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Effect of coordination on topological phases on self-similar structures
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Topologically nontrivial phases have recently been reported on self-similar structures. Here we investigate the
effect of local structure, specifically the role of the coordination number, on the topological phases on self-similar
structures embedded in two dimensions. We study a geometry dependent model on two self-similar structures
having different coordination numbers, constructed from the Sierpinski gasket. For different nonspatial symme-
tries present in the system, we numerically study and compare the phases on both structures. We characterize
these phases by the localization properties of the single-particle states, their robustness to disorder, and by using
a real-space topological index. We find that both structures host topologically nontrivial phases and the phase
diagrams are different on the two structures. This suggests that, in order to extend the present classification
scheme of topological phases to nonperiodic structures, one should use a framework which explicitly takes the
coordination of sites into account.
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I. INTRODUCTION

After the discovery of the quantum Hall effect, the study
of topological phases has been one of the leading research ar-
eas in condensed matter physics. In noninteracting electronic
systems, topologically nontrivial phases are usually identified
by the presence of gapless boundary modes highly robust to
weak disorders, and are characterized by relevant topological
invariants [1,2]. These phases are well understood for trans-
lationally invariant systems, as the presence of a well-defined
momentum eigenbasis gives a natural setting to describe the
topology of bulk wave functions. Systematic classification of
topological phases on noninteracting translationally invariant
systems has been done in terms of both nonspatial and spatial
symmetries [3–8].

Although translational invariance is a necessary condition
for the presence of a well-defined momentum eigenbasis, it
turns out that this is not a necessary condition for the existence
of topological phases. Topological phases have been reported
in quasiperiodic, quasicrystalline, and amorphous systems
[9–11] which only preserve the notion of a well-defined
“bulk” and “boundary,” as defined in regular lattice systems
with open boundary. Also recently, properties associated with
topological phases have been reported on finite truncations
of fractals like the Sierpinski gasket and Sierpinski carpet
[12–16] which even lack this notion of bulk and boundary.
Although there have been some speculations [12,13,15], the
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factors affecting the topological properties of systems with-
out a precise bulk-boundary distinction are yet to be clearly
identified. In an attempt to identify one such factor, here we
study the effect of coordination on the topological properties
of noninteracting Hamiltonians on self-similar structures.

The way the sites are coordinated locally on a lattice plays
an important role in determining which topological phases the
lattice can host. To see this, consider a general two-orbital
nearest-neighbor tight-binding model on a two-dimensional
(2D) Bravais lattice, similar to what is considered in [5], given
by

Htb =
∑

R,〈r〉,α,β

t (r)[ψ†
α (R) f (θr )ψβ (R + r)], (1)

where R specifies the position vectors for the sites, r specifies
the relative vectors between two sites, {α, β} label the two
orbitals, and [cos(θr ), sin(θr )] = r/|r|. The function f (θr ) is
any function such that Htb is Hermitian. The matrix elements
of the corresponding Bloch Hamiltonian Htb(k), which essen-
tially determine the band topology, encode the information
about the local structure of the lattice as they involve a sum
over all nearest neighbors. This is how local properties like
coordination comes into the picture. As the form of Htb is
entirely determined by the crystal symmetry of the underlying
lattice [5], crystal symmetries are used for topological classi-
fication of such systems. Also, crystal symmetries are known
to put constraints on bulk topological invariants [17]. On some
two-dimensional lattices, the graph of the model, formed by
identifying the sites as the vertices and the nonzero hoppings
as the edges, forms a regular tiling of the two-dimensional
space. For such cases, the coordination number is uniquely
determined by the crystal symmetry and the coordination
number is hence not a separate variable that could influence
the topological properties. Examples of such cases are nearest
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FIG. 1. Schematics for the construction of the self-similar struc-
tures. The shaded regions are the finite truncations of the SG for
different generations. The blue and red dots indicate the positions
of the sites for the structures SG-4 and SG-3, respectively. The black
solid lines represent the bonds between the sites. The three corner
sites are marked with an additional yellow dot in both structures.

neighbor models on triangular, square, and hexagonal lattices.
But on self-similar structures, to the best of our knowledge,
no such correspondence has been established between coor-
dination and spatial symmetries. It is hence an open question
whether a change only in the local coordination of the sites
can affect the topological phases on self-similar structures.

The idea of coordination is also crucial for the distinc-
tion between bulk and boundary on regular lattices. But,
self-similar structures lack a clear distinction between bulk
and boundary. However, coordination number, and hence the
notion of coordination, is well defined for self-similar struc-
tures, as those are special graphs like regular lattices. For this
study we first construct two different self-similar structures
from the Sierpinski gasket (SG), with different coordination
numbers, which have the same Hausdorff dimension. We then
numerically study a geometry dependent noninteracting near-
est neighbor Hamiltonian on both structures by looking at
certain observables of interest.

The rest of the paper is organized as follows. In Sec. II we
describe the construction of the two different fractal structures
mentioned in the previous paragraph. We define the model
Hamiltonian and the observables we are looking at in Sec. III.
In Sec. IV we present and compare various properties of the
Hamiltonian on both structures. Finally, in Sec. V we con-
clude with a summary of our results and discuss some of the
remaining open questions on the subject.

II. CONSTRUCTION OF FRACTAL STRUCTURES

It is possible to construct various graphs on the SG, but for
simplicity we chose to focus on self-similar graphs which are
equicoordinated, except at the corner sites. One can construct
self-similar structures with coordination numbers 3 and 4 as
illustrated in Fig. 1, and of course also with coordination
number zero which is trivial, but we have not found equico-
ordinated graphs with other coordination numbers. We hence
focus on the structures in Fig. 1 in the following.

First we construct the SG by a recursive procedure starting
from an equilateral triangle. We divide it into four equilateral
triangles of equal area, remove the central triangle, and repeat
the procedure infinitely for each of the remaining triangles.
We call the structure generated after g iterations for “SG

FIG. 2. Schematics showing the self-similarity of (a) SG-4 and
(b) SG-3. The sites of the third generation are marked in red for both
structures. When these sites are removed, the remaining structure
resembles that of the second generation.

with generation g” and the triangles removed in a particular
iteration for “triangles belonging to generation g.”

For the first structure (shown in Fig. 1), we identify the
vertices of the triangles in each generation of the SG with
the sites, and the edges with the bonds. This gives a self-
similar structure in which, all sites except the three corner
sites (marked in yellow in Fig. 1), have coordination number
4. We denote this structure by “SG-4.” Tight-binding models
on this type of structure have been extensively studied using
real space renormalization methods [18–20].

For the second structure (also shown in Fig. 1), we identify
the centroids of the smallest triangles in each generation of
the SG with the sites, and connect the nearest neighbors.
This also gives a self-similar structure. But in this case, in
each generation, all sites except the three corner sites, have
coordination number 3. We denote this structure by “SG-3.”
Notice that the first generation of the SG-4 is obtained from
the zeroth generation of the SG, whereas the first generation
of the SG-3 is obtained from the first generation of the SG.

Due to the self-similar nature of the SG-3 and the SG-4,
for each structure we can remove certain specific sites from a
given generation “g” so that the structure with the remaining
sites resembles that of generation “g − 1.” For each structure
we term these specific sites as the “sites of generation g.” This
is illustrated in Fig. 2. In both structures, in each generation,
only the three corner sites of the SG-3 and the SG-4 are two
coordinated, but we expect this to not affect the physics when
we are far from the corner sites. Notice that both structures
have the same Hausdorff dimension as the SG. For numerical
calculations we carry out the constructions mentioned above,
but with a finite number of iterations for the SG, which gives
us structures with finite number of sites for the SG-3 and the
SG-4.

III. MODEL AND APPROACH

We study the fermionic, generalized Bernevig-Hughes-
Zhang (BHZ) model, on the self-similar structures mentioned
in Sec. II. We choose to study this model because the BHZ
model is known to host topologically nontrivial quantum spin
Hall insulating phases on translationally invariant lattice sys-
tems [21]. Also, this model can be easily generalized to make
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it depend on the geometry of the underlying motif [10,12].
We define the model in the following way. Each site has two
orbital degrees of freedom, denoted by α = {c, d}, and two
spin degrees of freedom, denoted by σ = ±1. We consider
only nearest neighbor hopping. The Hamiltonian is given by

ĤBHZ = M
∑

jσ

ψ̂
†
jσ τzψ̂ jσ − t

∑
〈 jk〉,σ

ψ̂
†
jσ τzψ̂kσ

− λ
∑

〈 jk〉,σ
ψ̂

†
jσ σ T̃ jk,σ ψ̂kσ , (2)

where ψ̂
†
jσ = (ĉ†

jσ , d̂†
jσ ), {τx, τy, τz} are the Pauli matrices for

the orbital degrees of freedom, and T̃ jk,σ is given by

T̃ jk,σ =
(

0 ie−iσθ jk

ieiσθ jk 0

)
.

Here θ jk denotes the angle made by the vector from the jth site
to the kth site, with the x axis. M denotes the on-site energy.
The real, non-negative numbers t and λ denote the hopping
strengths for hopping between the same orbitals and different
orbitals of nearest neighbor sites, respectively.

The two σ sectors are decoupled from each other and are
time reversal partners of each other, so it suffices to study the
model for one value of σ . Here we look only at the σ = 1
sector and hence the respective two-orbital Hamiltonian is
given by

Ĥ = M
∑

j

ψ̂
†
j τzψ̂ j − t

∑
〈 jk〉

ψ̂
†
j τzψ̂k − λ

∑
〈 jk〉

ψ̂
†
j T jkψ̂k, (3)

T jk =
(

0 ie−iθ jk

ieiθ jk 0

)
.

The model in Eq. (3) is the generalized half-BHZ model and
is known to host topological phases on square and triangular
lattices. For λ = t , this model hosts two distinct topological
phases on a square lattice with Chern number 1 and −1
[21,22]. However, on a triangular lattice, this model hosts a
different topological phase with Chern number −2, along with
a trivial phase and a topological phase with Chern number 1
[12]. This is a classic example where different coordination
numbers in different lattices result in emergence of different
topological phases. Also, for t = λ = 1/2, this model has
been studied on a fractal structure which is closely related to
SG-4, but with different boundary conditions [12].

We numerically study the systems by primarily looking at
the localization, dynamics, and the topological nature of the
single-particle states at half-filling. For the numerical com-
putations we use KWANT code [23]. A single particle state
denoted by label n can be written as

|ψn〉 =
∑

jα

ϕn, jα| jα〉, (4)

where {| j〉} denotes the basis vectors in the site basis. We
study the localization of single particle states by looking at
the density at any site j, given by

ρn( j) =
∑

α

|ϕn, jα|2. (5)

FIG. 3. Partitions of the sixth generation of (a) SG-4 and (b) SG-
3, for the real space Chern number calculation. The regions A, B, and
C are marked in red, green, and blue, respectively. The subsection is
X=A∪B∪C.

Given that it is unclear how to have a sharp distinction be-
tween bulk and edge states in the case of fractal systems,
we define “bulklike” and “edgelike” states as follows. An
eigenstate is a bulklike state if it has finite probability density
on sites which enclose the triangles belonging to more or less
every generation of the SG. On the other hand, an eigenstate
is an edgelike state, if it is localized on sites which enclose the
triangles belonging entirely to a particular generation of the
SG.

We use Kitaev’s topological index to study the topological
properties of the systems, which relies solely on the real space
description of the system [24]. This has been used in the liter-
ature to study the topological phases on self-similar structures
[13,14]. We first choose a subsection X of the fractal and
divide it into three parts, A, B and C, as shown in Fig. 3. We
use the following expression for the real space Chern number:

ν(P) = 12π i[Tr(APBPCP) − Tr(APCPBP)], (6)

where P = ∑
k |ψk〉〈ψk| is the projector onto the desired

eigenstates. A, B,C are diagonal matrices with

A = Ã ⊗ 1Norb , B = B̃ ⊗ 1Norb , C = C̃ ⊗ 1Norb , (7)

where Ã, B̃, C̃ denote the projectors into the sectors A, B, C
(as shown in Fig. 3), respectively, and Norb is the number of
orbitals per site which is 2 in this case.

We also check the dynamics of the states close to the Fermi
energy. To do this, we project a single particle state, initially
localized in the c orbital of one of the sites of the fractal, onto
a part of the eigenbasis defined by Emin < E < EF , and then
time evolve under Ĥ. Here E denotes the eigenenergies of the
Hamiltonian and EF denotes the Fermi energy. Emin is chosen
such that the energy range (Emin, EF ) is small enough to look
at the states near the Fermi energy but also large enough to en-
compass all the edgelike states below the Fermi energy. All the
computations have been done with Emin = −0.5. Apart from
this, we check whether the dynamics change in the presence of
disorder. To do this we add an extra on-site Anderson disorder
term to the Hamiltonian of the form

Ŵ =
∑

j

ψ̂
†
j W̃jψ̂ j, (8)

where W̃j = diag(εc
j , ε

d
j ) and εc

j , ε
d
j are random numbers

drawn from a uniform random distribution with mean μ = 0
and variance W . The total Hamiltonian under which the sys-
tem is time evolved then becomes Ĥdis = Ĥ + Ŵ.
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FIG. 4. Spectrum of H for λ = 0, M = 0, and t = 1 on (a) SG-
4 with g = 6 and (b) SG-3 with g = 6. N = 2Ns denotes the total
number of eigenstates where Ns is the total number of sites.

IV. RESULTS

The Hamiltonian in Eq. (3) can be rewritten in the follow-
ing block form in orbital ⊗ site notation:

Ĥ = �̂†H�̂, (9)

�̂ =
(

Ĉ
D̂

)
, H =

(
M − tH λ�

λ�† −(M − tH )

)
.

Here Ĉ = (ĉ1, ĉ2, . . . , ĉNs )
T and D̂ = (d̂1, d̂2, . . . , d̂Ns )

T
,

where Ns is the total number of sites. � jk = −ie−iθ jk and
Hjk = 1, if j, k are nearest neighbors connected by a bond as
shown in Fig. 1, and otherwise zero. From Eq. (9) it is easy to
see that this model has a charge-conjugation symmetry for all
values of M, t , and λ, given by

P−1HP = −H. (10)

Here P = τxK, where K is the complex conjugation operator.
A consequence of this symmetry is the spectra being sym-
metric around zero energy. Apart from this, the Hamiltonian
has other nonspatial symmetries for certain specific parameter
values. So we break our results into three parts, specifically
focusing on three particular parameter regimes, each having
different symmetry properties.

A. t �= λ = 0

For λ = 0, the Hamiltonian in Eq. (9) becomes

H = τz ⊗ (M − tH ), (11)

which is block diagonal and decouples into two single orbital
tight-binding models. This is well studied in the literature
on the SG-4 [18–20]. The spectrum of the model (shown in
Fig. 4) is symmetric about E = 0, as expected, due to the
charge-conjugation symmetry (10) of the model. It is already
known for SG-4 that the spectrum is self-similar and has
infinitely many gaps in the infinite g limit. We find that the
spectrum of SG-3 is also self-similar with infinitely many gaps
in the infinite g limit. We confirm this numerically by comput-
ing the spectrum for different g values, and analytically by
following the renormalization procedure done in [18,19]. For
M = 0, as seen in Fig. 4(b), we see a very high degeneracy
at zero energy in the case of SG-3, which is not seen in the
case of SG-4. The model has the symmetry that τz commutes

FIG. 5. Spectrum of Hxy on (a) SG-4 with g = 6 and (b) SG-3
with g = 6. N = 2Ns denotes the total number of eigenstates where
Ns is the total number of sites. For (a), the inset shows the highly
degenerate levels (flat band) at E = 0. For (b), the inset shows the
whole range of edgelike states near zero energy.

with the Hamiltonian (11), but this only gives rise to a twofold
degeneracy. The large degeneracy is hence a consequence of
the spatial arrangement of the sites in the underlying structure
and not due to any nonspatial symmetry of the Hamiltonian.
In this particular regime, however, the Hamiltonian does not
host any topological phases on either of the structures as H
does not host any topological phase. A nonzero mass term M
simply opens up a trivial gap in the spectra.

B. λ �= t = 0

Now we consider the case when we only have the on-site
term, c → d hoppings, and d → c hoppings. Then the Hamil-
tonian matrix H in Eq. (9) reduces to

H = Mτz + λ

(
0 �

�† 0

)
def= Mτz + λHxy. (12)

We start by studying H for M = 0. We see that every energy
level is at least doubly degenerate on both structures. This
is because Hxy has an additional orbital symmetry given by
τzHxyτz = −Hxy along with the charge-conjugation symmetry
(10). Hence, the system possesses time-reversal symmetry
given by T −1HxyT = Hxy, where T = iτyK, which results
in the Kramers degeneracy. If |ψ〉 = (C, D)T, where C =
(c1, c2, . . . , cNs )

T and D = (d1, d2, . . . , dNs )
T, is an eigenstate

of Hxy, then T |ψ〉 = (−D∗,C∗)T is also an eigenstate of Hxy.
Also, ψ and T ψ are orthogonal to each other as 〈ψ ||T ψ〉 = 0.

We find that the spectrum of Hxy on SG-4 hosts highly
degenerate levels at the Fermi energy [Fig. 5(a)], which is
not present in the case of SG-3. The Chern number for the
collection of degenerate levels at EF turns out to be zero,
when computed using Eq. (6). On SG-3, Hxy hosts doubly
degenerate zero energy states. Interestingly, these zero energy
states are edgelike states, completely localized on the sites
present on the triangle of the first generation. In fact, we
observe that all states close to zero energy, shown in the inset
of Fig. 5(b), are edgelike states. A few examples of such states
are shown in Fig. 6. In this case also, we find the Chern
number to be zero, when computed by projecting onto the
filled states (half-filling). However, looking at the dynamics
of the edgelike states close to the Fermi energy, we find
two modes of opposite chirality being present in the system

045147-4



EFFECT OF COORDINATION ON TOPOLOGICAL PHASES … PHYSICAL REVIEW B 104, 045147 (2021)

�

� �

�

FIG. 6. Few examples of edgelike eigenstates of Hxy on SG-3
with g = 6, close to zero energy. The color bar represents the relative
density per site of an eigenstate |ψn〉 defined by ρn( j)/max[ρn( j)].

(shown in Fig. 7). We also check the wave-packet dynamics in
the presence of weak Anderson disorder (shown in Fig. 8) and
find this characteristic in the dynamics being robust to weak
disorders. The presence of robust edge states is a signature
of a topologically nontrivial phase. So Hxy is topologically
nontrivial on SG-3 and the Chern number being zero is merely
a consequence of the time-reversal symmetry in the system.

Here we would like to point out that Hxy has a gapless
spectrum on the square lattice and the triangular lattice, with
Dirac cones at the high symmetry points of their respective
Brillouin zones. Their corresponding Bloch Hamiltonians are
given by H sq

xy (�k) = sin(kx )σx + sin(ky)σy for the square lat-
tice, and H tri

xy (�k) = 2[sin(kx ) + sin(kx/2) cos(
√

3ky/2)]σx +
2
√

3 cos(kx/2) sin(
√

3ky/2)σy for the triangular lattice. As
these systems are not gapped, these do not fall under the
usual classification of gapped topological phases in terms of
the tenfold symmetry classes. The system has time-reversal
symmetry (T 2 = −1) and hence has Kramer’s degeneracy,
thus preventing chiral dynamics in the system.

In two-dimensional two-band Chern insulators (absence of
time-reversal symmetry), the forward and the backward mov-
ing modes are localized on edges which are spatially separated
and this prevents the possibility of scattering between them.
However, in the presence of Kramer’s degeneracy, each edge
mode is accompanied by its Kramer’s degenerate counterpart
which moves in the opposite direction on the same edge.
So the scattering between the Kramer’s pairs cannot be pre-
vented unless there is an additional spin (or spinlike) degree
of freedom to couple to the edge modes, thus making them
helical. Considering Hxy on two-dimensional translationally
invariant systems, Hxy puts two orbitals on each lattice site,
thus making it a two-band model if the underlying motif is
a Bravias lattice. Hence, Hxy does not have any additional
spin (or spinlike) degree of freedom and no chiral or helical
edge dynamics can be observed for Hxy on square or triangular
lattices. In this context, the wave-packet dynamics of Hxy on
SG-3 is particularly interesting. Here the two counterpropa-

(a) (f)

(b) (e)

(c) (d)

� �

�

��

�

FIG. 7. Time evolution of a state (a → b → c → d → e → f),
initially localized in the c orbital of one of the corner sites on
SG-3 with g = 6, evolved under Ĥ (t = 0, λ = 1). The initial state
is projected onto a sector defined by −0.5 < E < 0. The color bar
represents the relative density per site of an eigenstate |ψn〉 defined
by ρn( j)/max[ρn( j)].

gating edgelike modes shown in Fig. 7 do not scatter among
themselves even in the presence of disorder (Fig. 8). Notice
that the arguments used earlier to describe the edge-state dy-
namics of Hxy on square and triangular lattices are no longer
valid for self-similar systems due to lack of an equivalent
picture for the band structure in this case. The fact that Hxy

neither shows such dynamics on two-dimensional lattices nor
on the other self-similar structure SG-4, but only on SG-3,
suggests that such dynamics is due to the interplay between
the self-similarity and the local coordination of SG-3.

The Mτz term creates a gap in the spectra of H (shown
in Fig. 9) on both structures. For SG-4, the flat band at zero
energy splits into two flat bands with energies M and −M.
Addition of a Mτz term breaks the time-reversal symmetry of
H, since T −1(Mτz + Hxy)T = (−Mτz + Hxy). However, we
still find the spectra of H on SG-3 to consist of doubly de-
generate states as in the case of Hxy. This double degeneracy
is independent of the fractal structure and is due to nonspatial
symmetries of Hxy as shown in the Appendix.

C. t = λ �= 0

Switching on both [c → c, d → d] and [c → d , d → c]
hoppings brings a lot of interesting physics into the picture.
From Fig. 10 we find that H hosts topological phases on both
structures. In the regime 0 � (M/λ) � 2.5, both SG-3 and
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(a) (f)

(b) (e)

(c) (d)

�

��

� �

�

FIG. 8. Time evolution of a state (a → b → c → d → e → f),
initially localized in the c orbital of one of the corner sites on SG-3
with g = 6, evolved under Ĥdis (t = 0, λ = 1) with W = 0.1. The
initial state is projected onto a sector defined by −0.5 < E < 0. The
color bar represents the relative density per site of an eigenstate |ψn〉
defined by ρn( j)/max[ρn( j)].

SG-4 host topological phases with the same Chern number
ν = 1 and support edgelike states. For SG-4 with different
boundary conditions, similar edgelike states were reported
[12], which were robust against random on-site disorder, and
possessed a chiral nature. In our case also, we find the same
for both SG-3 and SG-4 in this regime.

To serve as a reference for studying the real space Chern
number computations, we also compute the Chern number for
the model on a triangular lattice using Eq. (6), with a system
size comparable to that of the fractals. The results are shown
as the green curve in Figs. 10(a) and 10(b). Due to the strong
dependence of Eq. (6) on the system size, the transitions from

(a) (b)

FIG. 9. Part of the spectra of Mτz + Hxy as a function of M
on (a) SG-4 and (b) SG-3. The Mτz term breaks the time-reversal
symmetry and opens a gap proportional to M in the spectrum of Hxy.

FIG. 10. Real space Chern number for H in the regime λ = t on
(a) SG-4 and (b) SG-3. The computation is done using Eq. (6), which
strongly depends on the system size. We do a system size scaling
by looking at Chern numbers for different generations g. The inset
in each plot shows the first two energy levels closest to the Fermi
energy, for different generations. The legend for the insets are the
same as that for the main plots. The inset of (a) shows numerous level
crossings for SG-4, which increase with g. The inset of (b) shows a
single level crossing for SG-3.

(a) (b)

(c) (d)

� �

��

FIG. 11. Edgelike states on SG-4. (a) and (b) Examples of edge-
like states for −1.6 � (M/λ) � −1.3 and, (c) and (d) are examples
of edgelike states for 0 � (M/λ) � 2.5. Notice the difference in
the localization pattern of edgelike states in the two regimes. For
0 � (M/λ) � 2.5, the states are localized on a single layer of sites
which enclose the triangles of a particular generation. In contrast,
for −1.6 � (M/λ) � −1.3, the states are primarily localized on two
consecutive layers of sites which enclose the triangles of a particular
generation.
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FIG. 12. Part of the spectra for H in the regime λ = t on (a) SG-
4 with g = 7, and (b) SG-3 with g = 6. The regions of the spectra
which host edgelike states are pointed out for both structures. These
regions correspond to the topological regions in Fig 10.

one Chern number to the other is not very sharp. So the real
space Chern number is only strongly quantized away from the
transition region. A detailed numerical computation on the
strength of the quantization of the real space Chern number
on crystal lattices is presented in Fig. 4 in Ref. [25].

In the regime, −2 � (M/λ) � −1.2, SG-3 and SG-4 host
different topological phases, characterized by different Chern
numbers. For SG-4, in the regime −1.6 � (M/λ) � −1.3,
where there are no level crossings, we find the Chern number
to be transitioning towards ν = −2. Although we do not see a
good enough quantization of the Chern number numerically,
we do find edgelike states and chiral wave-packet dynamics
in this regime, suggesting that the phase is not trivial. Also,
the localization pattern of edgelike states in this regime is
different from that of the regime with ν = 1 (see Fig. 11),
suggesting ν = −2 as opposed to ν = −1 for this regime.
For SG-4, there are many level crossings in the regime −2 �
(M/λ) � −1.6 (Fig. 12). The number of level crossings in-
creases with generation of the fractal. Given that the Chern
number is not well defined at level crossings, the computation
using Eq. (6) does not give a definitive value [Fig. 10(a)].

For SG-3 there is exactly one level crossing at (M/λ) ≈
−1.24, which seems to be one of the transition points from
a topological phase to a trivial phase. In the regime −2 �
(M/λ) � −1.24, we find a topologically nontrivial phase with
ν = 1 on SG-3, which is different from what we found for
SG-4. Although the Chern number computation for smaller
generations shows a small dip around (M/λ) ≈ −1.24 [see
the red and black curve in Fig. 10(b)], this dip vanishes as
we do the computation for higher generations [blue curve

in Fig. 10(b)]. This shows that for t = λ �= 0, SG-3 hosts a
trivial phase and only one topological phase with ν = 1 in the
thermodynamic limit.

V. CONCLUSION

We have explored the properties of a geometry dependent
Hamiltonian on two different finite fractal structures (SG-3
and SG-4) which only differ in the way the sites are coordi-
nated. The Hamiltonian has different nonspatial symmetries
for different parameter regimes. We study the systems in
each of these parameter regimes separately. We find that the
topological properties of this Hamiltonian are significantly
different on the two structures.

In the regime t = λ �= 0, where only charge-conjugation
symmetry is present, the half-BHZ model can host both
topologically trivial and nontrivial phases characterized by
a nonzero real-space Chern number, on both structures. For
both SG-3 and SG-4, we find chiral edgelike eigenstates close
to the Fermi energy for the parameter regimes corresponding
to the topologically nontrivial phases. However, the phases
obtained for each of the structures are different, which is
evident from their respective plots of Chern number (Fig. 10).
In the regime λ �= t = 0, where all the three symmetries
(time-reversal, charge-conjugation, and orbital symmetry) are
present, we find the existence of nontrivial doubly degenerate
edgelike eigenstates with opposite chiralities near the Fermi
energy on SG-3. No such chiral edgelike states are present in
case of SG-4 for this particular parameter regime. Instead, a
highly degenerate zero energy band is present in SG-4 which
we expect to be topologically trivial. The existence of doubly
degenerate robust edgelike states of opposite chirality on SG-3
is particularly interesting. This leads to unexpected wave-
packet dynamics in which two counterpropagating edgelike
modes do not scatter into each other. Such dynamics is not
present when the model is studied on the square and triangular
lattices, and SG-4. This highlights the role of coordination in
determining the physics on self-similar structures.

As the distinguishing factor between the two structures is
their coordination number, we arrive at the conclusion that
the topological properties on self-similar lattice systems de-
pend significantly on the way the sites are coordinated. The
description of topological phases in translationally invariant
noninteracting systems does not explicitly take the coordina-
tion into account. There, coordination is taken implicitly into
account in the matrix elements of the corresponding Bloch
Hamiltonians. But that is not possible for systems which
lack translational symmetry. The results of this work suggest
that, in order to extend the present classification scheme, it
is important to use a framework which explicitly takes the
coordination of sites into account. Perhaps one way to look
at such systems is to use a framework of graphs.
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APPENDIX: TWOFOLD DEGENERACY IN Mτz + Hxy

The twofold degeneracy in Hxy is a consequence of the
fact that T −1HxyT = Hxy. Adding a mass term Mτz breaks
this symmetry. However, eigenstates of Mτz + Hxy still form
degenerate pairs. Consider an eigenstate |ψ〉 of Hxy with
eigenvalue ε. Due to the symmetry τzHxyτz = −Hxy, we have
that τz|ψ〉 is also an eigenstate of Hxy but with eigenvalue
−ε. Notice that addition of the Mτz term also breaks this
symmetry. Here we analytically show that the effect of the
Mτz term is to hybridize |ψ〉 and τz|ψ〉.

We assume an ansatz eigenstate of Mτz + Hxy of the form
α|ψ〉 + βτz|ψ〉, with eigenvalue E . We have the following
equation:

(Mτz + Hxy)(α|ψ〉 + βτz|ψ〉)

= (βM + αε)|ψ〉 + (αM − βε)τz|ψ〉
= E (α|ψ〉 + βτz|ψ〉). (A1)

For ε �= 0 we have that |ψ〉 and τz|ψ〉 are orthogonal because
they are eigenstates of Hxy with different eigenvalues. Defin-
ing ε′ = ε/M and E ′ = E/M, and equating the coefficients of
|ψ〉 and τz|ψ〉 in Eq. (A1), we get

β + αε′ = αE ′; α − βε′ = βE ′. (A2)

Solving the pair of equations in (A2) for α, β, and E , we get
α±
β±

= ε′ ±
√

1 + ε′2; E± = ±
√

M2 + ε2. (A3)

So we have shown that α±|ψ〉 + β±τz|ψ〉 are eigenstates of
Mτz + Hxy with α±, β± satisfying Eq. (A3).

Now, as P−1(Mτz + Hxy)P = −(Mτz + Hxy), with P =
τxK, we have that P|�〉 is an eigenstate of the Hamiltonian
Mτz + Hxy, with eigenvalue −ξ , if |�〉 is an eigenstate with
eigenvalue ξ . Hence, |�+〉 = α+|ψ〉 + β+τz|ψ〉 and P|�−〉 =
P(α−|ψ〉 + β−τz|ψ〉) are both eigenstates of the Hamiltonian
Mτz + Hxy, with the same eigenvalue E+. Notice that the
states |�+〉 and P|�−〉 are orthogonal to each other, as |ψ〉,
P|ψ〉, τz|ψ〉, and Pτz|ψ〉 = −T |ψ〉 are mutually orthogonal.
The states |ψ〉 and Pτz|ψ〉 are orthogonal to the states P|ψ〉
and τz|ψ〉 as they are eigenstates of Hxy, a Hermitian operator,
with different eigenvalues. P|ψ〉 = −T τz|ψ〉 and τz|ψ〉 are
orthogonal as |ψ〉 and T |ψ〉 are orthogonal to each other
as shown in Sec. IV B. Hence |�+〉 and P|�−〉 cannot be
the same state. This shows the existence of degenerate pairs
even after the addition of the symmetry breaking term Mτz.
However, for ε = 0, which corresponds to the zero energy
modes of Hxy, the above argument no longer holds as |ψ〉 and
τz|ψ〉 no longer need to be orthogonal. Instead, |ψ〉 and τz|ψ〉
are eigenstates with energies ±M.
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