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Resistively detected NMR as a probe of the topological nature of conducting edge/surface states
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Electron spins in edge or surface modes of topological insulators (TIs) with strong spin-orbit coupling cannot
be directly manipulated with microwaves due to the locking of electron spin to its momentum. We show by
contrast that a resistively detected nuclear magnetic resonance (RDNMR) based technique can be used to probe
the helical nature of surface conducting states. In such experiments, one applies a radio frequency (RF) field to
reorient nuclear spins that then couple to electronic spins by the hyperfine interaction. The spin of the boundary
electrons can thereby be modulated, resulting in changes in conductance at nuclear resonance frequencies. Here,
we demonstrate that the conductivity is sensitive to the direction of the applied magnetic field with respect to the
helicity of the electrons. This dependence of the RDNMR signal on angle probes the nature of the conductive
edge or surface states. In the case of 3D TI in the quantum Hall regime, we establish that the dominant mechanism
responsible for the conductance change in a RDNMR experiment is based on the Overhauser field effect. Our
findings indicate that the same physics underlying the use of RDNMR to probe TI states also enables us to use
RF control of nuclear spins to coherently manipulate topologically protected states, which could be useful for a
new generation of devices.
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I. INTRODUCTION

The discovery of time-reversal-invariant topological in-
sulators (TIs), which possess finite band gaps in the bulk
and have gapless helical states on boundaries, has attracted
much attention in recent years [1–3]. The novel features
of TIs are intimately related to the underlying topology
of the single-particle spectrum in momentum space, and
are robust as long as the time-reversal symmetry is un-
broken [4–8]. The first two-dimensional TI was realized in
HgTe/CdTe quantum well [9,10]. The existence of topo-
logical edge state was confirmed by observing quantized
longitudinal conductance. Later three-dimensional (3D) TIs
were also discovered in various materials, such as in Bi1−xSbx

and Bi2−xSbxTe3−ySey compounds [7,11–18]. Angle-resolved
photoemission spectroscopy (ARPES) and scanning tunneling
microscopy/spectroscopy (STM/STS), provide direct evi-
dence of the two-dimensional (2D) Dirac fermions on the
surface [11,13–16,18].

NMR techniques are a powerful probe of the electronic
degrees of freedom due to the existence of hyperfine coupling.
Spin polarized electrons create an effective local magnetic
field that changes the nuclei resonance frequency, an effect
that is easily detected. The technique has been applied to study
the physics of quantum Hall effect, and electronic polarization
in quantum wells of 2D electron gases and in quantum wires
[19–37]. NMR has also been used to investigate bulk prop-
erties of topological materials with nonlocal order [38–44].
The use of traditional NMR techniques to study properties of
reduced dimensionality systems, such as GaAs heterostruc-
tures and surface states, is precluded as relatively few nuclear
spins participate, making the signal of RF response weak.

Various methods have been proposed to remedy the low sen-
sitivity [19–24]. Resistively detected NMR (RDNMR) has
been the most powerful tool developed thus far to probe the
fundamental physics of the reduced dimensionality systems.
In confined geometries the overlap of the electronic degrees
of freedom with the nuclei can be relatively large result-
ing in strong hyperfine interaction between electronic and
nuclear spins. Strong hyperfine coupling in quantum wells
was exploited in RDNMR to probe the quantum Hall-regime
[19,23,28–32,45,46]. In quantum Hall systems, the nuclei are
first polarized statically by application of a strong magnetic
field, or dynamically, for instance through the spin flip-flop
processes at quantum point contacts [47]. The nuclei are then
depolarized by irradiation with a resonant RF field, which
can then be seen in a variation of the resistance that may be
attributed to either nucleus-electron scattering or a change of
the Overhauser field [48]. Sensitive RDNMR measurements
can thus uncover rich structures of electronic states and the
interplay between electrons and nuclei.

In this paper, we propose RDNMR experiments that can
be performed in TI systems as a new tool to identify and
characterize the Dirac fermions on the edges or surfaces.
An advantage of RDNMR, compared to the ARPES and
STM/STS experiments, is that it also provides a way to
directly control the Dirac fermions. The local nature of hy-
perfine interaction permits the direct manipulation of the
electronic spin, even when the electronic spin is coupled to
its orbital motion, as is the case in the TIs. This is partic-
ularly useful because electronic spin is not a good quantum
number when there is strong spin-orbit coupling, and resonant
microwaves cannot control the electron spin polarization.
Here we identify two different mechanisms giving rise to
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RDNMR in TIs. These are spin flip-flop processes and the
Overhauser field effect. For the former type, because of the
helical nature of the edge states, nuclei on the edge are dy-
namically polarized along the quantization axis determined by
a weak external magnetic field when bias is applied [49–51].
When subjected to a RF field, the depolarized nuclei backscat-
ter the Dirac fermions on the edge/surface and change the
current. The second mechanism can be applied to a 3D TI
under a strong magnetic field, that is, in the quantum Hall
regime, which is analogous to the mechanism found in Ref.
[23]: The effective magnetic field produced by nuclei, the
Overhauser field, varies when nuclei are in resonance and this
modifies the gap between adjacent Landau levels, which leads
to a change of surface carrier densities and hence the transport
properties.

The paper is organized as follows. In Sec. II, we introduce
the dynamic nuclear polarization on the edges of a 2D TI,
discuss how RDNMR works through spin flip-flop processes
and compare the experimental signals that could distinguish
helical edge states and nonhelical edge states. We then gener-
alize this idea to a clean 3D TI wire in Sec. III and demonstrate
similar results. In Sec. III, we also discuss how RDNMR
based on Overhauser shift effect can be realized in 3D TIs
in the quantum Hall regime. Discussions and conclusions are
presented in Sec. IV.

II. TWO DIMENSIONAL TOPOLOGICAL INSULATORS

In this section, our calculations regarding the presence of
the RDNMR response in 2D TIs is described. We find that
RDNMR response exists and exhibits a dependence on the
orientation of the applied magnetic field only if the edge states
are helical.

In 2D TIs, there are fermions with opposite spins coun-
terpropagating on the edges of the system, which are called
helical edge states. Although the details of the edges and
microscopic parameters vary from systems to systems, the
helical edge state can be well described by a minimal
Hamiltonian at low energies

Hedge = h̄vF kσz, (1)

where σz is the Pauli spin matrix and vF is the Fermi velocity.
We assume that Eqs. (1) and (5) (see below) can still serve
as minimal Hamiltonians that capture the essential physics
even in the presence of a weak external magnetic field or the
Overhauser field due to polarized nuclei.

We now discuss the meaning of the “weak” and “strong”
magnetic fields terminology that is used in this paper. A
magnetic field is weak if it does not drastically change the
low-energy physics on the edges or surfaces of a TI. The field
only determines the quantization axis of nuclei and is used
to perform NMR experiments. For 2D TIs, we assume that
the edge physics is still well described by helical edge states
upon the application of such weak field. We do not consider,
for example, edge excitations that become gapped or helical
edge states that transition to chiral edge states at the Fermi
level [52–54]. For 3D TIs considered later, the magnetic field
may be considered to be weak if the temperature is much
larger than the Landau gap or Zeeman gap so the surface
states may still be approximately described by gapless 2D
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FIG. 1. Schematic of RDNMR for a 2-D TI. When a RF field is
applied to depolarize/flip the nuclei, the nuclei continuously back-
scatter the helical Dirac fermions through the hyperfine interaction.
The static weak magnetic field is applied along the ẑ′ direction.

Dirac fermions. In contrast, a strong magnetic field not only
polarizes nuclei but also drastically changes the low-energy
physics of a TI. In our work this is the case for 3D TIs in the
quantum Hall regime, where the conducting surfaces that is
perpendicular to the magnetic field become gapped due to the
formation of Landau levels.

The interaction between helical fermions and nuclei on the
edge is modelled by the Fermi-contact-type hyperfine interac-
tion,

Hhf =
∑

i,s

(
As

zI
s
z Sz + As

xy

Is
−S+ + Is

+S−
2

)
δ(D)(�r − �Ri ), (2)

where �Ri is the coordinate of nuclei, s labels the isotope
species, As

z(xy) is the anisotropic out(in)-plane hyperfine cou-
pling constant for isotope s, Is

z,+,− are the dimensionless
nuclear spin operators, and Sz,+,− are the dimensionless elec-
tronic spin operators. For a 2D TI, the nuclei interact with
electrons only on the 1D edge so D = 1, while for a 3D TI D
equals 2 since the Dirac fermions live on the 2D surface. Note
that although in this paper we assume the electronic density to
be constant on the edge/surface for convenience, any variation
of it can be absorbed into the As

z(xy) and hence does not affect
the final results.

When the edge is short and a voltage bias is imposed
there will be unequally populated right (spin-up) and left
(spin-down) movers. The imbalance would tend to equilibrate
through spin-flip processes by the hyperfine interaction, as
illustrated in Fig. 1 by the blue interaction lines. Due to
the helicity of the edge state and the conservation of total
angular momentum, such process would gradually polarize
the nuclear spins at the edges, which is referred as dynamic
nuclear polarization (DNP), until the whole system reaches
nonequilibrium steady state (NESS) [49–51]. For the case that
the nuclear spins relax only through hyperfine interaction with
Dirac fermions at the edges, which we assume throughout
this paper, it may be shown that for spin-1/2 nuclei in the
absence of external magnetic field, its magnetization is M =
1
2 tanh( V

2kBT ), where V = μL − μR and μL(R) is the chemical
potential of left (right) reservoir [49]. On the other hand,
although there would be finite backscattering current during
the transient period due to the electron-nucleus backscattering
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FIG. 2. (a) The change of conductance at the NMR resonance frequency vs V/kBT at different angles θ in a two-terminal experiment,
for isotropic hyperfine coupling |Az| = |Axy|. (b) The change of conductance at the NMR resonance frequency versus angle θ for different
anisotropic hyperfine coupling |Az/Axy|. The solid line represents |Az/Axy| = 1, the dashed line represents |Az/Axy| = 4, and the dotted line is
for |Az/Axy| = 0.25. The blue lines show the 2D TI while the red lines represent the case when there is one spin-degenerate conducting channel
on the edge, as depicted in the insets of (b). In the insets, the black lines represent the edges of the sample while blue and red lines show the
counterpropagating conducting channels. αh = π 2Nn|Axy|2/h2v2

F , αnh = π 2NnJ2|Axy|2/16. Parameters: I = 9/2, �/kBT = 0.05.

process, in the NESS there would be no backscattering current
because the spin-flop rate of nuclear spins, which is also the
scattering rate of right or left movers, vanishes in the absence
of other nuclear relaxation mechanisms.

However, such a backscattering current can be maintained
by performing a NMR experiment. (Throughout this paper,
the phrase “performing a NMR experiment” implies that the
polarized nuclear spin systems is subject to the resonant RF
field.) That is, suppose that the static magnetic field �Bs =
Bẑ is sufficiently weak not to affect the effective electronic
Hamiltonians in Eqs. (1) and (5), and a weak radio-frequency
(RF) magnetic field perpendicular to �Bs at the resonance fre-
quency of isotope s are applied, the nuclei of kind s will
be depolarized and may be regarded to have infinite spin
temperature at NESS, if one assumes that the driving is much
stronger than the relaxation for nuclei and nuclei have satu-
rated. In this case, because these nuclei are no longer polarized
and are allowed to scatter with the helical fermions, the helical
fermions at edges would be continuously backscattered by
those nuclei at resonance, as indicated in Fig. 1. The backscat-
tering current Isb on a single edge in this case can be found
using Fermi’s golden rule (see Appendix A), that is

Ibs ≈ αs
h

e

h
(Is − ms)(Is + ms + 1)V, (3)

which leads to suppression of the conductance given by

δG ≈ −αs
h

2e2

3h
Is(Is + 1), (4)

compared to the ideal quantized conductance G0 = 2e2

h in
a two-terminal experiment, if kBT � V is assumed and the
Zeeman splitting of nuclei is neglected. We use (...) to de-
note the average value with respect to specific population of

isotope s, αs
h = π2Ns

n |As
xy|2

h2v2
F

, and Ns
n is the number of specific

isotope s covered by edge state on the single edge. Is and ms

are the spin quantum number and magnetic quantum num-
ber of nuclear species s in the direction of magnetic field,
respectively.

In general, the weak static magnetic field �Bs = Bẑ′ can be
applied along arbitrary direction, and in this case the nuclear
spins would not always be fully polarized by the current [50].
The population ratio of nuclei can be found to be Ph

m+1/Ph
m =

cot4(θ/2) using Fermi’s golden rule (see Appendix A), where
θ is the angle between ẑ and ẑ′ (see Fig. 1), if again kBT � V
is assumed and the Zeeman splitting of nuclei is neglected.
One could therefore conclude that at angle θ = π/2 ideally
no change of conductance would be expected when RF field
at resonance frequencies is applied, since the configuration of
nuclear spins does not change before and after the application
of RF field. Therefore, one would infer that the change of con-
ductance when RF field is applied is anisotropic with respect
to θ , even when the hyperfine coupling constant is isotropic,
i.e., As

xy = As
z. A full calculation with parameters θ , |Az/Axy|,

and V/kBT (see Appendix A), which also takes into account
the effect of nuclear Zeeman energy �s, shows that for the
two-terminal setup where the conductance is provided by both
edges, the conductance change is in fact strongly anisotropic
as displayed in Fig. 2.

To compare, we also consider the case in which nonhelical
fermions live at the edge of a 2D trivial insulator, where each
edge has one spin-degenerate conducting channel and bulk
is insulating, as depicted in the inset of the right panel of
Fig. 2(b). As evident in Fig. 2, if the edge state is nonhelical
ideally there would be no angular dependence in the RDNMR
signal if the hyperfine coupling is isotropic, which is due to
the spin degeneracy of particles at the edges. Furthermore,
due to the absence of effective DNP the conductance change
of a nonhelical fermionic system when NMR is turned on is
much smaller than that of a helical system. Even though our
result assumes that nuclei are depolarized by continuous-wave
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FIG. 3. (a) Schematic of the setup in our model. The arrows denote the directions of the magnetic field B, current I , and the nuclear
polarization P, respectively. The double arrows on the magnetic field B indicate that it can be aligned along either direction. In this case P
is nonvanishing only on top and bottom surfaces. (b) The surface spectrum of a rectangular wire under the quantization condition. (c) The
schematic of the distribution of Dirac fermion when biased, where solid blue lines denote the occupied states while dashed blue lines represent
the unoccupied ones; the full circle is the Fermi surface at equilibrium while the two hemi-circles denote the Fermi surface of the reservoirs
when bias is present.

NMR, the results should be qualitatively the same if nuclei are
flipped by pulse techniques.

III. THREE DIMENSIONAL TOPOLOGICAL INSULATORS

It is an interesting question whether similar physics could
also exist in a 3D strong TI that hosts a single Dirac cone
on the surface. This question is addressed in the calculations
below. Our main finding indicates that RDMNR response in
3D TIs is present but may be weaker than in the 2D case as
the current-induced DNP is feeble. Furthermore, in a 3D TI
that is in the quantum Hall regime, we demonstrate that the
effect of the Overhauser field is to modify the Landau levels
spectra and thereby induce an RDNMR response.

We consider a 3D rectangular TI wire, as shown in
Fig. 3(a), with simplified surface Hamiltonian on all the
surfaces:

Hsurf = h̄vF (�σ × �k) · n̂, (5)

where n̂ is the unit normal vector of the corresponding surface
and we have neglected the hybridization between opposite
surface states across the bulk. Note that Eq. (5) is a highly
simplified surface Hamiltonian, which may give a very differ-
ent spectrum from the real one in a nanowire [55]. This is not
only because higher order terms are absent, but also due to the
fact that in reality surfaces with different orientations typically
have different Hamiltonians attributed to the bulk anisotropy
of commonly used TI materials [56–58]. Furthermore, the
pseudo-spin �σ in Eq. (5) may be very different from the real
spin �S on some surfaces, although we simply assume �S = �σ/2
throughout this paper [56]. Nevertheless, the Hamiltonian
Eq. (5) is the simplest model that captures the key physics
and allows us to make explicit analytic calculations. In such
ideal model the surface state may be labeled by longitudinal
momentum kx and the transverse momentum kt along the y-z
direction, which is quantized as kt = (2n+1)π

2(Ly+Lz ) , n ∈ Z [59,60].
Therefore series of subband are developed, as depicted in

Fig. 3(b). Note that this quantization condition is attributed to
the accumulated π Berry phase when a Dirac fermion travels
around the cross section.

We consider the coherent transport along x direction in a
clean sample. For the two-terminal setup shown in Fig. 3(a),
if there is no reflection at the contacts, the conductance is
G = Me2/h according to the Landauer formula, where M is
the number of transverse modes. Comparable to the 2D case,
due to the unequally populated right and left movers, the
nuclei would be polarized in a similar manner when bias is
applied. In fact, take the top surface shown in Fig. 3(a) as an
example, the nuclei on the top surface would not be polarized
at all by the current if the external magnetic field is along the
x or z axis, but could be partially polarized if the external field
is along the y axis. Such anisotropy is due to the helicity of the
Hamiltonian Eq. (5): The spin is always in-plane and perpen-
dicular to the momentum. When the magnetic field is along
y direction, the current-induced population imbalance prefers
to flip the nuclei from +ŷ direction to −ŷ direction since the
majority of right(left)-movers have considerable spin compo-
nent along the −ŷ(+ŷ) direction [see Fig. 3(c)]. It should be
emphasized again that here the external magnetic field affects
neither the electronic spectrum nor the nuclear polarization
directly, instead it only determines the quantization axis of
the nuclear spin. With detailed calculation based on Fermi’s
golden rule (see Appendix B) and simplification V � kBT �
�, As ≡ As

z = As
xy, it can be shown that the population ratio of

nuclei in this case is given by

Pm+1

Pm
=

(
γ

1 − γ

)2·sgn(vFV )

, (6)

where m labels the eigenstate of Iy, γ =∑
Jn sin2(θn/2)/

∑
Jn depends on the Fermi energy and

the size of the sample, Jn = [hvF (Ly + Lz ) cos θn]−1 is the
DOS of subband n per surface area at Fermi level, and
θn is the angle between �k and kx axis that ranges between
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−π/2 and π/2 [see Fig. 3(c)]. In the case when M � 1, one
could transform sum to integral and obtain γ = 1/2 − 1/π

so that Pm/Pm−1 ≈ 0.05. This suggests that considerable
nuclear polarization on the top surface may be achieved if the
magnetic field is in-plane and normal to the electric field. One
could deduce that in this case opposite nuclear polarization
would appear on the bottom surface and no current-induced
nuclear polarization would exist on the side surfaces, as
shown in Fig. 3(a).

The possibility of having considerable DNP indicates that
relatively large conductance change may be observable in 3D
strong TIs when NMR is performed. We continue assuming
the external field is applied along y direction. Similar to the
2D case, the backscattering current due to the nuclei can be
calculated in a similar manner and in fact we are only inter-
ested in the scattering due to the nuclei on the top and bottom
surfaces, because only those nuclei could change appreciably
when NMR is performed. The suppression of conductance due
to the scattering with specific isotope s on the top and bottom
surfaces can be calculated to be

δG = −π2Ns
n (As)2J2

surf

4

e2

h
× [

2
(
Iz
m

)2
γ (1 − γ )

+ (I+
m )2γ 2 + (I−

m )2(1 − γ )2
]
, (7)

where Jsurf = ∑
n Jn is the DOS of surface-state per surface

area at Fermi level, Ns
n is the number of specific isotope s

on the top and bottom surfaces and for simplicity we have
assumed isotropic hyperfine coupling. We have defined I±

m =
〈I, m ± 1|Is

±|I, m〉 = √
(I ∓ m)(I ± m + 1) and Iz

m = m − m.
The first term in the above equation is due to the nuclear-spin-
conserving scattering while the last two terms correspond to
the nuclear-spin-flipping scattering. Similar to the 2D case,
the change of conductance when the nuclei is at resonance
can be calculated by computing the difference of conductance
when nuclei are polarized and depolarized using Eqs. (6) and
(7), which is approximately

δG ≈ −π2Ns
n (As)2J2

surf

6
Is(Is + 1)

e2

h
, (8)

in the limit γ → 0, i.e., the nuclear spins are fully polarized
by the current.

We propose an alternative mechanism, based on the Over-
hauser field effect, to control the conductivity by performing
NMR in 3D strong TIs in the presence of strong magnetic
field. In this case, the magnetic field not only determines
the quantization axis of nuclear spin but also modifies the
Hamiltonian Eq. (5) drastically [57,61–65]. Under an external
magnetic field Bz along z direction, as depicted in Fig. 4, due
to both the orbital effect and Zeeman effect of the magnetic
field, the spectrum of Dirac fermion on the top and bottom
surface quantizes to well-known Landau levels [61]:

E±N =
{

±
√

(gzμBBeff/2)2 + 2h̄v2
F Ne|Bz|, N � 1

−gzμB|Beff|/2, N = 0
, (9)

while the spectrum on the side surface only shifts by a fi-
nite amount in momentum space. In Eq. (9) Beff = Bz + Bn

incorporates both the external magnetic field Bz and the
macroscopic Overhauser field Bn produced by nuclei, gz is
the effective g factor of electron along z direction, and μB

FIG. 4. Schematic for a 3D TI in a strong magnetic field. Lan-
dau levels are formed on the top and bottom surface with filling
factor ( 1

2 ,− 1
2 ) as an example. Due to the thermal activation, there

is nonzero carrier density contributing to conductivity on the top and
bottom surface.

is the Bohr magneton. We note that since Overhauser field
does not contribute to the orbital effect and only contributes
to the Zeeman term in Eq. (9), the change of it does not
affect the filling factor. Due to the presence of such quantized
Landau levels, in a 3D TI thin film subject to high magnetic
field and at low temperature, integer quantum Hall effect with
quantized Hall conductance σxy = (νt + νb)e2/h appears at
half-integer top and bottom filling factor, νt and νb, which
may be tuned independently by gate technique [66–69]. In
traditional quantum Hall systems, it is well known that in the
thermal activation regime the longitudinal conductivity obeys
Arrhenius-type law, namely σxx ∝ e−�L/(2kBT ) [70]. It is there-
fore expected that, for a 3D TI in the quantum Hall regime,
if the cyclotron gap on the top and bottom surfaces change
by a small amount δ�

νt
L and δ�

νb
L , the change of longitudinal

conductivity would be

δσxx ≈ σ 0
t

(
e−δ�

νt
L /2kBT − 1

) + σ 0
b

(
e−δ�

νb
L /2kBT − 1

)
, (10)

where σ 0
t (b) is the conductivity contributed by top(bottom)

surface before the change of cyclotron gap. Such a cyclotron
gap can be controlled by tuning the Overhauser field through
NMR techniques. At thermal equilibrium, nuclei have polar-
ization due to the strong magnetic field. When specific isotope
s is completely depolarized by RF field, the Overhauser field
Bn changes by [71]

δBn ≈ − Is(Is + 1)

3

nsγ s
n As

z

|γe|kBT
Bz, (11)

where γe is the gyromagnetic ratio of electrons and ns is the
density of nuclear isotope s on the surface. Given that under
the general experimental condition |Bn| � |Bz| and |r| � 1

where r = gzμB|Bz|/2
√

2h̄v2
F e|Bz|, it can be shown that the

change of gap at filling factor ν due to the change of Over-
hauser field δBn is given by

δ�ν
L ≈−gzμB|δBn|

2
×

{
r
(

1√
|ν|+1

2

− 1√
|ν|− 1

2

)
, |ν|=n+ 1

2

r + 2ν, |ν| = 1
2

,

(12)
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where n is a positive integer. Therefore, by performing NMR,
one expects to observe the change of longitudinal conduc-
tivity, given by Eqs. (10), (11), and (12). We point out that
in the above analysis we have assumed that the bulk thermal
excitation is negligible and ignored the possible effect of the
flip-flop processes on the surfaces.

IV. DISCUSSION AND CONCLUSION

In this work, we propose to use NMR techniques to both
test the topological nature of the surface edge states and
control transport in TIs. In 2D TIs, due to spin-momentum
locking of the edge states, there could be significant change
in the backscattered current when the nuclei are at resonance.
The change is sensitive to the angle of the polarization axis
of the nuclear spins. The phenomenon relies on the flip-flop
process between electrons and nuclei as well as current-
induced dynamic nuclear polarization on the edge. We show
that the change in the current may be two orders of magnitude
smaller for nonhelical states than for their helical counter-
parts. As the response is isotropic for the nonhelical states
unless the hyperfine coupling is anisotropic, this is an alter-
native approach to characterize the nature of suspicious edge
states that may accidentally exist in nontopological systems.
For example, it was recently reported that in the topolog-
ically trivial phase of InAs/GaSb quantum well, a 2D TI,
there exists an edge current that is believed to be nonhelical
[72,73]. For the InAs/GaSb quantum well we estimate that
the conductance change percentage for a 1 μm long edge
is of order 0.01% when isotope 115In is depolarized (see
Appendix D) so our proposal may be detectable in experi-
ments [74,75].

For a 3D TI wire, we demonstrate that similar phenomena
also exist due to the helicity of 2D Dirac fermions. Even
though the models we use are idealized, especially the 3D TI
Hamiltonian of Eq. (5), we believe that our prediction that the
magnitude of nuclear polarization is sensitive to the magnetic
field direction, and that there will be significant change in
conductance at the nuclear resonant frequencies, will hold in

both clean and mesoscopic systems. Furthermore, we find that
RDNMR can be realized in a 3D TI that is in the quantum
Hall regime. This is accomplished by modifying the carrier
densities of the Landau levels, through changing the Over-
hauser field, which then alters the longitudinal conductivity.
Using parameters taken from Refs. [39,61], we estimate that
when 209Bi is depolarized in a field Bz ∼ 10 T at temperature
T ∼ 0.1 K, |δBn| is of order 0.1 T so the change of Landau
gap at filling factor ν = ±1/2 is of order 10 μeV, which is
comparable to the temperature and hence should be observ-
able. This idea is similar to RDNMR in a 2D electron gas in
the quantum Hall regime [23], but the Landau level spectrum
of the two systems differ significantly. We also emphasize that
2D Dirac fermions on TI surfaces are different from those of
graphene, as in graphene the Zeeman field only results in a
relative shift of the energy levels of the different spin species.
Therefore the RDNMR experiment in a 3D TI may reveal the
unique spectrum of surface Dirac fermions.
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APPENDIX A: DERIVATION OF BACKSCATTERING
CURRENT AND NUCLEAR POLARIZATION IN THE CASE

OF 1-D HELICAL/NON-HELICAL FERMIONS

In this Appendix, for simplicity we suppress all the super-
scripts labeling nuclear isotopes. The change rate of nuclear
population Ph/nh

m is given by Pauli’s master equation

dPh/nh
m

dt
=

∑
m′

(
W h/nh

m,m′ Ph/nh
m′ − W h/nh

m′,m Ph/nh
m

)
, (A1)

where W h/nh
m′,m the scattering rate of nucleus in the environment

of helical/nonhelical fermions from state |I, m〉 to state |I, m′〉
is given by Fermi’s golden rule:

W h/nh
m′,m = 2π

h̄

∑
k,σ,k′,σ ′

fkσ (1 − fk′σ ′ )|〈k′σ ′, m′|Hh f |kσ, m〉|2δ(εkσ + Em − εk′σ ′ − Em′ ), (A2)

where fkσ and εkσ are the distribution function/energy of the 1D fermion in state |kσ 〉, respectively, and Em = −m� is the
energy of nucleus in state |I, m〉, where � = γnh̄B and γn is the gyromagnetic ratio of specific nuclear isotope. It may be more
convenient to rewrite Eq. (2) in terms of the nuclear spin operators in z′ direction I ′

z,+,−, which is related to Iz,+,− by Ii = ∑
j ci j I ′

j ,
where ci j is given by

ci j =

⎛
⎜⎝

cos θ sin θ
2

sin θ
2

− sin θ cos2 θ
2 − sin2 θ

2

− sin θ − sin2 θ
2 cos2 θ

2

⎞
⎟⎠

i j

(A3)

in the basis of z,+,−. With the assumption that the distribution of right(left) movers on the edge, given by the left(right) bath’s
distribution fL(R)(ε) = (eβ(ε−μL(R) ) + 1)−1 is unaffected by the weak hyperfine interaction, the scattering rate of nuclei embedded
in helical/nonhelical Fermi sea reads

W h
m,m+1 = π2

h3v2
F β

(I−
m+1)2

[
|Axy|2 sin4 θ

2
F (β(� − V )) + |Axy|2 cos4 θ

2
F (β(� + V )) + |Az|2

2
sin2 θF (β�)

]
, (A4)

W h
m+1,m = π2

h3v2
F β

(I+
m )2

[
|Axy|2 sin4 θ

2
F (−β(� − V )) + |Axy|2 cos4 θ

2
F (−β(� + V )) + |Az|2

2
sin2 θF (−β�)

]
, (A5)
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W nh
m,m+1 = π2J2

16hβ
(I−

m+1)2[F (β(� + V )) + F (β(� − V )) + 2F (β�)]

[
|Axy|2 + (|Az|2 − |Axy|2)

sin2 θ

2

]
, (A6)

W nh
m+1,m = π2J2

16hβ
(I+

m )2[F (−β(� + V )) + F (−β(� − V )) + 2F (−β�)]

[
|Axy|2 + (|Az|2 − |Axy|2)

sin2 θ

2

]
, (A7)

where J is nonhelical fermion’s density of state per length at Fermi levels that counts the spin degeneracy, and we as-
sume it to be roughly a constant over the scale of V . We have defined F (x) = x/(ex − 1) and I±

m = 〈I, m ± 1|I ′
±|I, m〉 =√

(I ∓ m)(I ± m + 1). It is worth mentioning here that the Pauli master equation Eq. (A1) could also be derived by Lindblad-type
quantum master equation if we ignore the interactions between nuclei and makes Born-Markov approximation and secular
approximation, which require that the nuclear relaxation time τn ∼ [|Axy|2/(h3v2

F ) × max(�,V, kBT )]−1 is much larger than the
electronic relaxation time τe ∼ h/kBT and the intrinsic nuclear time scale τ� ∼ h/� [50,76]. We assume that these conditions
are satisfied in this paper. At the steady state, the population ratio of nuclei is given by Pm+1/Pm = Wm+1,m/Wm,m+1 and therefore

Ph
m+1

Ph
m

=
sin4 θ

2 F (−β(� − V )) + cos4 θ
2 F (−β(� + V )) + |Az |2

2|Axy|2 sin2 θF (−β�)

sin4 θ
2 F (β(� − V )) + cos4 θ

2 F (β(� + V )) + |Az |2
2|Axy|2 sin2 θF (β�)

. (A8)

Pnh
m+1

Pnh
m

= F (−β(� + V )) + F (−β(� − V )) + 2F (−β�)

F (β(� − V )) + F (β(� + V )) + 2F (β�)
(A9)

The backscattering current due to specific isotope is given by the rate of change in the number of left or right movers scattered
by that isotope, which is [49]

Ibs = e
∑

k+,k−,σ,σ ′
(k−σ ′,k+σ − k+σ,k−σ ′ )sgn(V ), (A10)

where b,a, the rate for electrons to scatter from state a to b by specific kind of isotope reads

k′σ ′,kσ = 2π

h̄
fkσ (1 − fk′σ ′ )Nn

∑
m

Pm|〈k′σ ′, m′|Hh f |kσ, m〉|2δ(εkσ + Em − εk′σ ′ − Em′ ), (A11)

where Hh f , which is given by Eq. (2), should be modified to Hh f − AzIzSzδ(r) because for spin-conserving process it is the
fluctuation of spins scattering particles (see Appendix C for detailed discussion). Therefore, the backscattering current on a
single edge for helical/nonhelical fermion can be easily obtained:

Ih
bs = αh

e

h

sgn(V )

β

[
F (−β(� + V )) cos4 θ

2
× (I+

m )2 + F (β(� − V )) sin4 θ

2
× (I−

m )2 − F (β(� + V )) cos4 θ

2
× (I−

m )2

− F (−β(� − V )) sin4 θ

2
× (I+

m )2 + F (−βV ) sin2 θ × (
Iz
m

)2 − F (βV ) sin2 θ × (
Iz
m

)2
]
, (A12)

Inh
bs = αnh

e

h

sgn(V )

β

{
(I+

m )2[F (−β(� + V )) − F (−β(� − V ))]
[(

1 − sin2 θ

2

)
+ |Az|2

|Axy|2
sin2 θ

2

]

+ (I−
m )2[F (β(� − V )) − F (β(� + V ))]

[(
1 − sin2 θ

2

)
+ |Az|2

|Axy|2
sin2 θ

2

]

+ 2
(
Iz
m

)2
[F (−βV ) − F (βV )]

(
sin2 θ + |Az|2

|Axy|2 cos2 θ

)}
, (A13)

where αnh = π2NnJ2|Axy|2
16 and Iz

m = m − m.
Notice that we could also include the effective macroscopic

magnetic field seen by nuclei due to the current-induced
electronic magnetization at the edge, which gives rise to an
additional Knight shift term. In the presence of such term,
we can always choose a new quantization axis that makes the
Hamiltonian of nuclei diagonal and similar analysis holds.

APPENDIX B: DERIVATION OF BACKSCATTERING
CURRENT AND NUCLEAR POLARIZATION IN 3-D TI

We consider the Hamiltonian given by Eq. (5) with quan-
tization condition kt = (n + 1/2)π/(Ly + Lz ). Without losing

generality, we assume that the Fermi level lies in the conduc-
tion band. In the limit V � kBT � �, similar to the case in
Appendix A, the transition rate of nuclei can be obtained by
Fermi’s golden rule

W s
m,m+1 = 2π

h̄
(As)2V

∑
n,n′

(I−
m+1)2|〈φn′ |Sn̂

+
2

|θn〉|2 Jn

2

Jn′

2
, (B1)

W s
m+1,m = 2π

h̄
(As)2V

∑
n,n′

(I+
m )2|〈φn′ |Sn̂

−
2

|θn〉|2 Jn

2

Jn′

2
, (B2)

where we have assumed Jn and spinors are almost fixed in the
range EF − V/2 < E < EF + V/2. φn′ is the angle between �k
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and kx axis satisfying π/2 < φn′ < 3π/2 [see Fig. 3(c)] and
|φn′ 〉 is the corresponding spinor. Sn̂

+(−) denotes the raising
(lowering) operator in the general n̂ direction. For simplicity,
from here we only consider the case that external magnetic
field is along the principal axes and we focus on the top
surface shown in Fig. 3(a). The matrix element of various spin
operators along different principal axes can be calculated to be

|〈φn′ |Sy
−|θn〉|2 = sin2 θn

2
cos2 φn′

2
, (B3)

|〈φn′ |Sy
+|θn〉|2 = cos2 θn

2
sin2 φn′

2
, (B4)

|〈φn′ |Sy|θn〉|2 = 1

4
cos2

(
φn′ + θn

2

)
, (B5)

|〈φn′ |Sz
−|θn〉|2 = 1

4 , (B6)

|〈φn′ |Sz
+|θn〉|2 = 1

4 , (B7)

|〈φn′ |Sx
−|θn〉|2 = sin2

(
θn

2
+ π

4

)
cos2

(
φn′

2
+ π

4

)
, (B8)

|〈φn′ |Sx
+|θn〉|2 = cos2

(
θn

2
+ π

4

)
sin2

(
φn′

2
+ π

4

)
. (B9)

Sx
−(+) denotes the lowering (raising) operator in the x direction

and same holds for other operators; especially, Sy ≡ σy/2.
Combining the above equations one can show that

Pm+1

Pm
= Wm+1,m

Wm,m+1
=

{
1, n̂ = x̂ or ẑ(

γ

1−γ

)2
, n̂ = ŷ

. (B10)

Similar to Eq. (A10), given positive V , the backscattering
current in 3D TI is given by

Ibs = e
∑

k+,k−,n,n′
(k−n′,k+n − k+n,k−n′ ). (B11)

In the limit � � kBT � V the last term vanishes and above
equation becomes

Ibs = eNn

∑
m

Pm(Wm+1,m + Wm−1,m + Wm,m), (B12)

where

Wm,m = 2π

h̄
(As)2V

∑
n,n′

(
Iz
m

)2|〈φn′ |Sn̂
z |θn〉|2 Jn

2

Jn′

2
, (B13)

counts the rate of scattering events conserving nuclear spins.
Combining the above equations one can obtain Eq. (7).

APPENDIX C: JUSTIFICATION OF FERMI’S GOLDEN
RULE WITH NON-EQUILIBRIUM GREEN’S FUNCTION

It is known that in the semi-classical regime, the conductiv-
ity in disordered system to the lowest order can be calculated
with Fermi’s golden rule. However, for a system with highly
dense magnetic scatters, some attention should be paid when
using Fermi’s golden rule to calculate the conductivity. For
clarification, in this Appendix we sketch the verification of
Fermi’s golden rule used in Appendix A with nonequilib-
rium Green’s function (NEGF). Specifically, we demonstrate
why the hyperfine interaction Hh f should be replaced by
H ′

h f ≈ ∑
a A(Ia − Ia) · Sa when calculating the matrix el-

ements. Consider a translationally invariant system with
Hamiltonian H0 interacting with nuclei that have arbitrary
spin temperature through the isotropic hyperfine interaction
V is V = ∑

i(Ã
si
i )k,k′ �Isi · �Sαβc†

kα
ck′β , where i labels the site of

nuclei, si labels the corresponding isotopic species, k, k′ is

the momentum, α, β is the spin index, (Ãsi
i )k,k′ = Asi ei(k′−k)Ri

LD ,
D is the dimensionality of the system and L is the length
of each dimension. In the Keldysh formalism, the Green’s
function reads

Gkα;k′α′ = δk,k′ (G0)kα;kα′ +
∑

i

(G0)kα;kα1

(
Ãsi

i

)
k,k′ (Isi )aSa

α1α2
(G0)k′α2;k′α′

+
∑
i, j

(G0)kα;kα1

(
Ãsi

i

)
k,k1

Sa
α1α2

(G0)k1α2;k1α3

(
Ã

s j

j

)
k1,k′S

b
α3α4

(G0)k′α4;k′α′Tc(Isi )a(Is j )b + · · · , (C1)

where G0 is the bare Green’s function, a, b labels the com-
ponent of spin, Tc is the time-ordering operator along the
Keldysh contour and (...) denotes the thermal average for
nuclei. For convenience we have suppressed all the time
arguments and their integral; we note that, for example,
in general spin operators in terms such as Tc(Isi )a(Is j )b

should be evaluated at different time on the Keldysh con-
tour. The summation symbol for repetitive indices is also
implicitly indicated from now on. To represent Eq. (C1) in
the form of Dyson’s equation, one could first decompose
all the expectation values to the corresponding cumulants,
e.g., Tc(Isi )a(Is j )b = Tcδ(Isi )aδ(Is j )b + (Isi )a · (Is j )b, where
δ(Isi )a = (Isi )a − (Isi )a. Next, we ignore the correlation be-
tween nuclear spins at different sites, therefore terms such
as Tcδ(Isi )aδ(Is j )b vanish unless i = j. Lastly, since we are
less interested in the physics with specific configuration of

nuclear isotopes, we take ensemble average of Eq. (C1) with
respect to different realization of nuclear isotopes. After these
procedures, Eq. (C1) can be written in the form of Dyson
series

Gkα;kα′ = (G0)kα;kα′ + (G0)kα;kα1�kα1;kα2 Gkα2;kα′ , (C2)

where the first-order and second-order self-energy are, respec-
tively,

(�1)kα;kβ =
∑

s

nsAs(Is)a(Sa)αβ, (C3)

(�2)kα;kβ =
∑

s

ns(As)2Tcδ(Is)aδ(Is)b

LD
(Sa)αγ (G0)k′γ ;k′δ (Sb)δβ,

(C4)
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in which ns is the density of specific isotope. Notice that
the momentum of Green’s function is conserved in Eq. (C2)
after performing ensemble average. The first-order self-
energy gives rise to the slight modification of spectrum due
to nuclear field (Overhauser shift), which is neglected here,
while the imaginary part of the second-order self-energy gives
the decay rate due to the hyperfine interaction, which can be
shown to be equivalent to Fermi’s golden rule if one relates
it to the retarded self-energy in real-time domain. Note that it
is δ(Is)aδ(Is)b rather than (Is)a(Is)b entering the second-order
self-energy, which justifies that in Appendix A when using
Fermi’s golden rule hyperfine interaction should be replaced
by an effective interaction H ′

h f ≈ ∑
a A(Ia − Ia) · Sa.

APPENDIX D: ESTIMATE OF MAGNITUDE
OF RDNMR SIGNAL

In this Appendix, we give an estimate of the conductance
change in the InAs/GaSb quantum well as an example. We
assume the hyperfine coupling A1D is isotropic for simplicity.
In reality, the localized edge state not only spreads in the
quantum well but also extends into the bulk. Therefore the
edge state has a finite cross section Sedge and interacts with all

the nuclei overlapping with the wave function. The effective
1D hyperfine coupling constant is given by

A1D = A3D

Sedge
, (D1)

where A3D is the 3D hyperfine coupling constant estimated
by its bulk value. The number of nuclei of isotope 115In that
backscatter Dirac fermions is given by

Ns
n = α

LxSedge

Vc
(D2)

where Vc is the unit-cell volume of InAs. The coefficient
0 < α < 1 takes into account that Indium atoms do not exist
in GaSb and 115In has a natural abundance of ∼95.7%. The
conductance change in Eq. (4) can thus be written as

δG

G
= α

2π2(A3D)2Lx

3h2v2
FVcSedge

I (I + 1). (D3)

We obtain the estimated change of conductance of 0.01%
quoted in the main text by setting I = 9/2, Sedge ≈ 150 nm2,
Vc ≈ 55.6 Å3, A3D ≈ 3780 μeV Å3 [74], vF ≈ 1.5 × 104 m/s
[75], and setting α = 1.
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