII(kx, ky)

+ 0Punocc(kx, ky), (G8)

where PI(kx, ky) is the projection operator of ei2πvI (kx )

eigenspace, PII(kx, ky) is the projection operator of ei2πvII (kx )

eigenspace, and Punocc(kx, ky) is the projection operator of the
subspace of unoccupied bands (note that PI, PII, and Punocc are

FIG. 9. Wilson loop spectrum of Hamiltonian (G4) with m = 3;
two Wannier bands are plotted by different colors, i.e., red and green.
The green Wannier band is labeled as band I, and the red Wannier
band is labeled as band II.

projectors on the eigenspace of the Hamiltonian). Hence,

TŴe2,ky (kx )T −1 = e−i2πvI (kx )T PI(kx, ky)T −1

+ e−i2πvII (kx )T PII(kx, ky)T −1

= e−i2πvII (−kx )T PI(kx, ky)T −1

+ e−i2πvI (−kx )T PII(kx, ky)T −1, (G9)

where in the second equality we have made use of (G7). On
the other hand,

TŴe2,ky (kx )T −1 = Ŵ †
e2,−ky

(kx )

= e−i2πvI (−kx )PI(−kx,−ky)

+ e−i2πvII (−kx )PII(−kx,−ky ). (G10)

FIG. 10. The entry PI (kx, ky )1,2 along two circles in the Brillouin
zone. (a) The trajectory is chosen to be a straight line between
(0.3π,−π ) and (0.3π, π ), which is actually a circle. (b) The tra-
jectory is chosen to be a straight line between (−π, 0.2π ) and
(π, 0.2π ), which is also a circle.
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Comparing the above two equations, a relation on projection
operators can be obtained,

T PI(kx, ky)T −1 = PII(−kx,−ky ),
(G11)

T PII(kx, ky)T −1 = PI(−kx,−ky ),

which means that two subbundles Ran(PI(kx, ky)) and
Ran(PII(kx, ky)) are related by time-reversal symmetry.

We further show that the two projection operators PI(kx, ky )
and PII(kx, ky) are continuous. Then Ran(PI(kx, ky)) and
Ran(PII(kx, ky )) become two well-defined vector bundles. The
two operators are continuous since the Wilson loop operator
We2,ky (kx ) is continuous and two Wannier bands are chosen
in a continuous way. We check this statement by numerically
computing the trajectory of PI(kx, ky) along some circles in the
Brillouin zone, which is shown in Fig. 10.
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