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Charge density wave and finite-temperature transport in minimally twisted bilayer graphene
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We study phenomena driven by electron-electron interactions in the minimally twisted bilayer graphene
(mTBLG) with a perpendicular electric field. The low-energy degrees of freedom in mTBLG are governed
by a network of one-dimensional domain-wall states, described by two channels of one-dimensional linearly
dispersing spin-1/2 fermions. We show that the interaction can realize a spin-gapped interchannel charge density
wave (CDW) state at low temperatures, forming a “Coulomb drag” between the channels and leaving only
one charge conducting mode. For sufficiently high temperatures, power-law-in-temperature resistivity emerges
from the charge Umklapp scatterings within a domain wall. Remarkably, the presence of the CDW states can
strengthen the charge Umklapp scattering and induce a resistivity minimum at an intermediate temperature
corresponding to the CDW correlation energy. We further discuss the conditions that resistivity of the network is
dominated by the domain walls. In particular, the power-law-in-temperature resistivity results can apply to other
systems that manifest topological domain-wall structures.
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I. INTRODUCTION

Twisted bilayer graphene is a paradigmatic example of
the moiré systems that demonstrate high tunability in the
electronic bands. The Dirac Fermi velocity of twisted bi-
layer graphene can be tuned to zero at certain twist angles
(magic angles) [1]. Concomitantly, the correlated insula-
tors and superconductors are discovered at low temperatures
[2,3]. Subsequent experiments have shown various exotic phe-
nomena including linear-in-temperature resistivity [4,5] and
orbital magnetism [6–8]. Thanks to these exciting discoveries,
moiré graphene systems have become exciting platforms for
studying strongly correlated phenomena [9–22].

In addition to the flatband electronic structure at magic
angle, the minimally twisted bilayer graphene (mTBLG) with
a tiny twist angle (�1◦) can realize a network of one-
dimensional (1D) conducting states in the presence of a
perpendicular electric field [23–39] [see Fig. 1(b)]. The elec-
tric field gaps out the low-energy electronic states in AB
and BA stacking regions; the domain walls separating these
two regions host gapless 1D conductors, carrying valley-
dependent chiralities [40–44]. In addition, the AA stacking
regions realize junctions that connect domain walls along
different directions. The low-energy noninteracting electronic
structure in this system can be captured by a phenomenolog-
ical triangular network model [24]. Novel phases of matter
based on the network models are also predicted theoretically
[34,35,38].

Most of the theoretical studies of mTBLG are based on
the noninteracting properties of the network model. Mean-
while, the interactions cannot be neglected in 1D systems
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because the low-energy theory is described by bosonic
collective excitations, i.e., the Luttinger liquid theory [45].
The existing literature on the interacting network mod-
els [36,46–48] primarily focuses on the phenomenology in
magic-angle twisted bilayer graphene. The role of interaction
in mTBLG has not been studied systematically. In particular,
the recent transport experiment shows that a low-temperature
linear-in-temperature resistivity can emerge in an undoped
mTBLG [27]. Can electron-electron interactions realize such
an interesting phenomenology?

In this paper, we investigate the triangular domain-wall
network model with repulsive electron-electron interactions
in the 1D domain walls. We assume that the valley symme-
try is weakly broken. At zero temperature and even in the
absence of the valley symmetry, we show that the domain-
wall states can develop a spin-gapped interchannel charge
density wave (CDW) state due to the Coulomb interaction
among the two channels. Such a CDW state realizes an in-
terlocked fluid among the channels, reminiscent of the 1D
Coulomb drag [49]. In addition, the domain-wall state demon-
strate a power-law finite-temperature resistivity at sufficiently
high temperatures, as a consequence of the charge Umklapp
scattering in the domain-wall states. The charge Umklapp
backscattering used in our model takes advantage of the
weak breaking of the valley symmetry. The existence of the
interchannel CDW induces a nonmonotonic temperature de-
pendence in the resistivity, and the temperature of the local
resistivity minimum corresponds to the correlation energy
of the CDW state. We also discuss the conditions that the
transport of the network is dominated by the 1D domain walls.

The rest of the paper is organized as follows: In Sec. II,
we introduce a model for the 1D domain-wall states and per-
form bosonization. The zero-temperature phases are studied
in Sec. III where a spin-gapped interchannel CDW phase is
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FIG. 1. Domain-wall states in mTBLG. (a) The microscopic
Brillouin zone (large hexagons) and the moiré Brillouin zone (the
small hexagon). The size of the moiré Brillouin zone depends on the
twist angle θ . (b) The overview of mTBLG. d = a/[2 sin(θ/2)] is the
length of one domain-wall segment, where a is the lattice constant
of graphene. (c) The electronic degrees of freedom of a domain
wall. Blue (red) arrows indicate the microscopic valley K (K ′) chiral
movers. t encodes the hybridization between two chiral movers at
the same valley. The spins are not shown for simplicity. (d) The
degenerate electronic structures are split due to the hybridization.
After hybridization, two channels are realized with a relative energy
offset 2t . See main text for detailed discussions.

predicted. Then, we calculate the finite-temperature resistivity
with and without the CDW state in Sec. IV. We also discuss
the conditions that the network resistivity is dominated by the
scattering in the domain walls. In Sec. V, the stability of the
predictions and other experimental signatures are discussed.
In Appendix A, we explain the kinematics in the single-
particle Hamiltonian. Detailed discussions on the CDW order
parameter and commensurate-incommensurate transition can
be found in Appendices B and C, respectively. A discussion on
the scaling dimension and the high temperature conductivity
is given in Appendix D. We also provide a derivation of the
boson self energy in Appendix E, which is related to the
finite-temperature resistivity.

II. MODEL

When two stacked graphene sheets are twisted by a relative
angle θ , a moiré superlattice emerges with a moiré lattice
constant d = a/[2 sin(θ/2)], where a is the lattice constant
of the graphene. For θ � 1◦, the lattice relaxation becomes
significant, and the AB and BA stacking regions are largely
expanded. As a consequence, the mTBLG naturally realizes a
periodic array of triangular domains as sketched in Fig. 1(b).

Under a sufficiently large out-of-plane electric field, the
AB and BA stacking regions in mTBLG become gapped
quantum valley Hall (QVH) insulators, and the domain-wall
states separating AB and BA regions are ascribed to the valley
Hall kink states [40–44]. In Fig. 1(b), we consider that the
AB (BA) regions realize ν = 1 (ν = −1) QVH domains for
definiteness. As illustrated in Fig. 1(c), the “right” (“left”)

mover is inherited from the microscopic valley K (K ′). In
the limit θ → 0, the momenta of microscopic valleys K and
K ′ are projected to the k1D = 0 in each domain-wall link.
Thus, the low-energy band of mTBLG is captured by the 1D
massless Dirac dispersion. In addition, the difference of the
winding number is 2, so each domain-wall state hosts two
chiral edge states per spin per valley.

Within the domain-wall states, the single-particle backscat-
tering can be ignored due to the matrix element suppression—
effective valley symmetry [23,24]. Such a suppression can
be understood by the large momentum transfers between mi-
croscopic valleys which makes the overlap of the 2D wave
functions negligible. Then, the overlap between the right and
left mover wave functions is parametrically small in a domain
wall. Theoretically, the presence of the elastic backscattering
can induce gaps in the band structure of the network model.
However, the transport experiments of mTBLG demonstrate
no signature of a gap within the network model regime
[26,27], suggesting that the gap originated from the single-
particle backscattering is not experimentally relevant. For
simplicity, we ignore the single-particle backscattering com-
pletely.

On the other hand, two co-moving states can hybridize
without breaking the valley symmetry. As a result, the single-
particle electronic bands are split by an energy 2t where t is
the hybridization energy as shown in Fig. 1(d). A detailed
discussion is given in Appendix A. The low-energy single-
particle Hamiltonian is thus given by

Ĥ0 =vF

∑
p,σ

∫
dx[R†

pσ(−i∂xRpσ ) − L†
pσ(−i∂xLpσ )], (1)

where p = 0, π is the channel index, σ denotes the spin,
and Rpσ (Lpσ ) is the right (left) mover fermion field. This
noninteracting Hamiltonian contains two channels of 1D spin-
1/2 linearly dispersing fermions with an energy shift 2t as
plotted in Fig. 1(c). Correspondingly, the Fermi wave-vector
difference is kF,0 − kF,π = 2t/vF , independent of the kF,p.

In addition to the 1D domain walls, the junctions at the
AA stacking regions also play important roles to the network.
To simplify our calculation, we consider a network in the de-
coupled 1D chain limit (Paā = 1 in Ref. [34]), corresponding
to three parallel arrays of decoupled 1D systems. Then, we
consider the effect of junction (i.e., single-particle tunneling
between different 1D chains) as a perturbation. Our results
also apply to more general situations as long as C2zT is pre-
served. We will discuss the conditions for general network
configuration if needed.

In the rest of the section, we discuss the interaction terms
and then introduce the bosonization. In particular, for the
analysis of transport, we consider backscattering interactions
that violate the valley symmetry whereas the single-particle
backscattering is ignored completely. Note that single-particle
backscattering is actually not detrimental to our predictions,
but the assumption here simplifies the problem. A detailed
discussion is provided in Sec. V. Although the bare inter-
acting coupling constants might be small, these interactions
can still arise from the renormalization. We will show that
the low-energy phases are determined by these interaction
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backscattering terms, and these interactions can generate the
non-Fermi-liquid resistivity phenomenology.

A. Interaction

We consider short-range repulsive interactions with spin
SU (2) symmetry, which are generated either by the screened
Coulomb interaction or by renormalization of the low-
energy states. These interactions can be decomposed into
the (forward scattering) Luttinger liquid interactions and
backscattering interactions (including those violating the val-
ley symmetry). The former can be incorporated by bosoniza-
tion [45,50] in terms of velocities and Luttinger parameters. In
particular, we consider an interchannel density-density inter-
action given by V

∫
dx(n0,↑ + n0,↓)(nπ,↑ + nπ,↓), where V >

0 is the strength of interaction and npσ = R†
pσ Rpσ + L†

pσ Lpσ .
Besides the Luttinger interactions, we also focus on

the most relevant backscattering interactions that can in-
duce instabilities. At first glance, one might argue that
the backscattering interactions should be insignificant be-
cause of the valley symmetry. It is possible that the bare
interaction strengths are parametrically small, but these inter-
actions still arise from renormalization. As we will show in
this work, the backscattering interactions can dominate the
low-energy phases and can realize a non-Fermi-liquid-like
finite-temperature resistivity. This situation is similar to the
helical edge states of the 2D time-reversal topological in-
sulators [51–53]—single-particle backscattering is prohibited
while the low-energy phases are controlled by the two-particle
interaction backscattering [54–58]. Based on the conservation
of spin and channel quantum number, we consider the lead-
ing backscattering interactions given by ĤI = ĤI,c + ĤI,s +
ĤI,+ + ĤI,−, where

ĤI,c = Uc

∑
p=0,π

∫
dx[eiδQpxL†

p↑Rp↑L†
p↓Rp↓+H.c.], (2a)

ĤI,s = Us

∑
p=0,π

∫
dx[L†

p↑Rp↑R†
p↓Lp↓+H.c.], (2b)

ĤI,+ = V+
∑
σ,σ ′

∫
dx[eiδQ+xL†

0,σ R0σ L†
πσ ′Rπσ ′ +H.c.], (2c)

ĤI,− = V−
∑
σ,σ ′

∫
dx[eiδQ−xL†

0σ R0σ R†
πσ ′Lπσ ′ +H.c.]. (2d)

In the above expressions, δQp = 4kF,p − Q, δQ± = 2kF,0 ±
2kF,π − Q, and Q = 0,±2π/d is the commensurate wave
vector (d is the moiré period). In our model, δQ− = 4t/vF −
Q, independent of kF,p. The interaction ĤI,c (ĤI,s) corresponds
to the formation of a charge gap (spin gap) in each channel;
ĤI,+ and ĤI,− are the interchannel interactions and can lock
two channels altogether. For repulsive interactions, all the in-
teraction strengths are positive, i.e., Uc,Us,V+,V− > 0. Note
that the Uc and V+ terms [Eqs. (2a) and (2c), respectively] do
not conserve the valley quantum number, whereas Us and V−
terms [Eqs. (2b) and (2d), respectively] are valley symmetric.
In general, the interactions Uc, Us, V+, and V− might depend
on the kF . We assume them to be kF independent for simplic-
ity, and our results do not rely on this assumption.

B. Bosonization

To incorporate the Luttinger liquid interactions, we adopt
the standard bosonization [45,50]. The right and left mover
fields are bosonized to

Rpσ = κ̂pσ√
2πα

ei(φpσ +θpσ ), Lpσ = κ̂pσ√
2πα

ei(φpσ −θpσ ), (3)

where φpσ (θpσ ) is the phaselike (phononlike) boson, κ̂pσ is the
Klein factor, and α is an ultraviolet length scale. The Klein
factors are introduced for bookkeeping reasons and can be
ignored since they do not affect any of the results in this work.
The long-wavelength density and current operators can be
expressed by npσ = 1

π
∂xθpσ and Ipσ = − 1

π
∂tθpσ , respectively.

To study the backscattering interactions, we define the
charge and spin bosonic fields in the channel p as follows [45]:

�c
p = 1√

2
(φp↑ + φp↓), �c

p = 1√
2

(θp↑ + θp↓), (4)

�s
p = 1√

2
(φp↑ − φp↓), �s

p = 1√
2

(θp↑ − θp↓), (5)

where �c
p and �c

p (�s
p and �s

p) represent the charge (spin)
bosonic fields. Incorporating the Luttinger liquid interac-
tions, the Hamiltonian Ĥ0 + Ĥ [given by Eqs. (1) and (2)] is
bosonized to Ĥc + Ĥs + Ĥcs, where

Ĥc =
∑

p

∫
dx

vc

2π

[
Kc

(
∂x�

c
p

)2 + 1

Kc

(
∂x�

c
p

)2
]

+ 2V

π2

∫
dx

(
∂x�

c
0

)(
∂x�

c
π

)
− Uc

2π2α2

∑
p=0,π

∫
dx cos

[
2
√

2�c
p + δQpx

]
, (6)

Ĥs =
∑

p

∫
dx

vs

2π

[
Ks

(
∂x�

s
p

)2 + 1

Ks

(
∂x�

s
p

)2
]

+ Us

2π2α2

∑
p=0,π

∫
dx cos

[
2
√

2�s
p

]
, (7)

Ĥcs = −V+
π2α2

∫
dx cos

[√
2
(
�c

0 + �c
π

) + δQ+x
]

× cos(
√

2�s,0) cos(
√

2�s,π )

+ V−
π2α2

∫
dx cos

[√
2
(
�c

0 − �c
π

) + δQ−x
]

× cos
(√

2�s
0

)
cos

(√
2�s

π

)
. (8)

In the above expressions,1 vc (vs) is the velocity of the charge
(spin) bosonic mode, Kc (Ks) denotes the Luttinger parameter
for the charge (spin) sector, and V encodes the interchan-
nel Luttinger liquid interaction.2 In our case with repulsive
interactions, Kc < 1 and V > 0 are assumed. Ĥc (Ĥs) is the
Hamiltonian for the charge (spin) collective mode and Ĥcs

describes the interchannel spin-charge coupling. (Note that
spin and charge are decoupled in the absence of Ĥcs.) Because

1The minus signs in front of Uc and V+ are due to the bosonization
convention used in this work.

2This term is the bosonized form of V
∫

dx(n0↑ + n0↓)(nπ↑ + nπ↓).
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of the spin SU (2) symmetry, the parameters vs, Ks, and Us are
constrained. Under the renormalization group flows with spin
SU (2) symmetry, Ks → 1 and Us → 0.

For zero-temperature properties, Uc and V+ can be ignored
because of lack of momentum conservation at the generic
fillings, while V− can realize an interchannel CDW state. At
finite temperatures, Uc and V+, which break the valley symme-
try, can contribute to the resistivity via Umklapp mechanism.
The rich phenomena driven by interactions will be discussed
extensively in the next two sections.

III. ZERO-TEMPERATURE PHASES IN A DOMAIN WALL

We study the zero-temperature phase diagram of the 1D in-
teracting domain wall. The Hamiltonian Ĥc + Ĥs + Ĥcs [given
by Eqs. (6), (7), and (8)] can be further simplified based on the
symmetries and kinematics.

We first examine the spin sector. Since each domain wall
possesses spin SU (2) symmetry, the Hamiltonian Ĥs [given
by Eq. (7)] becomes

Ĥ ′
s =

∑
p

∫
dx

vs

2π

[(
∂x�

s
p

)2 + (
∂x�

s
p

)2]
, (9)

describing a Luttinger liquid of spin with Ks = 1.
The charge sector is more complicated. The Umklapp in-

teraction Uc in Ĥc [given by Eq. (6)] can be ignored at zero
temperature because δQp=0 	= 0 and δQp=π 	= 0 at generic
fillings. Meanwhile, Uc is unlikely to induce a CDW near the
charge neutrality point (kF,p ≈ 0) for generic network models.
To develop a well-define CDW state, it is required that both
the correlation length and the CDW wavelength are smaller
than the domain-wall length d . kF,p ≈ 0 hence contradicts this
condition as the CDW wavelength is proportional to 1/kF,p. To
treat the V term in Ĥc exactly, we introduce another set of new
collective charge variables as follows:

�c
+ = 1√

2

(
�c

0 + �c
π

)
,�c

+ = 1√
2

(
�c

0 + �c
π

)
, (10)

�c
− = 1√

2

(
�c

0 − �c
π

)
,�c

− = 1√
2

(
�c

0 − �c
π

)
, (11)

where the subscript + (−) indicates the symmetric (antisym-
metric) collective modes. With these new collective variables,
the charge sector is described by

Ĥ ′
c =

∫
dx

v+
2π

[
K+(∂x�

c
+)2 + 1

K+
(∂x�

c
+)2

]

+
∫

dx
v−
2π

[
K−(∂x�

c
−)2 + 1

K−
(∂x�

c
−)2

]
, (12)

where v+ (v−) and K+ (K−) are the velocity and the Luttinger
parameter of the symmetric (antisymmetric) charge sector, re-
spectively. In our case with repulsive interaction, K+ < K− <

1 holds generally [49].
Finally, we discuss the interchannel spin-charge coupling

given by Ĥcs [Eq. (8)]. The Umklapp interaction V+ term can
be ignored for generic fillings, similar to the Uc term [Eq. (6)].
Therefore, the V− term is the only important backscatter-
ing interaction at zero temperature because the wave vector
δQ− = 4t/vF − Q is filling independent and is expected to be

FIG. 2. The caricature of the antisymmetric interchannel CDW
state. The green solid line and the magenta dashed line represent
channels p = 0 and p = π , respectively. The electrons are doubly
occupied in each yellow pocket, and the period of the charge density
wave is ξ = π/|kF |. The positions of charges are displaced by half of
a period among two channels. The antisymmetric charge excitation
and the spin excitation are gapped.

small. The interchannel spin-charge coupling is reduced to

Ĥ ′
cs = V−

π2α2

∫
dx cos (2�c

− + δQ−x)

× cos
(√

2�s
0

)
cos

(√
2�s

π

)
. (13)

In the rest of this section, we study the Hamiltonian Ĥ ′
c +

Ĥ ′
s + Ĥ ′

cs given by Eqs. (12), (9), and (13). The properties and
the stability of the interchannel CDW phase are discussed.

A. Interlocked CDW at δQ− = 0

For δQ− = 0 (assuming kF,0 = kF,π = kF and Q = 0), the
low-temperature Hamiltonian Ĥ ′

C + Ĥ ′
S + Ĥ ′

CS is identical to
the 1D Coulomb drag problem of two spinful quantum wires
[49], and the phase diagram is known. As long as spin gap in
each decoupled channel is absent, the renormalization group
flows with the repulsive interactions lead to an infinite V−
quite generally [49]. In our case, spin gap in each decoupled
channel is absent [spin SU (2) symmetry], and K− < 1 for
repulsive interactions. Therefore, the V− term is expected to
dominate under the renormalization group flows.

The strong coupling fixed point is dictated by Eq. (13)
which pins the values of �c

−, �s
0, and �s

π . Thus, the zero-
temperature state is described by a Luttinger liquid in the
symmetric charge sector, a gapped state in the antisymmetric
charge sectors, and spin gaps for both channels. The proposed
CDW state is accompanied by a spin gap, which has the
effect of suppressing the single-particle backscattering that
breaks valley symmetry. Within the bosonization analysis, the
leading quasi-long-range order parameter is an antisymmetric
interchannel CDW operator given by

Ô− =
∑

σ=↑,↓

[
ei2kF xL†

0,σ R0,σ + e−i2kF xR†
0,σ L0,σ

−ei2kF xL†
π,σ Rπ,σ − e−i2kF xR†

π,σ Lπ,σ

]

(14)

and 〈Ô−(r)Ô−(0)〉 ∝ cos(2kF r)/rK+/2 for r � α, where α

is the ultraviolet length scale. The 2kF oscillation suggests
that the maximums of the CDW are separated by ξ = π/|kF |
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(twice of the mean interparticle distance3) and the electrons
are doubly occupied as illustrated in Fig. 2. A detailed dis-
cussion on the interchannel CDW order parameters can be
found in Appendix B. Intuitively, the zigzag pattern can be
understood by the dominating interchannel Coulomb repul-
sion, which interlocks two channels altogether. A spin gap is
developed in this state since it costs a finite energy to create a
spin excitation. We note that this antisymmetric interchannel
CDW state is similar to the channel singlet state discussed in
Refs. [36,46] except that the spin sector is gapped. The dis-
crepancy in the spin sector is due to the different interactions
considered in the models.

The magnitude of the CDW correlation can be estimated
by the Luttinger liquid analysis [45]. Based on the scaling of
the V− term, the correlation energy is

�− ∼ vF

α

(
V−
vF

) 1
1−Kc

, (15)

for Kc < 1. The CDW correlation �− gets smaller when Kc

approaches 1 from below. In mTBLG, the finite size energy
scale of a domain wall is given by vF /d where d is the
domain wall length. To have a well-defined CDW state in a
domain wall, �− > vF /d is necessary. In addition, the charge
period of the interlocked CDW must be much smaller than
d , hence d > ξ = π/|kF | is required as well. The predicted
interchannel CDW state can exist at generic fillings except
for |kF |d < π (close to the charge neutrality point). We note
that the conditions �− > vF /d and d > π/|kF | are consistent
with a spin-gapped CDW state in a finite-size wire of length
d , and the network formed by such wires is expected to in-
herit the spin-gapped CDW correlation in each 1D segment.
Although there are two microscopic channels per valley per
spin, the interchannel CDW correlation allows for an effective
single channel network description in mTBLG.

B. Commensurate-incommensurate transition for δQ− �= 0

For δQ− 	= 0, the zero-temperature phase is described by
a commensurate-incommensurate transition [59]. The com-
mensurate phase is the same as the δQ− = 0 limit where the
antisymmetric interchannel CDW is developed. The CDW is
absent in the incommensurate phase. Because of the presence
of spin gaps in the interchannel CDW state, a Zeeman field
(B) can also induce a commensurate-incommensurate transi-
tion. We perform a semiclassical analysis in Appendix C. The
results are summarized by the phase diagram plotted in Fig. 3.
A sufficiently large t and/or B favor the incommensurate
phase and destabilize the interchannel CDW state, but the
phase is essentially the same for generic fillings. We note that
the destruction of electron correlation by the Zeeman field is
not expected in Refs. [36,46] where spin gapless states are
predicted. The predicted Zeeman-field-driven commensurate-
incommensurate transition can be examined experimentally.

3In the electron (hole) doped case, the density of the doped elec-
trons (holes) is n = 2|kF |/π corresponding to the mean interparticle
distance n−1 = π/(2|kF |).

FIG. 3. Phase diagram of the commensurate-incommensurate

transition. t̃ = 1
2

√
v−

vF K− | 4t
vF

− Q|α and B̃ = 2μBBα/vF are two

dimensionless parameters controlling the transition. (Q is the com-
mensurate wave vector, and μB is the Bohr magneton.) The critical
line is given by t̃2 + B̃2 = 2V−

πvF
. The red region indicates the commen-

surate phase (C); the white region represents the incommensurate
phase (IC). See Appendix C for a derivation of the phase diagram.

IV. FINITE-TEMPERATURE TRANSPORT

We study the finite-temperature transport in the network
model as realized in mTBLG. For network junctions in the
decoupled chain limit, the system is described by arrays of
1D systems, and the predictions based on 1D domain walls
hold for arbitrary low temperatures. For generic junction con-
figurations (i.e., away from the decoupled chain limit), there
are two distinct temperature regimes in the network model,
separated by a crossover temperature scale T ∗ = vF /d (where
d is the length of the domain wall) [60]. This is equivalent to
comparing the thermal wavelength λth ∼ vF /T and the length
of the domain-wall segment. When the thermal wavelength is
much larger than the domain-wall length (T � T ∗), the coher-
ence persists across multiple domain-wall segments, and the
dissipation within a domain wall is negligible. In this case, we
can view the network model as a 2D Fermi liquid, and the re-
sistivity in this regime is ρ(T ) ∼ A + BT 2, where A and B are
constants. On the other hand, when the thermal wavelength is
much smaller than the domain-wall length (T � T ∗), “local
equilibration” is achieved in each domain wall and the voltage
drops are uniformly distributed in the entire system [60]. In
such a situation, the network can be viewed as coupled 1D
systems. Thus, the transport of the system is dominated by
the Umklapp interaction within a domain wall as well as the
couplings at the junction. We will focus on the scenario of
T � T ∗ in the rest of the section.

In this section, we compute the finite-temperature transport
coefficient due to the incommensurate Umklapp interactions
from valley symmetry breaking in the 1D domain-wall states.
To simplify the calculations, we consider the decoupled ar-
ray limit in the network (Paā = 1 in Ref. [34]) and treat the
single-particle scatterings at junctions as perturbations. We
consider the domain wall with and without the interchannel
CDW correlation. In particular, a resistivity minimum can
develop in the presence of a CDW state. We then discuss
the conditions that the network resistivity is dictated by the
resistivity of the 1D domain walls.
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A. Finite-temperature resistivity in a domain-wall state

The domain-wall states in mTBLG contains charge, spin,
and channel degrees of freedom. Only the channel symmet-
ric charge sector (corresponding to �c

+) contributes to the
electric conduction. Strikingly, the presence of interchannel
CDW can still qualitatively change the results as the Umklapp
interaction is effectively enhanced. The primary sources of the
finite-temperature resistivity are the the Umklapp interactions
ĤI,c and ĤI,+. For generic fillings, these Umklapp interactions
are incommensurate (i.e., δQp 	= 0 breaks momentum conser-
vation) and do not impact the zero-temperature phases, and
zero resistivity is recovered at zero temperature in a domain
wall.

We consider both the absence and the presence of the inter-
channel CDW state which locks two channels. In the former
case, we provide an analytical expression of the resistivity due
to ĤI,c with the full temperature dependence. In the latter sce-
nario, we perform asymptotic analysis in various limits. The
power-law high temperature resistivity and the nonmonotonic
behavior due to the CDW are the main predictions in this
section.

1. Absence of interchannel CDW

We first assume that the interchannel CDW is absent in
the domain wall, corresponding to �− = 0 or T > �−. In the
high temperature limit, the finite-temperature behavior can be
obtained by the scaling analysis as discussed in Appendix D.
The interactions ĤI,c and ĤI,+ give rise to T 2K++2K−−3 and
T 2K+−1 resistivity corrections, respectively. Those contribu-
tions due to ĤI,c and ĤI,+ are qualitatively similar except for
the precise value in the power-law exponent. To simplify the
problem, we consider ĤI,c only and ignore the interchannel
Luttinger liquid interaction V in Eq. (6). (K+ = K− = Kc and
v+ = v− = vc in this case.)

With the simplification mentioned above, the charge sector
Hamiltonian is given by Ĥc = ∑

p ĥc,p, where p = 0, π is the
channel index and

ĥc,p =
∫

dx
vc

2π

[
Kc

(
∂x�

c
p

)2 + 1

Kc

(
∂x�

c
p

)2
]

− Uc

2π2α2

∫
dx cos

[
2
√

2�c
p + δQpx

]
. (16)

The finite-temperature transport is limited by the electrons
scattering off the incoherent charge fluctuations, described by
the Uc term. We note that δQp = 4kF,p − Q with Q being the
commensurate wave vector (such as the moiré wave vector
2π/d). The momentum relaxation at the moiré scale is essen-

tial to generate a finite resistivity at finite temperatures and
generic fillings.

Recalling that �c
p = 1√

2
(θp↑ + θp↓), the charge density and

current in the channel p are expressed by np =
√

2
π

(∂x�
c
p) and

Ip = −
√

2
π

(∂t�
c
p), respectively. Based on the Kubo formula,

the dc conductivity (with e and h̄ restored) is expressed by
[57]

σ1d = − 2

π2

e2

h̄
lim
ω→0

∑
p=0,π

Im
[
ω G (R)

p (ω, k = 0)
]
, (17)

where G (R)
p (ω, k) is the “dressed” retarded boson propagator

of �c
p. The boson self energy is defined through the Dyson

equation,[
G (R)

p (ω, k)
]−1 = [

G(R)
p (ω, k)

]−1 − �(R)
p (ω, k), (18)

where G(R)
p is the “noninteracting” boson propagator, �(R)

p
is the self energy correction corresponding to Uc, and the
superscript (R) denotes to the retarded functions. The decay
of the charge mode is related to the imaginary part of �(R)

p
and can be characterized by the inverse scattering length �p,
defined by

lim
ω→0

Im
[
�(R)

p (ω, k = 0)
] = −2ω�p/π + O(ω2). (19)

As long as the Umklapp interaction Uc term is irrelevant under
RG, we expect that �p(T → 0) → 0. This holds for generic
fillings and corresponds to a Luttinger liquid phase at T =
0. Therefore, the leading qualitative features can be captured
perturbatively in Uc. At the commensurate fillings and Kc < 1,
an interacting gap develops, and a nonperturbative analysis is
required to capture the finite-temperature resistivity, which we
omit in this work.

With Eqs. (17) and (19), the finite-temperature dc resistiv-
ity is

ρ1d = 1/σ1d = h

2e2

�0�π

�0 + �π

. (20)

For simplicity, we assume that �0 ≈ �π and the resistivity
ρ1d ∝ �0. We focus only on generic incommensurate fillings
where the Umklapp interaction Uc is irrelevant. The corre-
sponding ρ1d vanishes at zero temperature which is consistent
with the ballistic transport in a Luttinger liquid.

To extract the inverse scattering length �p, we compute
the boson self energy at the second order of Uc analytically.
A derivation is sketched in Appendix E. Only the results are
presented in the main text. At the second order in UC , the �p

is given by [57,61]:

�p = (Ũcα
2Kc )2 24Kc−2π4Kc

v
4Kc−1
c β4Kc−3

�[1 − 2Kc]

�[2Kc]

sin(2πKc)

cosh (vcβδQp/2) − cos(2πKc)

∣∣∣∣∣ �
[
Kc + i vcβδQp

4π

]
�

[
1 − Kc + i vcβδQp

4π

]
∣∣∣∣∣
2

, (21)

where Ũc = Uc/(2π2α2) and β = 1/T is the inverse temper-
ature. We note that the resistivity derived here from the boson
self energy [57,61,62] is equivalent to the memory function
method [45,63].

In Fig. 4, we plot the inverse scattering length �p as
a function of temperature with different values of δQp. In
the low-temperature limit (T � vcδQp), the inverse scat-
tering length demonstrates the Arrhenius behavior �p ∝

045146-6



CHARGE DENSITY WAVE AND FINITE-TEMPERATURE … PHYSICAL REVIEW B 104, 045146 (2021)

FIG. 4. Finite-temperature inverse scattering length in a domain
wall (without the interchannel CDW) based on Eq. (21). The resis-
tivity of a domain wall (ρ1d) is proportional to the inverse scattering
length. For fixed Uc and vc, we plot the dimensionless inverse
scattering length, �̃ = �pv

2
c /(Ũ 2

c α3), as a function of the reduced
temperature (T̃ = T α/vc) with different values of q̃ = δQpα. The
black dashed curve represents �̃ ∝ T̃ 4Kc−3, corresponding to q̃ = 0;
the green, blue, and red solid curves correspond to q̃ = 0.1, 0.2, 0.3,
respectively. Kc = 0.9 for all the curves. For T̃ > 0.3, all the
curves converge and are consistent with �̃ ∝ T̃ 0.6. Inset: The low-
temperature regime of the inverse scattering length. �̃ ∝ exp(− q̃

2T̃
)

for T̃ � q̃. The onset temperature depends on the value of q̃. The
resistivity for Kc > 3/4 is qualitatively the same as the plot here. See
main text for a detailed discussion.

exp(− vcδQp

2T ), recovering the zero resistivity at T = 0. The
low-temperature exponential behavior is due to the phase
space restriction (δQp 	= 0) which freezes the Umklapp inter-
action [45,63]. The Umklapp scattering is thermally activated
at small finite temperatures. On the other hand, �p gives
a power-law behavior in temperature, �p ∝ T 4Kc−3, in the
limit T � vcδQp. The same power-law exponent can be ob-
tained by scaling analysis as discussed in Appendix D. We
note that the qualitative behavior of the finite-temperature
resistivity is captured by �p as ρ1d ∝ �p. Therefore, the re-
sistivity ρ1d(T ) ∝ exp(− vcδQp

2T ) for T � vcδQp, and ρ1d(T ) ∝
T 4Kc−3 for T � vcδQp. We note that the resistivity increases
as temperature increases for Kc > 3/4, while the resistivity
decreases as temperature increases for Kc < 3/4.

The condition for the power-law finite-temperature
resistivity is equivalent to T � vF kF . An important question
is if the Luttinger liquid description remains valid for
T � vF kF . We answer this in the affirmative. For 1D
Dirac bands, the Luttinger liquid theory holds as long
as T > vF /α ∼ W , where W is the bandwidth. Here,
kF and W are not related to each other. In Fig. 4, the
power-law-in-temperature behavior is clearly shown for
T < vF /α. By contrast, for the 1D quadratic dispersion, the
Luttinger liquid description is invalid for T > vF kF as vF kF is
also of the same order of the filled bandwidth (i.e., the energy
difference between Fermi energy and the bottom of band).
Therefore, the power-law finite-temperature conductivity is
particular to the systems that realize 1D Dirac dispersion.

2. Presence of interchannel CDW

In the presence of the interchannel CDW, only the symmet-
ric charge sector remains gapless. In the limit that T � �−,
the bosonic fields �c

−, �s
0, and �s

π are pinned to constant
values. Concomitantly, the scaling dimensions of the vertex
operators in Eqs. (2a) and (2c) are reduced, signaling enhance-
ment in these Umklapp scatterings [64]. Based on the scaling
analysis (in Appendix D), both the ĤI,c and ĤI,+ result in
ρ1D ∝ T 2K+−3 as long as the CDW is well developed. The
resistivity decreases as temperature increases, qualitatively
different from the results without the CDW for Kc > 3/4.
This can be understood by a simple mean field decoupling
of the Umklapp term in the following: In the presence of the
interchannel CDW, the four-fermion terms in Eqs. (2a) and
(2c) can be approximated by

L†
p,↑Rp,↑L†

p,↓Rp,↓ ≈ L†
p,↑Rp,↑〈L†

p,↓Rp,↓〉 + 〈L†
p,↑Rp,↑〉L†

p,↓Rp,↓,

(22)

L†
0,σ R0σ L†

πσ ′Rπσ ′ ≈ L†
0,σ R0σ 〈L†

πσ ′Rπσ ′ 〉 + 〈L†
0,σ R0σ 〉L†

πσ ′Rπσ ′ ,

(23)

where the brackets are replaced by the finite expectation val-
ues in the presence of the CDW order [in Eq. (14)]. Thus,
the Umklapp interactions become more relevant under the
mean field decoupling, suggesting an enhancement of the
scattering due to CDW. This mean field approximation also
agrees with the scaling analysis based on bosonization in
the fermion point (i.e., K+ = K− = 1) (see Appendix D). We
remark that the 1D CDW is a quasi-long-range order rather
than a genuine mean-field-like order (i.e., the order parameter
fluctuates in a power-law fashion), but the decoupling above
provides an intuitive understanding of the interplay between
CDW and Umklapp interaction. At sufficiently low tempera-
tures, these Umklapp scatterings are frozen because the phase
space restriction (δQp 	= 0) creates a Pauli blocking which
exponentially suppresses the resistivity. To fully describe the
temperature evolution of resistivity, one needs to take into ac-
count the thermal melting of the CDW state. Here, we present
results in various asymptotic limit and aim to the qualitative
features. We focus on ĤI,c in the rest of the discussion as the
contribution from ĤI,+ is qualitative the same. For simplicity,
the interchannel Luttinger interaction is also ignored. Thus,
K+ = Kc and v+ = vc.

Here, we summarize the finite-temperature resistivity in
various situations. The finite-temperature resistivity is quali-
tatively different from the results without the CDW as long
as �− � vcδQp. In this case, a new power-law insulatorlike
resistivity, ρ1d ∝ T 2Kc−3, is predicted for v+δQp � T � �−.
The insulating temperature dependence here is due to the
interplay of the CDW and the Umklapp scattering as we dis-
cussed previously. The low-temperature regime (T � vcδQp)
and the high-temperature regime (T � �−) give rise to a ther-
mal activated resistivity ρ1d ∝ exp(− vcδQp

2T ) and a power-law
resistivity ρ1d ∝ T 4Kc−3, respectively, similar to the absence
of CDW. In Fig. 5, we sketch the qualitative behavior of the
resistivity versus temperature by interpolating results from the
above asymptotic analysis. In particular, for 3/4 < Kc � 1,
a resistivity minimum develops at T ∼ �−. For Kc < 3/4
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FIG. 5. Sketched finite-temperature resistivity in a domain wall
state with the interchannel CDW. In this case, we assume �− �
vcδQc. The blue curve indicates the low-temperature thermal acti-
vated behavior for T � vcδQp. The green curve corresponds to a
power-law decay T 2Kc−3 for vcδQp � T � �−. For T � �−, the
T 4Kc−3 resistivity is recovered as shown by the red curve. The black
dashed lines are used to interpolate different asymptotic regimes. The
sketched resistivity is qualitative valid for 3/4 < Kc � 1. See main
text for a detailed discussion.

and T � vcδQp, the resistivity decreases as temperature in-
creases, and the power-law exponent changes from 2Kc − 3 to
4Kc − 3 at T ∼ �−. Thus, it is harder to identify the existence
of a CDW state for Kc < 3/4. When �− < vcδQp, the finite-
temperature resistivity is qualitatively the same as the results
without the CDW.

B. Non-Fermi-liquid temperature dependence in network

To recover the network from the 1D domain walls in the
decoupled array limit, we include the electron scattering at
the junctions. We note that the network model with C2zT
symmetry is always gapless [24], and the scattering at the
junction cannot induce direct backscattering (a manifestation
of the valley symmetry in mTBLG). For T � T ∗ = vF /d ,
there are two major sources of resistivity: (i) the inelastic
scatterings within a domain wall and (ii) the scatterings at
the junctions [60]. Both (i) and (ii) can contribute to power-
law finite-temperature resistivity. However, the contribution
from (ii) is temperature independent at Kc = 1 [60] while (i)
generates a linear-in-temperature behavior at Kc = 1 for suffi-
ciently high temperatures. We focus on the situations where (i)
governs the temperature dependence of the resistivity, which
is complementary to Ref. [60] where the contribution due to
(ii) has been studied extensively.

We first consider the limit �p(T )d � 1 corresponding to
the finite-temperature resistance is much larger than the resis-
tance quanta (h/e2). Since the resistance due to the scattering
at the junction is of the order h/e2, the transport of the network
model is dominated by the inelastic scattering within a domain
wall. This particular limit requires a sufficiently large Uc. The
finite-temperature resistivity shows a non-Fermi-liquid behav-
ior, ρ(T ) ∝ T 4Kc−3, at high temperatures, as illustrated in
Figs. 4 and 5. At intermediate temperatures and Kc > 3/4, the
domain walls without the interchannel CDW show monotonic
temperature dependence (Fig. 4), while the domain walls with
the interchannel CDW demonstrate a nonmonotonic behavior
and develop a local minimum around T ∼ �− (Fig. 5). Kc <

3/4 corresponds to a strongly interacting domain wall, which
gives rise to an insulator-like resistivity T 4Kc−3 for sufficiently
high temperatures. In such a situation, the existence of the in-
terchannel CDW is harder to observe in the finite-temperature
resistivity.

For weakly interacting domain-wall states, the Luttinger
parameter Kc ≈ 1. This is likely the situation in the mTBLG
experiments as clear signatures of interaction-driven phases
have not been reported. In this limit, the resistance due to
scatterings at the junction cannot be ignored. Nevertheless,
these contributions are temperature independent at Kc = 1. As
a result, we expect that the major temperature dependence of
the resistivity is dictated by the inelastic scattering within a
domain wall. At Kc = 1, we predict a linear-in-temperature
resistivity for sufficiently high temperatures. Again, the exis-
tence of the CDW can induce a local minimum (T ∼ �−) in
the resistivity; the resistivity remains monotonically increas-
ing in temperature in the absence of the CDW.

In more general cases, the scatterings at the junctions can
also contribute to non-Fermi-liquid finite-temperature resis-
tivity (i.e., not T 2 resistivity) [60]. A systematic calculation is
needed to fully characterize the finite-temperature resistivity
of a network. However, the non-Fermi-liquid resistivity be-
havior should appear quite generally. The contribution from
the V+ term is similar to the present results due to the Uc term
except that the power-law exponent 4Kc − 3 is replaced by
2K+ − 1 in the high temperature regime.

The finite-temperature resistivity discussed here is derived
from the Umklapp interactions. Electron-phonon scattering
[65] and other mechanisms, which we ignore, also contribute
to the finite-temperature resistivity. Our predictions are only
valid for temperatures smaller than the gap in the AB and
BA stacking regions. For temperatures larger than the AB/BA
gap, electrons are thermally activated in the AB and BA re-
gion, causing an decrease in the overall resistivity.

V. DISCUSSION

We study the phenomena driven by the repulsive electron-
electron interactions in the triangular network model as
realized in mTBLG with an out-of-plane electric field. We
show that the domain-wall states can realize a spin-gapped
interchannel CDW due to the interaction between two micro-
scopic channels. Such a CDW state can enhance the Umklapp
interaction and cause a resistivity minimum at a finite tem-
perature. For sufficiently high temperatures, the Umklapp
interaction within a domain-wall state can contribute to a non-
Fermi-liquid finite-temperature resistivity, ρ(T ) ∝ T 4Kc−3. In
particular, the linear-in-temperature resistivity is predicted
when Kc = 1.

The results predicted in this work can be examined by the
experiments. At zero temperature, we predict a spin-gapped
interchannel CDW state in contrast to the spin-gapless channel
singlet states by the previous works [36,46]. We expect that
the tunneling density of state at Fermi energy is exponen-
tially suppressed in a spin-gapped interlocked CDW state,
similar to the prediction for the spin-gapless channel singlet
in Ref. [36]. This is a manifestation of electron fractional-
ization (spin, charge, and channel separated) as the domain
wall state is actually gapless conducting. In addition, the 1D
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spin-gapped interchannel CDW state can be destabilized by
a sufficiently large magnetic field. Therefore, the scanning
tunneling microscope with an in-plane magnetic field can
test our prediction besides the finite-temperature resistivity
discussed in Sec. IV. The resistivity generically demonstrate
a non-Fermi-liquid behavior, ρ(T ) ∝ T 4Kc−3 for sufficiently
high temperatures (but the temperatures are still smaller than
the gap set by AB/BA domains). We would like to point
out that the observed finite-temperature resistivity in the un-
doped mTBLG shows a linear-in-temperature behavior below
80 K [27]. Our theory reproduces this phenomenology when
Kc = 1. Besides inelastic scattering within the domain wall,
the single-particle tunneling at the junction can also realize a
non-Fermi-liquid-like resistivity as long as Kc deviates from 1
significantly [60].

Enhancing interaction in mTBLG is preferred to examine
our predictions. To this end, one can vary the magnitude of
the out-of-plane electric field. Counterintuitively, a smaller
electric field results in a stronger interaction [41]. Meanwhile,
a sufficiently strong electric field is necessary to realize the
domain-wall network in mTBLG. Therefore, it is optimal to
apply an intermediate out-of-plane electric field, such that the
velocity is small enough, and the domain-wall states are still
sharply defined.

Throughout this work, we have assumed that the single-
particle backscattering is absent, but the interaction backscat-
tering can still arise. Such a situation is similar to the
interacting helical edges of the 2D time-reversal topological
insulator [54–58]. In fact, our predictions remain valid even
in the presence of the single-particle backscattering as long
as the chemical potential is away from the single-particle
gaps (due to the single-particle backscattering). In fact, as we
have discussed in Sec. III A, the presence of a spin gap in
the CDW state suppresses the single-particle backscattering.
The absence of a gap in the experiments [26,27] might be
explained by the disorder smearing effect such that the small
single-particle gaps (in the clean limit) disappear. Thus, the
absence of single-particle backscattering is a simplification
but not a necessary assumption. We also point out that our
results are robust against smooth disorder potentials (such as
chemical potential fluctuations and the twist-angle disorder
[66]). The forward scattering disorder (i.e., chemical potential
fluctuation) in a domain wall can relax the momentum and
modify the finite-temperature resistivity at low temperatures
[57,67] while the high-temperature resistivity is qualitatively
the same as the clean case. The twist-angle disorder can affect
the scatterings at the junction of the domain walls but does not
impact a single domain wall significantly. Thus, we expect
that our theory can apply to other systems manifesting con-
ducting network systems as well. In particular, the predicted
non-Fermi-liquid finite-temperature resistivity should be rel-
evant to the minimally twisted double bilayer graphene [15]
and networked topological helical surfaces [68].
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APPENDIX A: MODEL WITH TWO CHANNELS

As illustrated in Fig. 1(b), the electrons in a domain wall
are described by

Ĥ0 = vF

∑
j,σ

∫
dx[ψ†

K, jσ (−i∂xψK, jσ ) − ψ
†
K ′, jσ (−i∂xψK ′, jσ )]

− μ
∑
j,σ

∫
dx[ψ†

K, jσψK, jσ + ψ
†
K ′, jσψK ′, jσ ]

− t
∑

σ

∫
dx[ψ†

K,2σψK,1σ + ψ
†
K ′,2σψK ′,1σ + H.c.],

(A1)

where j = 1, 2 is the chiral mover index, σ =↑,↓ denotes
the spin, vF is the fermi velocity, μ is the chemical potential,
t encodes the hybridization of two edge states, and ψK, jσ

(ψK ′, jσ ) indicates the field operator for the jth edge electron
of valley K (valley K ′) with spin σ . In Eq. (A1), the 1D coun-
terpropagating massless Dirac fermions carry well-defined
valley quantum number, and the intervalley single-particle
scattering is absent. The hybridization t term describes the
symmetry-allowed intravalley tunneling between two co-
moving fermions.

The hybridization t between two edges is crucial to the
electronic structure in a domain wall. Similar to the studies
for the two-leg ladder problem [45], we introduce R0σ and
L0σ (Rπσ and Lπσ ) representing the bonding (antibonding)
fermionic fields. These fermionic fields are defined as fol-
lows: R0σ = 1√

2
(ψK,1σ + ψK,2σ ), L0σ = 1√

2
(ψK ′,1σ + ψK ′,2σ ),

Rπσ = 1√
2
(ψK,1σ − ψK,2σ ), and Lπσ = 1√

2
(ψK ′,1σ − ψK ′,2σ ).

To eliminate the chemical potential terms, we perform lin-
ear transformations, Rpσ (x) → eikF,pxRpσ (x) and Lpσ (x) →
e−ikF,pxLpσ (x), where kF,0 = (μ + t )/vF and kF,π = (μ −
t )/vF . With the above transformations, equation (A1) be-
comes Eq. (1).

APPENDIX B: CDW ORDER PARAMETERS

When V− term [Eq. (13)] becomes dominating, the
Luttinger liquid is unstable to the formation of certain quasi-
long-range order. Because of the nature of V− (equivalent to
the Coulomb drag problem), we focus on quasi-long-range
ordered states of charge. There are two possible interchannel
CDW order parameters, characterized by symmetric and anti-
symmetric linear combinations of single channel CDW states,
given by

Ô+ =
∑

σ=↑,↓

[
ei2kF xL†

0,σ R0σ + e−i2kF xR†
0σ L0σ

+ei2kF xL†
πσ Rπσ + e−i2kF xR†

πσ Lπσ

]
, (B1a)

Ô− =
∑

σ=↑,↓

[
ei2kF xL†

0,σ R0σ + e−i2kF xR†
0σ L0σ

−ei2kF xL†
π,σ Rπσ − e−i2kF xR†

πσ Lπσ

]
. (B1b)

Ô+ and Ô+ contain only the 2kF components of charge den-
sity operators. The interchannel CDW order parameters are
bosonized to

Ô+ = 2

πα

[
sin

(√
2�c

0 + 2kF x
)

cos
(√

2�s
0

)
+ sin

(√
2�c

π + 2kF x
)

cos
(√

2�s
π

)], (B2a)
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Ô− = 2

πα

[
sin

(√
2�c

0 + 2kF x
)

cos
(√

2�s
0

)
− sin

(√
2�c

π + 2kF x
)

cos
(√

2�s
π

)]. (B2b)

When V− → ∞, to represent the ground state, we
can choose �c

−(x) = π/2 + nπ , �s
0 = √

2n0π , and �s
π =√

2nππ , where n, n0, and nπ are integers. Other solutions
that minimize the V− term are equivalent. The CDW order
parameters become

Ô+ → 0, Ô− → 4

πα
cos (�c

+ + 2kF x). (B3)

The symmetric interchannel CDW order parameter vanishes
exactly when V− → ∞. Moreover, the equal-time correlation
function of Ô− is given by

〈Ô−(r)Ô−(0)〉 = 4

π2α2
〈ei2kF xei(�c

+(r)−�c
+(0))〉 + H.c.

≈ 8

π2α2
cos(2kF r)

(α

r

)K+/2
. (B4)

The antisymmetric CDW state is decaying with a power-law
exponent K+/2 and oscillates in space. The oscillation period
ξ = π/kF indicates the charge pocket separation in the CDW
state. Since Ô− is anticorrelated in the channel space, the two
CDW states of different channels are offset by half of the
oscillation period. These features are illustrated in Fig. 2.

Besides the CDW states, spin density wave order and
superconducting order parameters can be constructed [45].
However, these order parameters are either zero or sublead-
ing, consistent with the physical intuition for the repulsively
interacting two channel problem.

APPENDIX C: SEMICLASSICAL ANALYSIS FOR δQ− �= 0

To construct a phase diagram with both δQ− and the ap-
plied Zeeman field, we perform a semiclassical analysis in this
section. Neglecting the decoupled �+ sector, the semiclassi-
cal energy functional (ignoring �’s) is given by

E =
∫

dx
1

2π

[
v−
K−

(∂x�
c
−)2 + vF

∑
p=0.π

(
∂x�

s
p

)2

]

+ V−
π2α2

∫
dx cos (2�c

− + δQ−x)

× cos
(√

2�s
0 + δQsx

)
cos

(√
2�s

π + δQsx
)
, (C1)

where δQs = 2μBB/vF , μB is the Bohr magneton, and B is the
Zeeman field. Then, we follow the analysis used in Ref. [69].
When the V− term is negligible, the energy is governed by
the derivative terms, favoring constant values of �c

−, �s
0,

and �s
π . Thus, the free energy E = E0 = 0, corresponding

to the incommensurate solution. In the opposite limit, the
commensurate solution can be constructed by minimizing the
cosine term (V− term). We choose �c

−(x) = π/2 − δQ−x/2,
�s

0 = �s
π = −δQsx. The other solutions that minimize the

cosine term are equivalent. The energy for the commensurate
solution is given by

E1 = L

[
v−

8πK−
δQ2

− + vF

2π
δQ2

s − V−
π2α2

]
, (C2)

where L is the length of the 1D system.

For E1 < E0 = 0, the ground state is in the commensu-
rate phase indicating the formation of an interchannel CDW
state. For E1 > E0, the incommensurate phase is energetically
favored. A phase diagram based on the above analysis is
plotted in Fig. 3. Recalling that δQ− = 4t/vF − Q and δQs =
2μBB/vF . A sufficiently large t and/or B favors the incom-
mensurate phase and destabilizes the interchannel CDW state.
In particular, the destruction of CDW by the Zeeman field can
be examined experimentally.

APPENDIX D: SCALING DIMENSIONS IN HIGH
TEMPERATURE LIMIT

For sufficiently high temperatures, the conductivity in a do-
main wall can be estimated by a Fermi’s golden rule argument.
We consider an inelastic interaction as follows:

SI = g
∫

dτdx O(τ, x), (D1)

where g is the coupling constant and O is the interaction oper-
ator. At the second order perturbation theory, the conductivity
due to an interaction is

σ1d ∼ 1

g2

1

T r
, (D2)

where T is the temperature and r is the temperature exponent.
We determine the exponent r by a dimensional analysis.

The conductivity in one dimension has the scaling dimen-
sion [σ1d] = −1, the temperature has the scaling dimension
[T ] = 1, and [g] = −[O] + 2. With these scaling dimensions,
we conclude that

r = −2[g] + 1. (D3)

The temperature exponents obtained in this way are consistent
with the results in the high temperature limit of the Kubo
conductivity.

1. Without CDW

In the absence of the interchannel CDW, the scaling dimen-
sions of the bosonized operators given by the Uc and the V+
interactions are[

cos
(
2
√

2�c
0,π

)] = [cos (2�c
+ ± 2�c

−)] = K+ + K−, (D4)[
cos (2�c

+) cos
(√

2�s
0

)
cos

(√
2�s

π

)] = K+ + 1, (D5)

where we have omitted the incommensurate wave vectors.
This analysis is valid for temperatures much larger than the
scale set by the incommensurate wave vector. One can easily
check that the r = 2K+ + 2K− − 3 for the Uc interaction and
r = 2K+ − 1 for the V+ interaction.

2. With CDW

In the presence of the interchannel CDW, the scaling di-
mensions of the operators are modified. Assuming the CDW
correlation is infinitely strong, one can replace �c

−, �s
0, and

�s
p by constant values corresponding to minimizing Eq. (13).

The modified scaling dimensions of the bosonized operators
given by Uc and V+ interactions are given by[

cos
(
2
√

2�c
p

)] = [cos (2�c
+)] = K+, (D6)
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[
cos (2�c

+) cos
(√

2�s
0

)
cos

(√
2�s

π

)] = [cos (2�c
+)] = K+.

(D7)

In this case, r = 2K+ − 3 for both the Uc and V+ interactions.

APPENDIX E: DERIVATION OF SELF ENERGY

To derive the retarded boson self energy, we formulate
the problem in the imaginary-time path integral. Since two
channels are decoupled in Eq. (16), we focus on the channel

p in this Appendix. The axial action (after integrating out �c
p)

is given by S = Sc + SI , where

Sc =
∫

dτdx
1

2πvKc

[(
∂τ�

c
p

)2 + v2(∂x�
c
p

)2]
, (E1a)

SI = − Uc

2π2α2

∫
dτdx cos

[
2
√

2�c
p + δQpx

]
, (E1b)

where τ denotes the imaginary time. The self energy can be
derived via the effective action as discussed in Ref. [70]. The
expression of the space-time self energy is

�p(τ1, τ2; x1, x2) = −4Ũ 2
c

{
cos (δQp(x1 − x2))e8[Gp(τ1−τ2,x1−x2 )−Gp(0,0)]

−δ1,2
∫

dτ3dx3 cos (δQpx3)e8[Gp(τ3,x3 )−Gp(0,0)]

}
, (E2)

where Ũc = Uc/(2π2α2), δ1,2 denotes δ(τ1 − τ2)δ(x1 − x2), and Gp is the noninteracting boson propagator.
The vertex function e8[Gp(τ,x)−Gp(0,0)] is crucial to the self energy and is expressed by

e8[Gp(τ,x)−Gp(0,0)] =
{ (

πα
vcβ

)2

sinh
[

π
vcβ

(x + ivcτ )
]

sinh
[

π
vcβ

(x − ivcτ )
]
}2Kc

(E3)

with β = 1/T being the inverse temperature. Then, we perform Fourier transform and obtain

F (iωn, k) =
∫

dτdx eiωnτ−ikxe8[Gp(τ,x)−Gp(0,0)] (E4)

= 24Kc−2

(
πα

βvc

)4K
vcβ

2

π

sin(2Kcπ )

π

�[1 − 2Kc] �[1 − 2Kc]�
[
Kc + 1

2 (μ + ν)
]
�

[
Kc + 1

2 (μ − ν)
]

�
[
1 − Kc + 1

2 (μ + ν)
]
�

[
1 − Kc + 1

2 (μ − ν)
] , (E5)

where � denotes the Gamma function, μ = βωn

2π
, and ν = i βvck

2π
.

The self energy [Eq. (E2)] in the Fourier space can be expressed in terms of F as follows:

�̃(iωn, k) = −4

2
Ũ 2

c

[
F (iωn, k + δQp) + F (iωn, k − δQp)

−F (0, δQp) − F (0,−δQp)

]
. (E6)

To obtain the retarded self energy defined in Eq. (18), we perform analytic continuation iωn → ω + i0+. Finally, one can derive
Eq. (21) based on the retarded self-energy and Eq. (19).
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