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Employing a large-N scheme of the layered t-J model with the long-range Coulomb interaction, which
captures the fine details of the charge excitation spectra recently observed in cuprate superconductors, we explore
the role of charge fluctuations on the electron self-energy. We fix the temperature at zero and focus on quantum
charge fluctuations. We find a pronounced asymmetry of the imaginary part of the self-energy Im�(k, ω) with
respect to ω = 0, which is driven by strong electron correlation effects. The quasiparticle weight is reduced
dramatically, which occurs almost isotropically along the Fermi surface. Concomitantly, an incoherent band and
a sharp side band are generated and acquire sizable spectral weight. All these features are driven by the usual
on-site charge fluctuations, which are realized in a rather high-energy region and yield plasmon excitations.
On the other hand, the low-energy region with the scale of the superexchange interaction J is dominated by
bond-charge fluctuations. Surprisingly, compared with the effect of on-site charge fluctuations, their effect
on the electron self-energy is much weaker, even if the system approaches close to bond-charge instabilities.
Furthermore, quantum charge dynamics does not produce a clear kink nor a pseudogap in the electron dispersion.
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I. INTRODUCTION

High-temperature cuprate superconductors are realized
upon charge-carrier doping into antiferromagnetic Mott insu-
lators. Many studies have highlighted the magnetic properties.
In particular, the effect of spin fluctuations has been a major
subject to explore the cuprate phenomenology such as high-
temperature superconductivity, the anomalous metallic state
including the enigmatic pseudogap, and others [1]. Needless
to say, the charge dynamics has also been widely recognized
as an important subject. However, much was not known about
the charge dynamics in momentum and energy space. Re-
cently, advanced x-ray scattering techniques [2–8] changed
this situation.

For electron-doped cuprates (e-cuprates), charge excita-
tions were reported in both a low-energy region [6,9] with a
scale of the superexchange interaction J (≈150 meV) and a
high-energy region [2,7,8,10–12] with a scale larger than J .
These features were captured in the layered t-J model with
the long-range Coulomb interaction as a dual structure of the
charge excitations [13]. The low-energy charge excitations
originate mainly from the bond-charge fluctuations [14,15]
and the high-energy ones from acousticlike plasmons [16–18].

For hole-doped cuprates (h-cuprates), mainly low-energy
charge fluctuations were reported [3–5] and their origin is
under debate despite intensive theoretical studies [19–26]. The
origin of high-energy charge excitations in h-cuprates [27]
is also highly controversial. High-energy excitations can be
(i) specific to e-cuprates [7,10], (ii) present as a broad peak

of the particle-hole excitation spectrum [27], (iii) present as
plasmons similar to the e-cuprates [11,12,17,28,29], and (iv)
related to strange metal physics [30,31], not to plasmons.

Cuprate superconductors are strongly correlated electron
systems and the bare hopping integral t , whose energy scale is
usually eV, is renormalized to be in the scale of J , leading
to a relatively narrow band width. In this case, a coupling
to bosonic excitations such as charge fluctuations revealed
recently is expected to generate anomalous features in the
electron self-energy.

However, there are only a few studies along that moti-
vation. Among others, Ref. [32] studied the effect of the
optical plasmon on the electron dispersion in a phenomeno-
logical framework. Reference [33] discussed the effect of
incoherent hole motion to explain the so-called high-energy
kink of the electron dispersion observed by angle-resolved
photoemission spectroscopy (ARPES) around −(0.3 ∼ 1) eV
(Refs. [34–39]). We still only have sparse insights into the
effect of charge fluctuations on the one-particle properties.
Hence, it is very interesting to apply the large-N theory, which
captures fine details of charge excitation spectra observed by
experiments, to the study of the electron self-energy and to
perform a comprehensive analysis of the one-particle prop-
erties of electrons in a microscopic model. Such a study
will potentially open a path to study the charge dynamics in
cuprates also from one-particle properties, which may accel-
erate our understanding of the cuprate physics.

In this paper, we employ the layered t-J model with the
long-range Coulomb interaction in a large-N scheme and

2469-9950/2021/104(4)/045141(22) 045141-1 ©2021 American Physical Society

https://orcid.org/0000-0003-0328-5657
https://orcid.org/0000-0003-4254-0622
https://orcid.org/0000-0001-5958-5080
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.045141&domain=pdf&date_stamp=2021-07-26
https://doi.org/10.1103/PhysRevB.104.045141


YAMASE, BEJAS, AND GRECO PHYSICAL REVIEW B 104, 045141 (2021)

study the electron self-energy from charge fluctuations. This
is a challenging study because we have to go beyond lead-
ing order in a large-N expansion. We fix the temperature
at zero and focus on quantum charge fluctuations. We shall
clarify how the quantum charge dynamics renormalizes the
quasiparticle dispersion and generates bands for both e- and
h-cuprates, including a possibility of kinks and a pseudogap
in the electron dispersion. Since the charge dynamics consists
of on-site charge and bond-charge fluctuations, we sharply
distinguish these two features in the present analysis.

The present paper is organized as follows. After providing
a brief summary of the formalism in Sec. II, we present results
in Sec. III. Starting from a summary of the typical charge ex-
citation spectrum, we show the self-energy effect from on-site
charge fluctuations, which describe plasmons, and then clarify
the effect of bond-charge fluctuations. The obtained results are
discussed from a view of both theoretical and experimental
perspectives in Sec. IV. Concluding remarks are given in
Sec. V. Appendices consist of two parts: a full description of
the formalism and additional results for e-cuprates.

II. MODEL AND FORMALISM

As a microscopic model of cuprate superconductors, we
study the t-J model on a square lattice by including interlayer
hopping and the long-range Coulomb interaction. The Hamil-
tonian is given by

H = −
∑
i, j,σ

ti j c̃
†
iσ c̃ jσ +

∑
〈i, j〉

Ji j

(
�Si · �S j − 1

4
nin j

)

+ 1

2

∑
i, j

Vi jnin j, (1)

where c̃†
iσ (c̃iσ ) are the creation (annihilation) operators of

electrons with spin σ (=↑,↓) in the Fock space without dou-
ble occupancy at any site, ni = ∑

σ c̃†
iσ c̃iσ is the electron

density operator, �Si is the spin operator, and the sites i and
j run over a three-dimensional lattice. The hopping ti j takes
the value t (t ′) between the first- (second-) nearest-neighbor
sites on the square lattice and is scaled by tz between the
layers; see Eqs. (3) and (4) for the explicit form of the electron
dispersion. 〈i, j〉 denotes the nearest-neighbor sites and the
exchange interaction Ji j = J is considered only inside the
plane. We neglect the exchange term between the planes,
which is much smaller than J (Ref. [40]). Vi j is the long-range
Coulomb interaction on the three-dimensional lattice and its
functional form is given in momentum space later [Eq. (9)].
While cuprates are essentially two-dimensional systems, it is
crucial to employ the three-dimensional model, namely, the
layered model, because the long-range Coulomb interaction
leads to a sizable momentum dependence of plasmons along
the qz direction as was shown in classical papers [41–43].

It is highly nontrivial to treat the t-J model Eq. (1) because
of the local constraint prohibiting the double occupancy at any
site. Here we employ a large-N technique in a path integral
representation in terms of the Hubbard operators [44]. In the
large-N scheme, the number of spin components is extended
from 2 to N and physical quantities are computed by counting
the power of 1/N systematically. One of the advantages of

this method is that it treats all possible charge excitations on
an equal footing [19,45], which makes this method potentially
interesting in light of the x-ray experiments revealing excita-
tion spectra in the pure charge channel [2–12,27–29].

The computation of the electron self-energy requires ex-
tended calculations in a large-N framework beyond leading
order theory [46–48]. Since we would like to highlight the
effect of charge fluctuations on the self-energy in this paper,
we present the most essential part of the formalism here,
leaving its full description to Appendix A. In short, we first
obtain the electron dispersion at leading order and compute
charge fluctuations at the order of 1/N . We then calculate
their contributions to the electron self-energy at the same
order.

At leading order, the electron dispersion εk is obtained as

εk = ε
‖
k + ε⊥

k , (2)

where the in-plane dispersion ε
‖
k and the out-of-plane disper-

sion ε⊥
k are given, respectively, by

ε
‖
k = −2

(
t
δ

2
+ �

)
(cos kx + cos ky)−4t ′ δ

2
cos kx cos ky−μ,

(3)

ε⊥
k = −2tz

δ

2
(cos kx − cos ky)2 cos kz. (4)

Here we measure the in-plane momenta kx and ky and the out-
of-plane momentum kz in units of a−1 and d−1, respectively;
a (d) is the lattice constant in the plane (distance between the
planes). While the dispersions are similar to noninteracting
ones, the hopping integrals t , t ′, and tz are renormalized by
a factor of δ/2, where δ is a doping rate. The quantity �

in Eq. (3) is a mean-field value of the bond field and is
given by

� = J

4NsNz

∑
k

(cos kx + cos ky)nF (εk ), (5)

where nF (εk ) is the Fermi function, Ns the total number of
lattice sites on the square lattice, and Nz the number of layers
along the z direction. For a given doping δ, μ and � are
determined self-consistently by solving Eq. (5) and

(1 − δ) = 2

NsNz

∑
k

nF (εk ). (6)

Charge fluctuations included in the t-J model Eq. (1) are
described by the 6 × 6 matrix of the bosonic propagator at the
order of 1/N :

[Dab(q, iνn)]−1 = [
D(0)

ab (q, iνn)
]−1 − 	ab(q, iνn), (7)

where a and b run from 1 to 6; q is a three-dimensional wave
vector and νn is a bosonic Matsubara frequency. D(0)

ab (q, iνn)
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is the bare bosonic propagator and is obtained as

[
D(0)

ab (q, iνn)
]−1 = N

⎛
⎜⎜⎜⎜⎜⎜⎝

δ2

2 [V (q) − J (q)] δ
2 0 0 0 0

δ
2 0 0 0 0 0
0 0 4

J �2 0 0 0
0 0 0 4

J �2 0 0
0 0 0 0 4

J �2 0
0 0 0 0 0 4

J �2.

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8)

Here J (q) = J
2 (cos qx + cos qy) and V (q) is the long-range Coulomb interaction in momentum space for a layered system,

V (q) = Vc

A(qx, qy) − cos qz
, (9)

where Vc = e2d (2ε⊥a2)−1 and

A(qx, qy) = α(2 − cos qx − cos qy) + 1. (10)

The Coulomb interaction V (q) is easily obtained by solving Poisson’s equation on the lattice [49]. In Eq. (10), α = ε̃
(a/d )2 and

ε̃ = ε‖/ε⊥; ε‖ and ε⊥ are the dielectric constants parallel and perpendicular to the planes, respectively; e is the electric charge of
electrons.

The 6 × 6 matrix 	ab is the bosonic self-energy

	ab(q, iνn) = − N

NsNz

∑
k

ha(k, q, εk − εk−q)
nF (εk−q) − nF (εk )

iνn − εk + εk−q
hb(k, q, εk − εk−q) − δa 1δb 1

N

NsNz

∑
k

εk − εk−q

2
nF (εk ),

(11)

where the six-component vertex is given by

ha(k, q, ν) =
{

2εk−q + ν + 2μ

2
+ 2�

[
cos

(
kx − qx

2

)
cos

(qx

2

)
+ cos

(
ky − qy

2

)
cos

(qy

2

)]
;

1; −2� cos
(

kx − qx

2

)
; −2� cos

(
ky − qy

2

)
; 2� sin

(
kx − qx

2

)
; 2� sin

(
ky − qy

2

)}
. (12)

Here the dependence on kz and qz enters only through εk−q
in the first column and the other columns contain the in-plane
momentum only.

Charge fluctuation spectra are obtained by the analytical
continuation in Eq. (7),

iνn → ν + i�ch, (13)

where �ch(> 0) is infinitesimally small. By studying
ImDab(q, ν), we can elucidate all possible charge dynamics
in the layered t-J model as was already performed in the
literature [13].

If we set J = 0, we would obtain � = 0 and all fluctu-
ations associated with the bond field vanish. The bosonic
propagator Dab is reduced to a 2 × 2 matrix with a, b =
1, 2 and only the usual on-site charge fluctuations are active
[see also Eq. (A15)]. In fact, the element (1,1) of Dab is
related to the usual charge-charge correlation function [44].
D22 and D12 correspond to fluctuations associated with the
non-double-occupancy condition and correlations between the
non-double-occupancy condition and charge density fluctua-
tions, respectively. When J is finite, bond-charge fluctuations
become active and a and b take values from 1 to 6. Thus, both
on-site charge and bond-charge fluctuations are present for a
realistic situation.

Although each lattice site in the t-J model corresponds
to a Cu atom in the CuO2 plane, the effect of O atoms is

implicitly included because the t-J model is derived from the
three-band Hubbard model in the strong coupling limit [50].
Thus, naively speaking, the on-site charge fluctuations in the
t-J model, which is described by the 2 × 2 sector of Dab,
correspond to charge fluctuations on each Cu site, whereas
the bond-charge fluctuations described by Dab with a, b = 3-6
account for charge fluctuations between Cu sites, i.e., at the O
sites. However, this does not mean that the on-site charge and
bond-charge fluctuations can be considered only around Cu
sites and O sites, respectively, because Cu orbitals strongly
hybridize with O orbitals, forming the Zhang-Rice singlet
[50].

Next, we compute the electron self-energy. At the order
of 1/N , the imaginary part of the self-energy is obtained in a
compact form as [48]

Im�(k, ω)= −1

NsNz

∑
q

∑
a,b

ImDab(q, ν)ha(k, q, ν)hb(k, q, ν)

× [nF (−εk−q) + nB(ν)], (14)

where ν = ω − εk−q and nB(ν) is the Bose function. Note
that the self-energy effects arise from charge fluctuations
described by Dab and the effect of spin fluctuations does
not appear at O(1/N ). The form of Im�(k, ω) in Eq. (14)
has the same structure as a self-energy obtained from the
Fock diagram in a usual perturbation theory. However, in the
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large-N scheme, we have both Hartree and Fock diagrams in
a nontrivial way at order of 1/N ; see Appendix A for further
details.

Using the Kramers-Kronig relations, we obtain Re�(k, ω)
from Im�(k, ω). Since the electron Green’s function G(k, ω)
is given by

G−1(k, ω) = ω + i�sf − εk − �(k, ω), (15)

we can compute the one-particle spectral function A(k, ω) =
− 1

π
ImG(k, ω) as

A(k, ω)

= − 1

π

Im�(k, ω) − �sf

[ω − εk − Re�(k, ω)]2 + [−Im�(k, ω) + �sf ]2
,

(16)

where �sf (> 0) originates from the analytical continuation in
the electron Green’s function.

The real part Re�(k, ω) contains a frequency-independent
contribution and shifts the band dispersion. Since the disper-
sion in Eq. (2) is chosen to reproduce the experimental Fermi
surface, we drop this frequency-independent contribution to
avoid double counting. This procedure does not affect any-
thing on Im�(k, ω), which can be easily understood from the
Kramers-Kronig relations.

We have formulated a theory in the large-N scheme to
compute the electron self-energy at the order of 1/N . This
kind of calculation is not seen much in literature. For example,
the large-N theory is often formulated in the slave-boson
method. However there are few calculations including fluc-
tuations above the mean field [46,51], and many calculations
were performed at the mean-field level [51–53].

III. RESULTS

Following our previous works, which capture the charge
dynamics in e-cuprates in both high- [13,16–18,29] and low-
energy regions [13–15] consistently, we choose the band
parameters as t ′/t = 0.3, tz/t = 0.1. The other parameters
are taken to be J/t = 0.3, Vc/t = 17, α = 4.5, and Nz = 10.
The resulting momentum along the z direction is given by a
discrete value such as qz = 2πnz/10 with nz being integer.
While a value of �ch is infinitesimally small in Eq. (13), we
set �ch/t = 0.03 for numerical reasons. This finite �ch may
mimic phenomenologically a broadening of the spectrum [17]
due to the resolution of experimental measurements and also
additional effects not included in the present theory such as
higher-order electron correlation effects [54] and coupling to
other degrees of freedom. Temperature is set at T = 0 and we
focus on quantum charge fluctuations. We first present results
for the doping rate δ = 0.15 and then study the doping depen-
dence later. When computing the spectral function, we choose
�sf/t = 0.01 to make the spectrum reasonably broadened.

Complete information of the charge dynamics is included
in the 6 × 6 matrix Dab in Eq. (7), where both on-site charge
and bond-charge fluctuations are present. As we shall show
below, the major contributions to the electron self-energy
come from the on-site charge fluctuations described by the
2 × 2 sector of Dab, namely, a, b = 1, 2 in Eq. (14). Hence,
we first focus on results from on-site charge fluctuations and

FIG. 1. Typical charge excitation spectrum [intensity map of
ImD11(q, ν )] in the plane of momentum q and energy ν for qz = π

(a) and qz = 0 (b). The result for qz = π is a representative one of
results for other qz( = 0). The dotted curve is the upper limit of the
continuum excitations.

clarify the major features of the electron self-energy due to
the coupling to them. The effect of bond-charge fluctuations
and a possible pseudogap feature are studied afterward. We
also study a different set of band parameters appropriate to
h-cuprates. We mention some care about our results for e-
cuprates when we compare them with experiments. Finally,
we present results in the absence of the long-range Coulomb
interaction to highlight its role in the electron self-energy.

A. Charge excitation spectrum

The charge excitation spectra ImDab(q, ν) are already
presented for all components a and b in Figs. 1 and 8 in
Ref. [13]. Furthermore, detailed analyses were performed
for both the on-site charge excitations [13,16–18] and the
bond-charge excitations [13–15]. For the sake of readers’
convenience, we here summarize the typical features of charge
excitation spectra relevant to the understanding of the electron
self-energy.

The diagonal components of ImDab(q, ν) are always
positive, as they should be. Figure 1 shows a typical
charge-excitation spectrum by choosing a = b = 1. The sharp
features correspond to plasmon excitations. In particular,
they exhibit a V-shaped dispersion around q = (0, 0, qz ) with
qz = 0 [Fig. 1(a)]. The gap at q = (0, 0, qz ) is proportional
to the interlayer hopping integral tz (Refs. [16,41,43]). For
qz = 0 [Fig. 1(b)], instead, we obtain the well-known optical
plasmon with a nearly flat dispersion around ω = 0. In the
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FIG. 2. Intensity map of A(k, ω) along the direction (π, π )-
(0, 0)-(π, 0)-(π, π ) for kz = π . The quasiparticle dispersion in the
presence of the self-energy is in yellow. The white curve is the
quasiparticle dispersion obtained in leading order theory without the
self-energy [Eq. (2)]. See also Fig. 12 (a) obtained after a particle-
hole transformation.

low-energy region, namely, below the dotted line in Fig. 1,
the so-called particle-hole continuum is realized. No strong
spectral weight appears inside the continuum and there is
no tendency toward conventional charge-density-wave order
including stripes. When we choose a = b = 3-6 and explore
bond-charge excitations, we find strong spectral weight in the
low-energy region inside the continuum [13]. However, the ef-
fect of the bond-charge excitations on the electron self-energy
is minor as we shall show below.

The off-diagonal components ImDab(q, ν) are not positive
definite any longer (see Figs. 1 and 8 in Ref. [13]). Typically
they exhibit strong spectral weight in almost the same (q, ν)
region where ImD11(q, ν) exhibit the plasmon dispersion.

B. Self-energy effect from on-site charge fluctuations

The quasiparticle dispersion in leading order theory
[Eq. (2)] is plotted with a white curve in Fig. 2, where the
hopping integrals are already renormalized and the energy
scale is reduced to J (= 0.3t ). The quasiparticle dispersion
is further renormalized by the coupling to the on-site charge
fluctuations. To see that, we show in Fig. 2 the intensity map
of A(k, ω) [Eq. (16)] around the Fermi energy for kz = π ;
the kz dependence is weak and essentially the same results
are obtained for a different value of kz. The bandwidth is
suppressed significantly to become less than half, indicating
that the quasiparticle weight Z is reduced substantially by the
on-site charge fluctuations.

Figure 3 shows the imaginary part of the electron self-
energy Im�(k, ω) as a function of energy ω for several
choices of momenta k. The self-energy exhibits a pronounced
asymmetry with respect to ω = 0 and is strongly suppressed
in ω > 0, leading to substantial breaking of the particle-hole
symmetry. This asymmetry does not come from the band
structure effect due to the presence of t ′, but from the strong
correlation effect due to the local constraint inherent in the
t-J model. In fact, calculations in the random phase approx-
imation (RPA) predict that Im�(k, ω) is rather symmetric
with respect to ω = 0 (Ref. [55]). Hence, the analysis in RPA
would lead to insights different from the present paper.

FIG. 3. Imaginary part of the electron self-energy, −Im�(k, ω),
as a function of ω for several choices of k. The positive energy region
is magnified in the right panel. Results do not depend much on a
value of kz and kz = π is taken as a representative one. See also
Fig. 15 obtained after a particle-hole transformation.

To understand the reason for the particle-hole asymmetry
in Fig. 3, we go back to Eq. (14). First, as we clarified in
Ref. [13] and have also shown in Fig. 1, the charge excitation
spectrum ImDab(q, ν) with a, b = 1, 2 has a sizable spectral
weight in ν/t � 1 around q = (0, 0, qz ) and in a higher energy
region typically around q = (π, π, qz ); the qz dependence is
minor. ImDab(q, ν) is an odd function with respect to ν. For
ν > 0, we have ImDaa(q, ν) � 0 for the diagonal components
and ImDab(q, ν) � 0 for the off-diagonal components (see
Figs. 1 and 8 in Ref. [13]). The vertex function is given by
h1(k, q, ν) ∝ ν for a large ν and h2(k, q, ν) = 1; see Eq. (12).
We consider three different values of k as typical ones: k =
(0, 0, kz ), (π, π, kz ), and (π, 0, kz ). The term of nF (−εk−q) +
nB(ν) takes a constant value depending on k, q, and ν as sum-
marized in Table I, which works as a selection rule. Note that
for ν < 0, the term nF (−εk−q) + nB(ν) can become negative,
but the sign of ImDab(q, ν) also changes; consequently, their
product does not change the sign. Considering all these fea-
tures, we recognize that all components a, b = 1, 2 contribute
additively to the summation for ν < 0 in Eq. (14) whereas the
contribution from the diagonal components a = b is largely
canceled by the off-diagonal components a = b for ν > 0,
leading to the strong asymmetry of the self-energy as shown in
Fig. 3. The off-diagonal components of ImDab(q, ν) originate
from the strong correlation effect related to the Lagrange
multiplier describing the nondouble occupancy of electrons
at any site on the lattice.

Recalling that we have the relation ν = ω − εk−q in
Eq. (14) and the value of |εk−q| is less than 1t whereas the
typical energy range that we are interested in Fig. 3 is more

TABLE I. Typical values of nF (−εk−q ) + nB(ν ) at T = 0. They
may depend sensitively on the precise values of k and q for
k ∼ (π, 0, kz ) because the Fermi surface is located rather close to
k = (π, 0, kz ).

�����k
q

∼(0, 0, qz ) ∼(π, π, qz )

ν < 0 ν > 0 ν < 0 ν > 0

∼ (0, 0, kz ) −1 0 0 1
∼ (π, π, kz ) 0 1 −1 0
∼ (π, 0, kz ) −1 or 0 0 or 1 −1 or 0 0 or 1
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than 1t , the sign of ν becomes the same as that of ω inde-
pendent of k and q in most cases. Hence by associating the
sign of ω with that of ν, the selection rule in Table I serves to
identify the origin of the structure of Im�(k, ω). For ω > 0,
the peak around ω/t ≈ 1 for k = (π, π, kz ) comes from the
plasmon excitations around q ∼ (0, 0, qz ). A long tail on a
lower energy side of the peak originates from the acous-
ticlike plasmon mode. The structure around ω/t ≈ 2.5 for
k = (0, 0, kz ) comes mainly from charge excitations around
q ∼ (π, π, qz ). For an intermediate momentum such as k =
(π, 0, qz ), Im�(k, ω) exhibits typically two structures around
ω/t ≈ 1 and 2; the former stems from plasmons and the latter
from charge excitations around q ∼ (π, π, qz ). For ω < 0, on
the other hand, the major contribution of charge fluctuations
becomes vice versa: charge fluctuations around q ∼ (0, 0, qz )
and (π, π, qz ) form the structure around ω/t ≈ −1 for k =
(0, 0, kz ) and ω/t ≈ −2 for k = (π, π, kz ), respectively. For
an intermediate momentum k = (π, 0, kz ), essentially a single
peak is realized around ω/t ≈ −2 with a sizable tail on the
side of ω = 0.

In Fig. 4, we summarize Im�(k, ω), Re�(k, ω), and
A(k, ω) as a function of ω for k = (0, 0, π ), (π, π, π ), and
(π, 0, π ). Since A(k, ω) can form a peak when the following
equation

ω − εk − Re�(k, ω) = 0 (17)

is fulfilled [see Eq. (16)], we also add a line of ω − ε(k)
in Fig. 4. The line crosses the curve of Re�(k, ω) typically
at three points for each k. One is very close to ω = 0 and
yields the quasiparticle dispersion as already shown in Fig. 2.
The spectral function A(k, ω) exhibits a sharp peak there.
The second one is close to the energy where Im�(k, ω) has
a peak, leading to a strong damping. As a result, A(k, ω)
yields a very broad structure. The third one appears deeply
below the Fermi energy, i.e., around ω/t ≈ −4, −7, and −5 in
Figs. 4(a)–4(c), respectively, where Im�(k, ω) almost van-
ishes and thus A(k, ω) forms a very sharp peak.

In addition, there are several subpeak structures in A(k, ω).
In ω > 0, Im�(k, ω) can form a structure in 1 � ω/t � 2.5
as already explained in Fig. 3, which yields a small peak
structure of Re�(k, ω) there. The resulting value of |ω −
ε(k) − Re�(k, ω)| [see Eq. (17)] is suppressed, leading to the
subpeak structure of A(k, ω). In particular, the peak around
ω/t ≈ 1 is pronounced in Figs. 4(b) and 4(c).

Figure 5 shows the intensity map of A(k, ω) in the plane
of k and ω. The quasiparticle band is realized around ω = 0.
While it might look nondispersive in the energy scale in Fig. 5,
it does disperse in a scale of J (= 0.3t ) as shown in Fig. 2. A
sharp dispersion in −7 � ω/t � −4 is an emergent band aris-
ing from the coupling to the on-site charge fluctuations. In the
positive energy region, one clear dispersion emerges around
ω/t ≈ 1, especially along the (π, 0)-(π, π )-(π/2, π/2) di-
rection. The origin of this band lies in the acousticlike and
optical plasmons around q = (0, 0, qz ) and is pronounced
around k = (π, 0, kz ) and (π, π, kz ), as we have explained in
the context of Table I. The clear separation of this emergent
band around ω/t ≈ 1 from the main quasiparticle band around
ω ≈ 0 is due to the relatively large energy scale of plasmons
around q = (0, 0, qz ). If we discard the plasmons by replacing
the long-range Coulomb interaction with a short-range one,

FIG. 4. Energy dependence of −Im�(k, ω), Re�(k, ω), and
A(k, ω) for k = (0, 0, π ) (a), (π, π, π ) (b), and (π, 0, π ) (c). The
line of ω − ε(k) is also drawn. The scales of −Im�(k, ω) and
A(k, ω) correspond to the right vertical axis and their units are taken
differently to clarify their peak structure in the same panel. See also
Fig. 16 obtained after a particle-hole transformation.

the charge excitations are characterized by a zero-sound mode
around q = (0, 0, qz ) (see Ref. [56]), which becomes gapless
at q = (0, 0, 0). In this case, an emergent band corresponding
to that around ω/t ≈ 1 tends to merge into the main quasipar-
ticle band (see Fig. 13).

There are also weak and fine structures in Fig. 5. Two
weak bandlike features emerge in −1 � ω/t � 0 on both
sides of k = (0, 0, kz ). These weak structures are due to the
peak structure of Im�(k, ω) as explained in Fig. 4, yielding
incoherent bands there. This incoherency comes from the cou-
pling to the plasmons. Around ω/t ≈ 2 and k ≈ (0, 0, kz ), we
also have a weak structure, which is barely visible in Fig. 5.
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FIG. 5. Intensity map of A(k, ω) along the direction (π, π )-
(0, 0)-(π, 0)-(π, π ); kz dependence is weak and kz = π is taken as a
representative value. See also Fig. 12(b) obtained after a particle-hole
transformation.

This incoherent band originates from the coupling to charge
excitations around q ∼ (π, π, qz ).

In Fig. 6, we show how the density of states is renormalized
by electron correlation effects in the t-J model. Our original
band Eq. (2) is already renormalized at leading order as seen
in Fig. 2. Hence the density of states is limited to a narrow
energy window in −0.6 � ω/t � 0.5. The coupling to the
on-site charge fluctuations (2 × 2 in Fig. 6) then splits the
density of states into three. The resulting energy window of
the density of states around the Fermi energy (ω = 0) shrinks
substantially and two states are generated around ω/t ≈ 1 and
−5.5.

C. Effect of bond-charge fluctuations and doping dependence

So far, we have restricted the summation of a, b in
Eq. (14) to a, b = 1, 2, that is, we have focused on the ef-
fect of the on-site charge fluctuations, which yield plasmons
[13,16–18,29]. As emphasized in Ref. [13], charge excitations
in the t-J model contain not only the on-site charge fluc-

FIG. 6. The density of states for three difference cases: one is at
leading order in the large-N theory [Eq. (2)] and the other two are
2 × 2 and 6 × 6, where the self-energy effect is taken into account
from on-site charge fluctuations and both on-site charge and bond-
charge fluctuations, respectively. The results for 2 × 2 and 6 × 6
almost overlap with each other around ω/t = 0 and 1. See also
Fig. 12(d) obtained after a particle-hole transformation.

FIG. 7. Intensity map of A(k, ω) along the direction (π, π )-
(0, 0)-(π, 0)-(π, π ) in the presence of both on-site charge and
bond-charge fluctuations. kz dependence is weak and kz = π is taken
as a representative value. See also Fig. 12(c) obtained after a particle-
hole transformation.

tuations but also bond-charge fluctuations. The bond-charge
fluctuations are incorporated by allowing the indices a and b
up to 6 in Eq. (14). The obtained spectral function A(k, ω)
is shown in Fig. 7. A comparison with Fig. 5 demonstrates
that essentially the same results are obtained even if the bond-
charge fluctuations are taken into account. A close inspection
reveals a suppression of an incoherent band around ω/t ≈ 2
and k ≈ (0, 0, kz ) and the resulting band becomes invisible in
Fig. 7. It can be said that the one-particle excitation spectrum
A(k, ω) is mainly controlled by the on-site charge fluctuations
and the effect of the bond-charge fluctuations is minor.

This insight also applies to the density of states shown
in Fig. 6. It is interesting that the bond-charge fluctuations
impact the density of states in a high-energy region around
ω/t ≈ −5 more than that in −0.5 � ω/t � 1, although
the typical energy scale of the bond-charge excitations is
around J .

Bond-charge fluctuations become stronger when the sys-
tem is tuned closer to a bond-charge instability. However, their
effect on the electron self-energy is still minor compared with
the on-site charge fluctuations. To demonstrate this, we study
how the quasiparticle weight is renormalized via coupling to
charge fluctuations. In the present theory with �ch/t = 0.03
[Eq. (13)], d-wave bond-charge (dbond) order [57–63] and
flux order [53,64,65], the so-called d-wave charge density
wave (dCDW) [66], are stabilized below δc ≈ 0.06 and 0.07,
respectively, at T = 0. The value of δc depends strongly on
a choice of �ch, and Refs. [19,45] studied charge instabilities
for �ch/t = 0.01. Since the quasiparticle weight can depend
on the Fermi momentum, we first show its typical dependence
[Fig. 8(a)] by setting δ = 0.15, which is away from the bond-
charge instabilities, and then clarify its doping dependence
afterward [Fig. 8(b)].

In Fig. 8(a), the momentum dependence of Z (ϕ) is pre-
sented along the Fermi surface; ϕ is defined in the inset. Z (ϕ)
associated with dCDW is close to unity at ϕ = π/4 and is
reduced to around 0.7 upon approaching ϕ = 0, showing the
anisotropy of Z (ϕ) with a d-wave symmetry. Z (ϕ) associated
with dbond becomes smaller than the case of dCDW and is
almost isotropic. This dependence might seem peculiar
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FIG. 8. (a) Quasiparticle weight Z (ϕ) along the Fermi surface
for kz = 0 and π at δ = 0.15. The momentum is measured by the
angle ϕ defined in the inset. Four different cases are plotted: (i)
6 × 6, where full charge fluctuations are included, (ii) 2 × 2, where
only on-site charge fluctuations are considered, (iii) dbond and (iv)
dCDW, where fluctuations associated with dbond and dCDW are
considered, respectively. In the inset, Fermi surfaces shown by solid
and dotted lines correspond to kz = π and 0, respectively. (b) Doping
dependence of Z (ϕ) at ϕ = 0 and π/4 for four different cases. The
dCDW and dbond are stabilized below δc ≈ 0.07 and 0.06, respec-
tively. After the particle-hole transformation discussed in Sec. III F,
the results stay intact except that the momentum in the inset in
(a) should be transformed as (0, 0) → (π, π ) and (π, π ) → (0, 0).

because it is not characterized by d-wave symmetry al-
though dbond contains d-wave in its terminology. This puzzle
is easily resolved by noting that dbond fluctuations have
low-energy spectral weight around the in-plane momentum
(0.8π, 0.8π ); see Fig. 4(a) in Ref. [13]. In this case, the
d-wave form factor enhances the contribution from the nodal
region around k = (π/2, π/2, kz ) more than the antinodal
region around k = (π, 0, kz ) and (0, π, kz ). But it depends
on the choice of parameters whether Z at ϕ = π/4 eventually
becomes larger than Z at ϕ = 0.

On the other hand, Z (ϕ) from the on-site charge fluc-
tuations [2 × 2 in Fig. 8(a)] is isotropic along the Fermi
surface and becomes around 0.25, much smaller than Z from
dCDW and dbond. In addition, Z (ϕ) from 2 × 2 almost re-
produces Z (ϕ) from all charge fluctuations denoted by 6 × 6
in Fig. 8(a). This clearly indicates that the momentum depen-
dence of Z (ϕ) from dbond and dCDW is fully smeared out by
the isotropic contribution from the on-site charge fluctuations.

We also plot Z (ϕ) for different values of kz in Fig. 8(a).
kz dependence is visible for dCDW and dbond, but is rather
weak. On the other hand, it is negligible for 2 × 2 and
6 × 6.

The doping dependence of Z (ϕ) is shown in Fig. 8(b) at
two positions ϕ = 0 and π/4 for different charge fluctuations.
With decreasing doping rate, Z (ϕ) at ϕ = 0 for dCDW is
substantially suppressed whereas Z (ϕ) at ϕ = π/4 stays at
a value near unity. The anisotropy of Z (ϕ) is pronounced
upon approaching the dCDW instability. The value of Z (ϕ)
for dbond decreases at both ϕ = 0 and π/4 almost similarly
with decreasing δ and their values become smaller than those
for dCDW.

For the purely on-site charge fluctuations denoted by 2 × 2
in Fig. 8(b), Z (ϕ) is essentially isotropic in a whole doping
region. Note that Z (ϕ) decreases monotonically with decreas-
ing δ, although the number of carriers is decreased. The values
of Z (ϕ) for the full charge fluctuations denoted by 6 × 6
are almost the same as those for on-site charge fluctuations.
This clearly indicates that the effect of the on-site charge
fluctuations on the electron self-energy is dominant over the
bond-charge fluctuations such as dbond and dCDW in a
whole doping region.

D. No pseudogap feature

Figures 2 and 6 imply that charge fluctuations do not lead
to a pseudogap feature. To confirm this implication, we show
in Fig. 9(a) the spectral function at the nodal and antinodal
Fermi momenta by focusing on the on-site charge fluctuations.
Two pronounced peaks are realized: one is the quasiparticle
peak at ω = 0 and the other corresponds to the emergent in-
coherent band near ω ≈ 1t . This incoherent band is due to the
coupling to the plasmons, as already explained in Sec. III B.
There is a weak structure in −1 � ω/t � 0, which is also rec-
ognized in the corresponding energy in Fig. 5. There is little
difference between the nodal and antinodal Fermi momenta,
demonstrating the isotropic renormalization effect from the
on-site charge fluctuations.

The spectral function shown in Fig. 9(b) is obtained by
taking full charge fluctuations into account, namely, both on-
site charge and bond-charge fluctuations. A comparison with
Fig. 9(a) shows that even though the typical energy scale of
the bond-charge fluctuations is J , much lower than the on-site
charge fluctuations, the effect of the bond-charge fluctuations
are minor and no appreciable changes occur even around the
Fermi energy.

Figure 9(c) is the intensity map of A(k, 0) at the Fermi
energy in the first quadrant of the Brillouin zone. There is
strong spectral weight entirely along the Fermi surface. A
close look at Fig. 9(c) reveals that the spectrum becomes
sharpest at the nodal direction and broadest at the antinodal
region. This is due to the band structure effect, i.e., the prox-
imity to the saddle points at (π, 0) and (0, π ) in the electron
dispersion [Eq. (3)]. Figures 2 and 6 together with Fig. 9
confirm no indication of a pseudogap feature in the presence
of the quantum charge fluctuations in the t-J model.

We checked that the essential features in Fig. 9 do not
depend on doping (for δ > δc). Hence our Fermi surface
is always large even though the system gets closer to a
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FIG. 9. (a), (b) Spectral function A(kF , ω) as a function of ω

at the Fermi momentum; kz = π is taken as a representative one.
kN

F and kAN
F are the Fermi momenta at the nodal (ϕ = π/4) and

antinodal (ϕ = 0) points, respectively. In (a), only on-site charge
fluctuations (denoted by 2 × 2) are considered whereas the effect of
both on-site charge and bond-charge fluctuations (6 × 6) are taken
into account in (b). (c) Intensity map of A(k, 0) at the Fermi energy in
the first quadrant of the Brillouin zone for kz = 0 as a representative
one. See also Figs. 12(e) and 12(f) obtained after a particle-hole
transformation.

bond-charge instability at a lower doping and the spectral
weight is suppressed substantially (Fig. 8).

E. Results for h-cuprates

So far we have presented results which can be applicable to
e-cuprates. For parameters appropriate for h-cuprates, we ob-
tain very similar results. Nonetheless, we think it worthwhile
presenting the corresponding results for h-cuprates and clari-
fying the meaning of very similar results because h-cuprates
are studied more than e-cuprates as a general trend. Following
Ref. [17], we choose t ′/t = −0.2 and the same values as those

FIG. 10. Results for parameters appropriate for h-cuprates at
δ = 0.15. (a) Intensity map of A(k, ω) in the presence of the on-site
charge fluctuations along the direction (π, π )-(0, 0)-(π, 0)-(π, π );
kz dependence is weak and kz = π is taken as a representative value.
(b) Intensity map of A(k, ω) in the presence of both on-site charge
and bond-charge fluctuations. (c) Quasiparticle weight Z (ϕ) along
the Fermi surface for four cases: 6 × 6 where full charge fluctua-
tions are included, 2 × 2 where only on-site charge fluctuations are
considered, and dbond and dCDW where fluctuations associated
with dbond and dCDW are considered, respectively. The results for
e-cuprates corresponding to (a)–(c) are shown in Figs. 5, 7, and 8(a),
respectively.

for e-cuprates for the rest of the parameters such as tz, Vc, α,
J , and δ(= 0.15).

Figure 10(a) is the intensity map of A(k, ω) due to the cou-
pling to the on-site charge fluctuations and is practically the
same as Fig. 5. This result does not change much even if we
include the bond-charge fluctuations as shown in Fig. 10(b)
and is very similar to Fig. 7. The electron self-energy is dom-
inated by the on-site charge fluctuations, the same conclusion
as that for e-cuprates.
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FIG. 11. Results for h-cuprates at δ = 0.15. (a) Spectral function
A(kF , ω) as a function of ω at the Fermi momentum. kN

F and kAN
F are

the Fermi momenta at the nodal (ϕ = π/4) and antinodal (ϕ = 0)
points. (b) Intensity map of A(k, 0) at the Fermi energy in the first
quadrant of the Brillouin zone. Corresponding results to e-cuprates
are given in Figs. 9(b) and 9(c).

Figure 10(c) shows the quasiparticle weight Z (ϕ) along
the Fermi surface. This result is similar to the corresponding
result for e-cuprates shown in Fig. 8(a). That is, the result
for 2 × 2 is almost the same as that for 6 × 6, indicating that
the effect of on-site charge fluctuations is dominant and Z (ϕ)
becomes almost isotropic along the Fermi surface. Since the
present doping rate δ = 0.15 is close to the critical doping
rate of the dCDW instability (δc ≈ 0.12), the value of Z (ϕ)
is reduced more than that in Fig. 8(a) upon approaching
ϕ = 0. While the critical doping rate of the dbond instability
is almost the same as that for e-cuprates, the value of Z (ϕ)
away from ϕ = π/4 and consequently its ϕ dependence for
dbond become somewhat different from that in Fig. 8(a). This
reflects the difference of the band structure. In fact, the ϕ de-
pendence of Z for dbond is rather sensitive to band parameters
and a value of Z at ϕ = 0 can become larger or smaller than
that at ϕ = π/4. For the present parameters for h-cuprates,
the inner Fermi surface becomes electronlike for kz = π ; see
the inset in Fig. 10(c). It is remarkable that the difference
of the Fermi surface topology between kz = 0 and π does
not produce appreciable changes of Z (ϕ) not only for on-site
charge fluctuations but also for bond-charge fluctuations in
Fig. 10(c).

Figure 11(a) is the spectral function A(kF , ω) as a function
of ω at the nodal (ϕ = π/4) and the antinodal (ϕ = 0) Fermi
momenta, and Fig. 11(b) is the intensity map of A(k, 0) at
the Fermi energy. These results should be compared with
Figs. 9(b) and 9(c). No appreciable differences are recognized.

We can conclude that the quantum charge fluctuations do not
lead to a pseudogap feature, even for h-cuprates.

F. Particle-hole transformation of results for e-cuprates

There is a special aspect of the t-J model in a study of the
one-particle properties for e-cuprates. That is, the e-cuprates
are analyzed in terms of the hole picture in the t-J model. This
is because the t-J model is defined in the restricted Hilbert
space where the double occupancy of electrons is forbidden.
Given that experimental data in e-cuprates are analyzed in the
particle picture, it should be more transparent to present our
results in the same picture.

We perform a particle-hole transformation in momentum
space: c̃kσ → c̃†

k+Qσ
and c̃†

kσ
→ c̃k+Qσ with Q = (π, π, 0)

(Ref. [67]). This yields the following changes:

εk → −εk+Q, (18)

Re�(k, ω) → −Re�(k + Q,−ω), (19)

Im�(k, ω) → Im�(k + Q,−ω), (20)

A(k, ω) → A(k + Q,−ω). (21)

The charge correlation function does not change. Figures 2, 5,
6, 7, and 9 are transformed to those summarized in Fig. 12.
Results corresponding to Figs. 3 and 4 are presented in
Appendix B. Note that this kind of transformation is not
necessary for h-cuprates.

G. Absence of long-range Coulomb interaction

We have considered the long-range Coulomb interaction
[Eq. (9)]. What happens if we replace it with a short-range
Coulomb interaction? As a typical short-range Coulomb in-
teraction, we may consider

V (q) = V1(cos qx + cos qy) + V2 cos qz. (22)

The charge excitation spectrum for V2 = 0 and tz = 0 was
already shown in Ref. [56], where the zero-sound mode is
realized as collective excitations, which are gapless at q =
(0, 0, qz ) independent of qz. In the present layered model with
a finite tz, the zero-sound mode acquires a gap at q = (0, 0, qz )
for qz = 0 but remains gapless for qz = 0; see Ref. [17] for
further details. We have chosen V1 = V2 = 1 and computed
the intensity map of the one-particle spectral function.

The obtained result is shown in Fig. 13, which should be
compared with Fig. 7, where the long-range Coulomb inter-
action is considered. The crucial differences appear in the two
incoherent bands above the Fermi energy. The band around
ω/t ≈ 1 seen in Fig. 7 is now pushed down toward the main
quasiparticle band and is hardly recognized in Fig. 13. The
other incoherent band around ω/t ≈ 2 becomes clearer than
Fig. 7 (see also Fig. 5), where the corresponding band does
form around ω/t ≈ 2 but is invisible in that intensity scale.
Minor differences are also recognized. We now have a clear
mustache in Fig. 13 just below the quasiparticle dispersion on
both sides of k = (0, 0, kz ), which comes from coupling to the
zero-sound mode. The sharp side band deeply below the Fermi
energy is robust. Quantitatively it is pushed up and becomes
closer to the main quasiparticle band.
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FIG. 12. Intensity map of A(k, ω) along the direction (π, π )-(0, 0)-(π, 0)-(π, π ) after the particle-hole transformation (a) around the
Fermi energy corresponding to Fig. 2, and (b) and (c) in a larger energy region corresponding to Fig. 5 and 7, respectively. (d) The density of
states after the particle-hole transformation of Fig. 6. (e) The spectral function A(kF , ω) at the nodal and antinodal Fermi momenta. (f) Intensity
map of A(k, 0) at the Fermi energy in the first quadrant of the Brillouin zone. (e) and (f) are obtained after the particle-hole transformation of
Figs. 9(b) and 9(c), respectively.

H. t ′ dependence

The band parameter t ′ is often utilized to describe a mate-
rial dependence in the cuprate family. In fact, the tendency to
various bond-charge-order instabilities depends on the value
of t ′ and, in particular, the sign change of t ′ leads to a big
difference [19,45]. However, the effect of bond-charge fluctu-
ations turns out to be very weak on the electron self-energy.
Moreover, essential features of on-site charge fluctuations in-
cluding plasmons are not altered by a different choice of t ′
unless one is interested in fine fitting to experimental data
[29]. Hence the results obtained in the present paper do not
depend much on a choice of t ′. This is also recognized by
noting similar results for both e- and h-cuprates; see Figs. 5,
7, 10(a), and 10(b). We therefore expect that the present
results manifest a generic feature of the spectral function when
considering the electron self-energy from quantum charge
fluctuations in the t-J model.

IV. DISCUSSIONS

We have found that the electron self-energy is controlled
mainly by the on-site charge fluctuations describing plas-
mons. This conclusion might seem counterintuitive because
there are also bond-charge fluctuations which are present in
the low-energy region with the scale of J and thus seem to
contribute much to the self-energy especially near the Fermi
energy. The point lies in the strength of the coupling between
bond-charge fluctuations and electrons. The on-site charge
fluctuations are described by the components a, b = 1, 2 and
the bond-charge ones by a, b = 3-6 in Eq. (14). The vertex
ha(k, q, ν) with a = 3-6 is proportional to � [see Eq. (12)],
whose typical value is around 0.025–0.03t . Since the contri-
bution from the bond-charge fluctuations is proportional to
�2, its effect becomes much weaker than that from the on-site
charge fluctuations.
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FIG. 13. Intensity map of A(k, ω) in the absence of the long-
range Coulomb interaction along the direction (π, π )-(0, 0)-(π, 0)-
(π, π ) in the hole picture; both on-site charge and bond-charge
fluctuations are taken into account. kz dependence is weak and kz =
π is taken as a representative value. The corresponding result in the
particle picture is presented in Appendix B.

The factor of �2 can be generic to strongly correlated
electron systems. In fact, similar features are recognized in
slave-boson calculations [46], the Kadanoff-Baym method for
Hubbard operators [68], the equation of motion method for
the Green’s functions in terms of the Hubbard operators [69],
and the equations of motion for projected operators on the t-J
model [70].

The results for e-cuprates [Figs. 12(b) and 12(c)] look
different from those for h-cuprates [Figs. 10(a) and 10(b)]
in a usual particle picture. However, when we take a hole
picture for e-cuprates (Figs. 5 and 7), those become essentially
the same. This is because the obtained self-energy and the
resulting one-particle spectral function are determined mainly
by the coupling to the on-site charge fluctuations, which are
almost the same for both e- and h-cuprates in the present the-
ory [17]. The major difference of charge excitations between
e- and h-cuprates appears in the bond-charge fluctuations [45],
whose contribution to the self-energy is, however, minor even
close to bond-charge instabilities at T = 0. Given that the on-
site charge excitations obtained in the present theory capture
the experimental data in both e- and h-cuprates [16–18,29],
the present paper implies that the obtained one-particle exci-
tation spectra are universal in cuprates.

We have shown that the coupling to plasmon excitations
generates an incoherent band around 1t in Figs. 10(a) and
10(b). This emergent band can also be seen as the density of
state generated in the corresponding energy region in Fig. 6.
In fact, early studies reported the peak around 1 eV above the
Fermi energy by the inverse photoemission spectroscopy for
h-cuprates [71,72]. The reported state can be our incoherent
band generated by the coupling to plasmons since we can rea-
sonably assume t/2 ≈ 500 meV for cuprates (Refs. [73,74]).
The spectral weight of our incoherent band is enhanced along
the direction (π, 0)-(π, π )-(π/2, π/2), which can be tested
by the inverse ARPES. On the other hand, for e-cuprates,
this incoherent band emerges below the Fermi energy along
the direction (π/2, π/2)-(0, 0)-(π, 0) as shown in Figs. 12(b)
and 12(c) (in the usual particle picture). Given that plasmon

excitations are now observed in experiments [11,12,28,29], it
is interesting to test the predicted band by performing ARPES
for e-cuprates.

This test is also important to highlight the role of the
long-range Coulomb interaction in cuprates. Traditionally,
short-range electron-electron interactions are presumed in
most studies on cuprates. In fact, there have been experi-
mental reports recently which are in disfavor with plasmon
excitations [30,31]. In this context, our results without the
long-range Coulomb interaction (Figs. 13 and 17) are use-
ful. They confirm that the emergent incoherent band around
|ω/t | ≈ 1 [Figs. 10(a), 10(b), 12(b), and 12(c)] indeed comes
from the coupling to plasmons, namely, through the long-
range Coulomb interaction.

The on-site charge fluctuations also generate a band around
5t for e-cuprates [Figs. 12(b) and 12(c)] and around −5t for
h-cuprates [Figs. 10(a) and 10(b)]. A very similar feature was
also obtained in the two-mode variational Monte Carlo study
of the t-J model [75]. It may not be easy to test this emer-
gent band experimentally since the distinction from additional
bands, not included in the present one-band t-J model, is not
straightforward in real materials.

As shown in Fig. 8, the quasiparticle weight Z is sup-
pressed dramatically by on-site charge fluctuations and
becomes smaller with decreasing carrier density, although
charge fluctuations themselves are driven by the doped
carrier. The similar doping dependence of Z was also
obtained in the multiband Hubbard model in the local
density-approximation in combination with the dynamical
mean-field theory [76]. The present paper suggests that charge
fluctuations are the major contribution to yield the suppression
of the quasiparticle weight in the doped Mott insulator even
though magnetic fluctuations are expected strong near half
filling.

It is well known that one of the most important issues in
cuprates is the pseudogap phase [1], which is clearly resolved
in h-cuprates, while its existence is controversial in e-cuprates
[77]. As seen in Figs. 6, 9, and 11, the quantum charge
fluctuations do not produce a pseudogap feature, although the
spectral width in Figs. 9(c) and 11(b) becomes sharpest at
the nodal region and broadest at the antinodal region, which
somewhat shares a d-wave feature, the same symmetry of the
pseudogap. It seems too hasty to infer that the pseudogap may
originate from some other degree of freedom such as spin
fluctuations. In fact, our calculations have been performed at
T = 0 and thus the charge fluctuations we have studied are
purely quantum. At finite temperatures, classical fluctuations
also contribute to the self-energy [78,79]. We leave this possi-
bility to a future issue.

A renormalization of the electron dispersion is related
directly to the so-called kinks of the dispersion observed
by ARPES. Mainly two different kinks are reported: low-
energy (40-70 meV) (Refs. [38,80–86]) and high-energy
(∼0.3 eV) (Refs. [34–39]) kinks. The low-energy kink was
discussed in terms of a coupling to magnetic resonance mode
[80,82,83,85,87,88], spin fluctuations [86,89], and phonons
[81,84,88,90], and also even without invoking such a coupling
to bosons [91], whereas the high-energy kink may come from
spin fluctuations [92,93], incoherent hole motion [33], string
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excitations [94], and some extrinsic effects [95]. Although
we have performed a comprehensive analysis of the electron
self-energy from all possible charge fluctuations included in
the t-J model at the order of 1/N , we did not obtain a clear
kink structure associated with experimental data if we assume
t/2 ≈ 500 meV.

The fact that we did not obtain a clear kink might seem
peculiar because it is well recognized that the electron disper-
sion may exhibit a kink near a typical energy scale of bosonic
fluctuations via their coupling to electrons. The reasons are
twofold: energy scale and coupling strength. As shown in
Fig. 2, the quasiparticle dispersion is strongly renormalized by
the coupling to charge fluctuations and is realized in −0.2 �
ω/t � 0.1. In such a low energy scale, it is only bond-charge
fluctuations which could play a role because on-site charge
fluctuations have energy much larger than the renormalized
dispersion. However, as we have shown and discussed, the
effect of bond-charge fluctuations is substantially weakened
by the factor of �2 coming from the vertex ha(k, q, ν) [see
Eq. (12)] and cannot generate a clear kink in the electron
dispersion.

Our results shown in Figs. 5, 7, and 10(a) and 10(b)
indicate a large spectral weight around ω ∼ −4t near k =
(0, 0, kz ), which was also obtained in finite-temperature di-
agonalization of small clusters [33]. Although Ref. [33]
discussed the high-energy kink [34–39] on the basis of such
results, we do not because the absolute energy becomes differ-
ent by more than a factor of 4 if we assume t/2 ≈ 500 meV.
Considering that our charge excitation spectra capture the ex-
perimental data, including quantitative aspects in many cases
[14,15,17,18,29], we think that a factor of 4 is too large as
the energy difference. We hope that this different view from
Ref. [33] stimulates a further study of the high-energy kink,
whose origin remains controversial and will lead to a better
understanding of the nature of the self-energy in cuprates.

Instead of a kink in the electron dispersion, we predict
a cascadelike feature in the sense that the spectral weight
of the quasiparticle dispersion flows to the incoherent band
around ω/t ∼ −1, especially in wide regions around k ≈
(π, 0, kz ) and (π/2, π/2, kz ) for e-cuprates in Figs. 12(b) and
12(c). This feature should not be confused with the “water-
fall” reported around −(0.3 ∼ 1) eV and k ≈ (0, 0, kz ) for
h-cuprates [34–39]. We did not obtain such a waterfall clearly
for h-cuprates; see Figs. 10(a) and 10(b).

The effect of plasmons on the electron dispersion in h-
cuprates was studied in Ref. [32] in a phenomenological
scheme. They reported that a coupling to plasmons gen-
erates shadow bands around 1.5 eV below and above the
LDA band. This qualitative feature is shared with our re-
sults in that we have also obtained bands generated around
the energy −5t and 1t in Figs. 10(a) and 10(b). Further-
more, Ref. [32] concluded that plasmons cannot explain the
high-energy kink of the electron dispersion around −(0.3 ∼
1) eV (Refs. [34–39]), but the plasmons strongly renormalize
the electron dispersion. These insights are also shared with
ours obtained in the present microscopic analysis of the self-
energy.

Although we do not share a view of the high-energy
kink with Ref. [33], the present work is complementary to

Ref. [33]. Reference [33] performed numerical analysis by
using small clusters of the t-J model, but did not consider
the effect of plasmons. On the other hand, we focus on the
charge sector and analyze all fluctuations including plasmons
in the thermodynamic limit. Since both magnetic and charge
fluctuations were involved in Ref. [33], it remained unclear
what kind of fluctuations were actually relevant to the spectral
function. The present paper then clarifies that strong electron
correlations due to the on-site charge fluctuations including
plasmons, not bond-charge nor magnetic ones, play a dom-
inant role to form the electron spectral function. Reference
[33] obtained the imaginary part of the electron self-energy
with strong particle-hole asymmetry. This asymmetry was un-
derstood as a consequence from the strong correlation effects
due to the local constraint in the t-J model in Ref. [33]. This
insight fully agrees with the present paper as we explain in
the context of Fig. 3. While Ref. [33] did not consider the
long-range Coulomb interaction, we find that it leads to a
side band around |ω/t | ≈ 1. In addition, we elucidate the
quasiparticle weight, its doping dependence, and the interplay
of on-site charge and bond-charge fluctuations.

Reference [96] studied the spectral function in the charge-
stripe phase. While no tendency toward charge stripes was
obtained in the present theory [19,45], a certain bond-charge
order has the same symmetry as stripes [19]. In this sense, we
might mimic the effect of stripes on the spectral function and
make an interesting comparison with Ref. [96]. However, as
we have showed in the present paper, the effect of bond-charge
fluctuations is minor on the electron self-energy.

We have employed a layered model to perform a real-
istic analysis of the self-energy from the charge excitations
and considered the long-range Coulomb interaction in three-
dimensional space [see Eq. (9)]. This three-dimensional
Coulomb interaction is important to take a plasmon contri-
bution into account appropriately. Concerning the electron
band structure, however, we find that essentially the same
results are obtained for the electron self-energy even if we
set tz = 0. In this sense, the detail of three-dimensionality of
the band is not crucial to the electron self-energy from charge
fluctuations, at least at zero temperature.

The oxygen degrees of freedom in cuprates are included
effectively in the one-band t-J model as the Zhang-Rice
singlet [50] and charge fluctuations at the oxygen sites are
described as bond-charge fluctuations in the present theory.
However, this does not mean that the effect of oxygens is
included perfectly in the t-J model. For example, if we wish to
address the issue why Cu L-edge RIXS detects the plasmons
in e-cuprates efficiently [2,7,8,10–12] while it does not in
h-cuprates [27,29], we feel that the t-J model is not enough
and the oxygen degrees of freedom should be considered on
an equal footing.

Finally, it is natural to ask whether our obtained results
could stay if one studies the electron self-energy beyond
the present approximation at the order of 1/N . While this
possibility is not easily addressed, we believe that the
essential features may not be modified much on the basis of a
comparison with numerical analysis of the t-J (Refs. [33,75])
and Hubbard [76] models as we have discussed
above.
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V. CONCLUDING REMARKS

The electron self-energy in cuprates was mainly studied
by considering a coupling to spin fluctuations [80,82,83,85–
89,92,93] and phonons [81,84,88,90]. Compared with those
studies, the effect of charge fluctuations on the electron self-
energy has been studied much less [32,33]. Given that high-Tc

superconductivity occurs upon doping of charged carriers
[1] and the charge dynamics was revealed in (q, ω) space
recently [2–12,27–29], it is challenging to clarify how the
actual charge dynamics impacts the one-particle properties,
which will then deepen our understanding of the cuprate
phenomenology. In this paper, we have performed a com-
prehensive analysis of the electron self-energy from quantum
charge fluctuations in a realistic layered t-J model, which can
capture the charge excitation spectra observed in cuprates.
We have found that on-site charge fluctuations have a great
impact on the electron self-energy. The quasiparticle weight is
reduced significantly, which occurs almost isotropically along
the Fermi surface. In addition, mainly two additional bands
emerge. In particular, the emergent band around ω/t ≈ 1 with
strong intensity along (π, 0)-(π, π )-(π/2, π/2) in Figs. 5, 7,
and 10 [see also Figs. 12(b) and 12(c) where it occurs around
ω/t ≈ −1 along (π/2, π/2)-(0, 0)-(π, 0)] comes from the
coupling to the plasmons [16–18] recently identified by x-ray
measurements [11,12,28,29]. Surprisingly, the effect of low-
energy bond-charge quantum fluctuations is minor even close
to bond-charge instabilities and the electron self-energy is
mainly controlled by the on-site charge fluctuations describing
plasmons. Furthermore, the quantum charge dynamics does
not produce a clear kink nor a pseudogap feature in the elec-
tron dispersion.
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APPENDIX A: COMPLETE FORMALISM

We start with the layered t-J model with the long-range
Coulomb interaction:

H = −
∑
i, j,σ

ti j c̃
†
iσ c̃ jσ +

∑
〈i, j〉

Ji j

(
�Si · �S j − 1

4
nin j

)

+ 1

2

∑
i, j

Vi jnin j . (A1)

This model is defined in the restricted Hilbert space, where
the double occupancy of electrons is prohibited at any lattice
site. We can write the t-J model in terms of nine Hubbard X̂
operators [97]: c̃†

iσ = X̂ σ0
i , c̃iσ = X̂ 0σ

i , S+
i = X̂ ↑↓

i , S−
i = X̂ ↓↑

i ,
ni = X̂ ↑↑

i + X̂ ↓↓
i , and X̂ 00

i describing the number of doped
holes; the z component of the spin operator is described by
Sz

i = 1
2 (X̂ ↑↑

i − X̂ ↓↓
i ). The operators X̂ σ0

i and X̂ 0σ
i are called

fermionlike, whereas the operators X̂ σσ ′
i and X̂ 00

i are boson-
like. After introducing the chemical potential μ, the resulting

Hamiltonian becomes

H (X ) = −
∑
i, j,σ

ti j X̂
σ0
i X̂ 0σ

j

+ J

2

∑
〈i, j〉,σσ ′

(
X̂ σσ ′

i X̂ σ ′σ
j − X̂ σσ

i X̂ σ ′σ ′
j

)

+ 1

2

∑
i, j,σσ ′

Vi jX̂
σσ
i X̂ σ ′σ ′

j − μ
∑
i,σ

X̂ σσ
i . (A2)

There are two major difficulties in the Hamiltonian
Eq. (A2): the complicated commutation rules of the Hubbard
operators [97] and the absence of a small parameter. A popular
method to handle the former difficulty is to use slave particles.
For instance, in the slave-boson method [52], the original
fermionlike X̂ 0σ operator is written as X̂ 0σ = b̂† f̂σ , where b̂
and f̂σ are usual boson and fermion operators, respectively.
This scheme introduces a gauge field, which requires a gauge
fixing and the introduction of a Faddeev-Popov determinant
[98]. Gauge fluctuations should be taken into account beyond
mean-field theory and the slave particles need to be convo-
luted to form the original fermionic operator c̃.

An alternative approach is to employ the Faddeev-Jackiw
[99] and Dirac [100,101] theories for constrained systems and
to develop a path integral representation for the Hubbard oper-
ators [102]. The partition function Z is given in the Euclidean
form as follows:

Z =
∫

DX αβ
i δ

(
X 00

i +
∑

σ

X σσ
i − 1

)
δ

(
X σσ ′

i − X σ0
i X 0σ ′

i

X 00
i

)

× (sdetMAB)
1
2
i exp

(
−

∫
dτ LE (X, Ẋ )

)
, (A3)

where fermionlike and bosonlike X-operators are described by
Grassmann and usual complex variables, respectively, τ = it
and Ẋ = ∂τ X . Note that we have removed the hat symbol of
the Hubbard operators because they become classical fields
in the path integral formulation. The Euclidean Lagrangian
LE (X, Ẋ ) is given by

LE (X, Ẋ ) = 1

2

∑
i,σ

(
Ẋi

0σ
X σ0

i + Ẋi
σ0

X 0σ
i

)
X 00

i

+ H (X ). (A4)

The superdeterminant

(sdetMAB)
1
2
i = ( − X 00

i

)2
(A5)

is equivalent to the determinant of the Dirac matrix [100,101]
formed by the constraints and also to the Faddeev-Jackiw the-
ory, where the symplectic matrix has even and odd Grassmann
elements (see Ref. [103] and references therein). The two con-
straints specified by the two δ-functions in Eq. (A3) are neces-
sary to recover the correct algebra of the original Hubbard op-
erators [102]. The method used here recovers [103] the coher-
ent state path-integral representation for the t-J model [104].

The partition function Eq. (A3) looks different from that
usually found in other solid state problems. The measure
of the integral contains the two constraints as well as a su-

perdeterminant (sdetMAB)
1
2
i . In addition, the kinetic term of

the Lagrangian Eq. (A4) is nonpolynomial. As a result, even
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if we discard the Heisenberg interaction and the long-range
Coulomb interaction in the t-J model, the theory is still highly
nontrivial. In fact, the electron-electron interactions also come
from the algebra of the X operators in the t-J model.

One of the important aspects of the t-J model is that charge
carriers are absent at half-filling. To describe this explicitly,
we rewrite the terms X σσ

i X σ ′σ ′
j in Eq. (A2) in terms of X 00

i( j) by
using the local constraint X 00

i( j) + ∑
σ X σσ

i( j) = 1. This local con-
straint is then kept by introducing the Lagrange multiplier λi:

δ

(
X 00

i +
∑

σ

X σσ
i − 1

)

=
∫

Dλiexp

(
iλi

(
X 00

i +
∑

σ

X σσ
i − 1

))
. (A6)

The remaining two terms, X σσ ′
i X σ ′σ

j in the J term and the
term of the chemical potential, are replaced by integrating
out the bosonic variable X σσ ′

using the second δ-function in
Eq. (A3), i.e., X σσ ′

i = (X σ0
i X 0σ ′

i )/X 00
i . The resulting model

is then described by X σ0
i , X 0σ

i , X 00
i , and λi, and their mutual

interactions.
To achieve the systematic analysis of the t-J model, we

employ a nonperturbative technique based on a large-N ex-
pansion [44], where N is the number of electronic degrees of
freedom per site and 1/N is assumed to be a small parameter.
We then extend the spin index σ to a new index p running
from 1 to N . To get a finite theory in the limit of N → ∞,
we rescale the hopping ti j to ti j/N , J to J/N , and Vi j to
Vi j/N . The completeness condition, i.e., the local constraint,
becomes the N-extended one: X 00

i + ∑
p X pp

i = N/2. From
this completeness condition, we can see that X 00 is O(N ) and
X pp is O(1). As a consequence of this, the large-N approach
weakens the effective spin interaction compared with the one
associated with the charge degrees of freedom. In this sense,
the large-N scheme is potentially interesting in light of x-ray
experiments [2–12,27–29] which show unexpectedly strong
excitations in the pure charge-channel.

We write the boson fields X 00
i and λi in terms of

static mean-field values, (r0, λ0), and dynamic fluctuations,
(δRi, δλi ):

X 00
i = Nr0(1 + δRi ) , (A7)

λi = λ0 + δλi. (A8)

For the fermionlike fields, we write as follows:

f +
ip = 1√

Nr0
X p0

i , (A9)

fip = 1√
Nr0

X 0p
i . (A10)

Using Eq. (A7) and the completeness condition, we obtain
r0 = δ/2, where δ is the hole doping rate away from half
filling. The fermion variable fip is proportional to X 0p

i and
should not be associated with the so-called spinon in the
slave-boson method.

X 00 to the second power appears in Eq. (A5) because we
were working with two spin projections. After the extension
to large-N , the superdeterminant becomes

(sdetMAB)
1
2
i = (Nr0)N [−(1 + δRi )]

N . (A11)

The constant factor (Nr0)N contributes to the path-integral
normalization factor. On the other hand, the term [−(1 +
δRi )]N can be written in terms of N complex bosonic ghost
fields Zip in an integral representation (Ref. [44]). Therefore
the superdeterminant contributes to the effective Lagrangian
as

Lghost(Z ) = −
∑

ip

Z†
ip

(
1

1 + δRi

)
Zip. (A12)

The exchange interaction term (J term) contains the four
fermion fields and the two bosons in the denominator. They
can be decoupled through a Hubbard-Stratonovich transfor-
mation by introducing the field �i j ,

�i j = J

4N

∑
p

f †
j p fip√

(1 + δRi )(1 + δRj )
. (A13)

This field describes bond-charge fluctuations because the
fermions with the same spin projection p sit on the nearest-
neighbor sites and the sum over p is taken. This bond field
�i j is parameterized as

�
η
i = �

(
1 + rη

i + iAη
i

)
, (A14)

where rη
i and Aη

i correspond to the real and imaginary parts
of the bond-field fluctuations, respectively, and � is a static
mean-field value. The index η denotes the bond directions
η1 = (1, 0) and η2 = (0, 1) on a square lattice. Finally, we
expand the term 1/(1 + δR) in powers of δR, which gener-
ates various interactions between fermions and bosons. The
number of the interactions considered in theory is controlled
in powers of 1/N .

We may define a six-component boson field

δX a = (δR, δλ, rη1, rη2 , Aη1 , Aη2 ), (A15)

where the first component δR is related to on-site charge fluc-
tuations and δλ is the fluctuation of the Lagrange multiplier
λi associated with the completeness condition; the remaining
components come from fluctuations of the bond field [see
Eq. (A14)]. Hence the effective theory can be described in
terms of boson fields δX a, fermion fields fip, ghost fields Zip,
and their mutual interactions.

From the quadratic part for fermions we obtain the bare
electron propagator in the paramagnetic phase (solid line in
Fig. 14):

G(0)
pp (k, iωn) = 1

iωn − εk
. (A16)

Here k and iωn are momentum and fermionic Matsubara fre-
quency, respectively. The bare fermionic propagator G(0) is
O(1). The electron dispersion εk is written as

εk = ε
‖
k + ε⊥

k , (A17)

where the in-plane dispersion ε
‖
k and the out-of-plane disper-

sion ε⊥
k are given, respectively, by

ε
‖
k = −2

(
t
δ

2
+ �

)
(cos kx + cos ky)−4t ′ δ

2
cos kx cos ky−μ,

(A18)

ε⊥
k = −2tz

δ

2
(cos kx − cos ky)2 cos kz. (A19)
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FIG. 14. (a) Propagators and vertices in a large-N theory up to
O(1/N ). Solid line represents the fermion propagator G(0)

pp′ ; dashed

line the 6 × 6 boson propagator D(0)
ab for the six-component fields

δX a; wavy line the ghost propagator D(0)
pp′ . �pp′

a and �pp′
a describe the

three-point interaction between two fermions with spin indices p and
p′ and one boson with the component a, and two ghost fields with
one boson, respectively. �

pp′
ab and �

pp′
ab are the four-point interactions

among the two fermions and two bosons, and two ghost fields and
two bosons, respectively. (b) The irreducible boson self-energy 	ab

and the renormalized boson propagator Dab. (c) The electron self-
energy �(k, ω) at the order of 1/N .

Here λ0 in Eq. (A8) was absorbed in the chemical potential
μ. In-plane momenta kx and ky and out-of-plane momentum
kz are measured in units of a−1 and d−1, respectively; a is
the lattice constant in the square lattice and d is the distance
between the planes. The quantity � is given by the expression

� = J

4NsNz

∑
k

(cos kx + cos ky)nF (εk ), (A20)

where nF is the Fermi function, Ns is the total number of
lattice sites on the square lattice, and Nz is the number of
layers along the z direction. For a given doping δ, μ, and �

are determined self-consistently by solving Eq. (A20) and

(1 − δ) = 2

NsNz

∑
k

nF (εk ). (A21)

From the quadratic part of the six-component boson field
δX a, we obtain the inverse of the bare bosonic propagator
(dashed line in Fig. 14), connecting two components a and
b,[

D(0)
ab (q, iνn)

]−1

= N

⎛
⎜⎜⎜⎜⎜⎜⎝

δ2

2 [V (q) − J (q)] r0 0 0 0 0
r0 0 0 0 0 0
0 0 4

J �2 0 0 0
0 0 0 4

J �2 0 0
0 0 0 0 4

J �2 0
0 0 0 0 0 4

J �2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(A22)
where D(0)

ab is O(1/N ), q a three-dimensional wave vector, νn a
bosonic Matsubara frequency, and J (q) = J

2 (cos qx + cos qy).
V (q) is the long-range Coulomb interaction in momentum
space for a layered system

V (q) = Vc

A(qx, qy) − cos qz
, (A23)

where Vc = e2d (2ε⊥a2)−1 and

A(qx, qy) = α(2 − cos qx − cos qy) + 1. (A24)

These expressions are easily obtained by solving Poisson’s
equation on the lattice [49]. Here α = ε̃

(a/d )2 , ε̃ = ε‖/ε⊥, and
ε‖ and ε⊥ are the dielectric constants parallel and perpen-
dicular to the planes, respectively; e is the electric charge of
electrons.

From the quadratic part of the ghost fields Zip, we obtain
the inverse of the bare ghost propagator (wavy line in Fig. 14),

D(0)
pp′ = −δpp′ , (A25)

which is O(1).
The interactions between δX a, fp, and Zp are given

by three- and four-point vertices. The three-point vertices
read

�pp′
a = (−1)

( i

2
(ωn + ω′

n) + μ + 2�
[
cos

(
kx − qx

2

)
cos

qx

2
+ cos

(
ky − qy

2

)
cos

qy

2

]
; 1;

− 2� cos
(

kx − qx

2

)
; −2� cos

(
ky − qy

2

)
; 2� sin

(
kx − qx

2

)
; 2� sin

(
ky − qy

2

))
δpp′

, (A26)

and

�pp′
a = (−1)δa1δpp′ . (A27)

They represent the interaction between two fermions and one
boson, and two ghosts and one boson, respectively. The four-
point vertices, �

pp′
ab and �

pp′
ab , describe the interaction between

two fermions and two bosons, and two bosons and two ghosts,
respectively. �

pp′
ab fulfills the symmetry of �

pp′
ab = �

pp′
ba . The

elements different from zero are

�
pp′
δRδR =

(
i

2
(ωn + ω′

n) + μ

+�
∑
η=x,y

cos

(
kη − qη + q′

η

2

)

×
(

cos
qη

2
cos

q′
η

2
+ cos

qη + q′
η

2

))
δpp′

, (A28)
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�
pp′
δRδλ = 1

2 δpp′
, (A29)

�
pp′
δR rη = −� cos

(
kη − qη + q′

η

2

)
cos

q′
η

2
δpp′

, (A30)

and

�
pp′
δR Aη = � sin

(
kη − qη + q′

η

2

)
cos

q′
η

2
δpp′

. (A31)

The four-leg interaction vertex �
pp′
ab reads

�
pp′
ab = δa1δb1δpp′ . (A32)

Each vertex conserves the momentum and energy and it is at
O(1).

The chemical potential μ appears in Eqs. (A26) and (A28).
Its origin is easily traced. First, the N-extended chemical
potential term μ

∑
i,p X pp

i is written as μ
∑

i,p(X p0
i X 0p

i )/X 00
i

by using the second δ-function in Eq. (A3). Second, its de-
nominator is expanded in powers of δRi [see also Eq. (A7)].
Third, to compute quantities up to O(1/N ) the expansion is
made up to δR2

i , which generates a term μ in the three-leg and
four-leg vertices.

The propagators and vertices are summarized in Fig. 14(a).
For a large-N approach, any physical quantity can be cal-

culated at a given order by counting the powers of 1/N in
vertices and propagators involved in the corresponding Feyn-
man diagram. In Fig. 14(a), we show the necessary diagrams
to calculate quantities up to O(1/N ). When going beyond that
order, we need to collect more vertices in the expansion of the
expression 1/(1 + δR), which demonstrates one of nontrivial
aspects of the t-J model.

So far, all procedures are exact formally and no approxi-
mations are introduced. Now we show calculations up to the
order of 1/N . The bare susceptibility D(0)

ab is already at the or-
der of 1/N . From the Dyson equation, the bosonic propagator
(dashed line in Fig. 14) is renormalized at the same order as

[Dab(q, iνn)]−1 = [
D(0)

ab (q, iνn)
]−1 − 	ab(q, iνn), (A33)

where the 6 × 6 boson self-energy matrix 	ab is evaluated by
the diagrams shown in Fig. 14(b):

	ab(q, iνn) = − N

NsNz

∑
k

ha(k, q, εk − εk−q)

× nF (εk−q) − nF (εk )

iνn − εk + εk−q
hb(k, q, εk − εk−q)

− δa 1δb 1
N

NsNz

∑
k

εk − εk−q

2
nF (εk ). (A34)

The vertices ha are given by

ha(k, q, ν) =
{

2εk−q + ν + 2μ

2
+ 2�

[
cos

(
kx − qx

2

)
cos

(qx

2

)
+ cos

(
ky − qy

2

)
cos

(qy

2

)]
;

1; −2� cos
(

kx − qx

2

)
; −2� cos

(
ky − qy

2

)
; 2� sin

(
kx − qx

2

)
; 2� sin

(
ky − qy

2

)}
. (A35)

Here the dependence on kz and qz enters only through εk−q
in the first column in Eq. (A35), whereas the other columns
contain the in-plane momentum only. It is important to note
that the only role played by the ghost fields is to cancel in-
finities coming from the frequency dependence of the vertices
involved in the first two diagrams in Fig. 14(b).

The Green’s function acquires dynamical corrections as
shown in Fig. 14(c). The self-energy consists of two parts at
the order of 1/N :

�(k, iωn) = �(1)(k, iωn) + �(2)(k, iωn), (A36)

where

�(1)(k, iωn) = 1

NsNz

∑
q,νn

∑
ab

�pp
a Dab(q, iνn)

× G(0)
pp (k − q, iωn − iνn) �

pp
b , (A37)

and

�(2)(k, iωn) = 1

NsNz

∑
q,νn

∑
ab

�
pp
ba Dab(q, iνn). (A38)

In Eqs. (A36)–(A38), we have omitted the index p in the
self-energy for simplicity. �(1)(k, iωn) corresponds to the
Fock diagram, the first one in Fig. 14(c), and �(2)(k, iωn)
the Hartree diagram, the second one in Fig. 14(c). Usually

the Hartree term gives a constant contribution, which can be
absorbed in the chemical potential, but here both diagrams
must be considered because of the frequency and momentum
dependence of the vertices �

pp
a and �

pp
ab . One can easily see in

Eqs. (A37) and (A38) that the obtained self-energy is indeed
at the order of 1/N : G(0)

pp and the vertices are at O(1), and Dab

is at O(1/N ).

FIG. 15. Imaginary part of the electron self-energy,
−Im�(k, ω), as a function of ω for several choices of k after
the particle-hole transformation of Fig. 3.
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Using the spectral representation of Dab, we obtain

�(1)(k, iωn) = − 1

πNsNz

∫
dν

∑
q,νn

∑
ab

�pp
a

ImDab(q, ν)

iνn − ν
�

pp
b

× G(0)
pp (k − q, iωn − iνn), (A39)

�(2)(k, iωn) = − 1

πNsNz

∫
dν

∑
q,νn

∑
ab

�
pp
ba

ImDab(q, ν)

iνn − ν
.

(A40)

After performing the Matsubara sum and the analytical con-
tinuation, the imaginary part of � can be written in a compact

FIG. 16. Energy dependence of −Im�(k, ω), Re�(k, ω), and
A(k, ω) at k = (0, 0, π ) (a), (π, π, π ) (b), and (π, 0, π ) (c) after
the particle-hole transformation of Fig. 4.

form,

Im�(k, ω) = − 1

NsNz

∑
q

∑
ab

ha(k, q, ω − εk−q)

× ImDab(q, ω − εk−q) hb(k, q, ω − εk−q)

× [nF (−εk−q) + nB(ω − εk−q)],

(A41)

where nB is the Bose factor. We obtain Re�(k, ω) from
Im�(k, ω) via the Kramers-Kronig relations. Since the elec-
tron Green’s function G(k, ω) is given by

G(k, ω)−1 = ω + iη − εk − �(k, ω), (A42)

with η(> 0) being infinitesimally small, the spectral function
A(k, ω) = − 1

π
ImG(k, ω) is obtained as

A(k, ω) = − 1

π

Im�(k, ω) − η

[ω − εk−Re�(k, ω)]2+[−Im�(k, ω)+η]2
.

(A43)

APPENDIX B: ADDITIONAL RESULTS AFTER
PARTICLE-HOLE TRANSFORMATION

In Sec. III F, we presented results after the particle-hole
transformation so they can be compared directly with exper-
iments for e-cuprates. It is also informative to present the
ω dependence of the self-energy and the spectral function.
Hence we perform the particle-hole transformation of Figs. 3
and 4 and present here the corresponding results in Figs. 15
and 16, respectively.

We also present the corresponding result to Fig. 13 in
Fig. 17. This result together with Fig. 12(c) will be use-
ful when one wishes to discuss the role of the long-range
Coulomb interaction on the basis of the one-particle excitation
spectrum for e-cuprates.

FIG. 17. Intensity map of A(k, ω) in the absence of the long-
range Coulomb interaction along the direction (π, π )-(0, 0)-(π, 0)-
(π, π ) in the particle picture; both on-site charge and bond-charge
fluctuations are taken into account. kz dependence is weak and kz =
π is taken as a representative value. The corresponding result in the
hole picture is presented in Fig. 13.
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