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Flat and correlated plasmon bands in graphene/α-RuCl3 heterostructures
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We develop a microscopic theory for plasmon excitations of graphene/α-RuCl3 heterostructures. Within a
Kondo-Kitaev model with various interactions, a heavy Fermi liquid hosting flat bands emerges in which the
itinerant electrons of graphene effectively hybridize with the fractionalized fermions of the Kitaev quantum
spin liquid. We find novel correlated plasmon bands induced by the interplay of flat bands and interactions and
argue that our theory is consistent with the available experimental data on graphene/α-RuCl3 heterostructures.
We predict novel plasmon branches beyond the long-wavelength limit and discuss the implications for probing
correlation phenomena in other flat band systems.
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I. INTRODUCTION

Plasmons are collective charge oscillations whose prop-
erties are normally dominated by the long-range Coulomb
interactions in low-density systems [1,2]. However, strong
correlations can drastically alter their behavior which allows
us to probe new quantum many-body physics with optical
experiments. For example, Kondo interactions can give rise to
new low-energy plasmon modes in heavy-fermion materials
[3–5] or can distort the surface collective modes in topological
Kondo insulators [6]. A local Hubbard interaction also leads
to a strong renormalization of the plasmon dispersion and
a shift of spectral weight [7–9]. Apart from strong interac-
tions, it is of course the form of the electronic band structure
which determines the properties of plasmons. For example,
monolayer graphene serves as an outstanding platform for the
study of Dirac plasmons [10–18] with a low-energy and long-
wavelength dispersion, ω ∝ √

q, and the van Hove singularity
of the dispersion leads to so-called π plasmons which have
been observed in monolayer graphene with electron energy
loss spectroscopy [19–21].

The advent of two-dimensional (2D) heterostructures has
paved the way for investigating new correlation and band
structure effects on plasmon modes. For instance, twisted
bilayer graphene (TBG), the moiré material which hosts
strongly correlated flat bands [22,23], shows novel collective
plasmon excitations [24–30]. Apart from the conventional 2D
Dirac plasmons which are damped as momentum q increases
and merge with the particle-hole (p-h) continuum [10,11], it
is reported that the plasmons in TBG and other narrow-band
materials exhibit flat and weakly damped dispersions piercing
through the p-h continuum [25–27].

Recently a new graphene/α-RuCl3 heterostructure has
attracted significant attention [31–34], since the Mott insu-
lating α-RuCl3 layer is a promising candidate for realizing
the seminal Kitaev quantum spin liquid (QSL) [35–39]. The

quasi-2D material α-RuCl3 has long-ranged magnetism at
low temperatures due to additional interactions beyond the
bond-oriented Kitaev exchange but is believed to be in prox-
imity to a QSL phase [40]. The lattice mismatch between
graphene and α-RuCl3 induces strain which has been shown
to enhance the Kitaev spin exchange [41,42] bringing the
system closer to the Kitaev QSL with its fractionalized Ma-
jorana fermion excitations. However, the graphene layer is
also strongly affected because of a charge transfer from the
itinerant to the insulating layer as observed experimentally
[32–34] and in accordance with ab initio calculations [41].
Graphene becomes hole-doped and α-RuCl3 electron-doped
with the Fermi energy lying within the correlated narrow Ru
band which is almost flat in the Brillouin zone except for a
small hybridization region [41]. Recent experiments have ob-
served plasmons in graphene/α-RuCl3 heterostructures with
an excess damping mechanism attributed to the correlated
insulating layer [34]. However, it is an outstanding question
how the unusual excitations are linked to correlation effects of
α-RuCl3. More generally, it has remained unexplored whether
plasmonic excitations can be used to probe correlation effects
related to QSL fluctuations in correlated heterostructures.

In this work, we show that the interplay of correlated flat
bands and strong local interactions can lead to novel plasmon
excitations. We develop a microscopic theory of collective
charge excitations in a minimal bilayer Kondo-Kitaev lattice
model of α-RuCl3 on top of graphene with interlayer spin-
only Kondo couplings. The Kondo-Kitaev model has a rich
phase diagram displaying a fractionalized Fermi liquid, p-
wave superconductivity, and heavy-Fermi-liquid (hFL) phase
as calculated within a self-consistent Abrikosov fermion
mean-field theory [43,44]. In the hFL phase, the fractionalized
fermions of the Kitaev QSL acquire charge by hybridizing
with the itinerant electrons from graphene which results in an
almost flat Dirac band at the Fermi energy whose bandwidth
is set by the Kitaev exchange and a hybridization by the
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FIG. 1. (a) The band structures of the effective model Eq. (1)
with u = 0.6 eV, t = 2.6 eV, J = 0.1 eV, and K = 0.01 eV [45]. The
dashed line is the Fermi energy EF = 0. The left inset plot shows the
schematic picture of the Kitaev-graphene lattice and corresponding
lattice vectors n1 and n2. The upper layer with S = 1/2 spins is
depicted for Kitaev Mott insulator and the other one the itinerant
graphene layer. The right inset plots show the whole band struc-
ture and the Brillouin zone of honeycomb lattice. (b) Diagrammatic
representations of the Coulomb interaction V/q, on-site Hubbard
repulsion Uc( f ) and Uf , and Kondo couplings JK . (c) The diagram-
matic representation of the Dyson equation for the RPA charge
susceptibility.

local Kondo coupling; see Fig. 1(a). Recently, it was shown
that ab initio calculations and experimental constraints can be
used to determine the microscopic parameters of the effective
low-energy hFL band structure, which has been employed
to explain the non-Lifshitz Kosevich temperature depen-
dence of quantum oscillations measured in graphene/α-RuCl3

heterostructures [45].
Here, we calculate the dynamical charge susceptibility for

the hFL phase and study the plasmon dispersions over the
Brillouin zone in both low- and high-energy scales taking
into account the effect of different local interactions. As the
main result, we find new plasmonic modes whose small mo-
mentum behavior is consistent with recent experiments on
graphene/α-RuCl3 heterostructure [34].

The rest of this paper is organized as follows. In Sec. II,
we present an effective model of a Kitaev-graphene system.
In Sec. III, we formulate the random phase approximation
(RPA) theory to study the plasmon excitations in the Kitaev-
graphene system. We discuss the numerical results in Sec. IV
and compare our results with the recent experimental data in
Sec. V. Finally, Sec. VI is devoted to a summary.

II. EFFECTIVE MODEL OF A KITAEV-GRAPHENE
SYSTEM

Our starting point is the Kondo-Kitaev lattice model with a
ferromagnetic Kitaev layer in which the S = 1/2 spins Si are

coupled to conduction electrons via the on-site antiferromag-
netic Heisenberg Kondo coupling. Within the framework of a
parton theory, the S = 1/2 spins can be represented as bilinear
forms of Abrikosov fermions, Si = 1

2 f †
iσ τσσ ′ fi,σ ′ , where τ =

(τ x, τ y, τ z ) are three Pauli matrices and the summation over
repeated spin indices σ is assumed. This representation en-
larges the Hilbert space and a local constraint

∑
σ f †

iσ fiσ = 1
has to be imposed to restore the physical Hilbert space of spin-
1/2’s. Within a self-consistent parton mean-field solution, a
hFL phase is realized in a large part of the phase diagram
[43,44] described by a quadratic Hamiltonian H0, which has
recently been shown to capture the essential aspects of the
graphene/α-RuCl3 electronic structure [45]. In momentum
space, it is expressed in terms of itinerant electrons cs,k,σ and
Abrikosov fermions fs,k,σ (s = 1, 2) as [44,45]

H0 =
∑
σ,k

⎛
⎜⎜⎜⎝

c1,k,σ

c2,k,σ

f1,k,σ

f2,k,σ

⎞
⎟⎟⎟⎠

†⎛
⎜⎜⎜⎜⎝

W tθ∗
k J/2 0

tθk W 0 J/2

J/2 0 0 Kθ∗
k

0 J/2 Kθk 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c1,k,σ

c2,k,σ

f1,k,σ

f2,k,σ

⎞
⎟⎟⎟⎠,

(1)

where θk = 1 + exp(ik · n1) + exp(ik · n2), t (K) is the band
parameter of c ( f ) fermions, J is the hybridization strength,
and W is the energy shift between the graphene Dirac cone of
c fermions and the Kitaev Dirac cone of f fermions. Note that
the low-energy scales K, J are set by the Kitaev and Kondo
exchange. Throughout this work, we consider the regime t �
K and t > J , where the Kitaev Dirac bands are almost flat. For
convenience, we also adapt the notation of c3(4),k,σ ≡ f1(2),k,σ .

The characteristic energy spectrum of H0 is shown in Fig. 1(a).
The hopping parameter is fixed as t = 2.6 eV to adapt the
slope of the graphene Dirac cone and the large energy shift
W ≈ 0.6 eV is in accordance with the charge transfer from
graphene to α-RuCl3 [41]. The Fermi energy (EF = 0) lies
with the two flat Kitaev Dirac bands.

We are interested in the interaction-induced fluctuations
on top of this effective electronic structure and, therefore,
concentrate on the following Hamiltonian,

Hhetero = H0 + H ( f )
U + H (c)

U + HC + HK, (2)

where the last four terms are quartic interaction terms. As
mentioned above, the Abrikosov fermions have a local single-
occupancy constraint which can be effectively imposed by an
on-site Hubbard term

H ( f )
U = Uf /2

∑
s,r,σ

( f †
s,r,σ fs,r,σ f †

s,r,−σ fs,r,−σ ),

where the convention that σ = 1 (−1) for spin ↑ (↓) has been
adapted. In practice, we will keep the on-site Hubbard Uf very
large but finite to enforce the constraint of f fermions. H (c)

U is
an additional Hubbard term for c fermions parametrized by
repulsive strength Uc. The fourth term, HC, is the Coulomb
interaction and reads

HC = 1

N

4∑
s,s′=1

∑
k,k′,p

∑
σ,σ ′

V

q
e−q·rss′

× (c†
s,k+q,σ

cs,k,σ c†
s′,k′−q,σ ′cs′,k′,σ ′ ),
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where N denotes the number of total sites, q ≡ |q|, and
rss′ = 0 [(n1 + n2)/3] if s and s′ are on the same (different)
sublattice(s). Finally, HK is the Kondo coupling of strength JK

between localized c and f fermions, which reads

HK = JK/4
∑
s,r

(c†
s,r,σ1

τσ1σ
′
1
cs,r,σ ′

1
) · ( f †

s,r,σ2
τσ2σ

′
2

fs,r,σ ′
2
).

We note that in principle, the hybridization strength J
and the Kondo coupling JK only differ by a renormalized
mean-field parameter [43–45], but here we treat JK as an
independent parameter to investigate its qualitative effect on
excitations.

III. PLASMONS WITHIN A RANDOM PHASE
APPROXIMATION

As a collective oscillating charge density mode, a plasmon
is described by the total response of the systems to external
potentials. Thus, it can be characterized by the total dynamical
charge correlation function defined as

P(q, ω) =
4∑

s,s′=1

∑
σσ ′

∫ β

0
dτeiωτ 〈Tτ ρsσ (q, τ )ρs′σ ′ (−q, 0)〉,

(3)

where ρsσ (q) = 1
N

∑
k c†

s,k,σ
cs,k+q,σ is the total density op-

erator (s = 1, . . . , 4). In order to account for all kinds of
interactions in Eq. (2), we define the bare dynamical charge
susceptibility tensor as

[χ0(q, ω)]s1s′
1

s2s′
2
= 1

N2

∑
kk′σσ ′

∫ β

0
dτeiωτ 〈Tτ c†

s1,k,σ
(τ )

× cs′
1,k+q,σ (τ )c†

s2,k
′,σ ′ (0)cs′

2,k
′−q,σ ′ (0)〉0, (4)

where 〈. . .〉0 is a canonical ensemble average with respect to
the bare Hamiltonian Eq. (1). Up to the zeroth order in inter-
actions, the bare charge correlation function reads P0(q, ω) =∑4

s,s′=1[χ0(q, ω)]ss
s′s′ . The interactions then need to be treated

self-consistently, leading to the following total dynamical
dielectric function ε(q, ω) = P(q, ω)/P0(q, ω) with plasmon
excitations given by the zeros of the energy loss function, e.g.,
the inverse of the imaginary part of ε(q, ω).

For analyzing the effect of the different interaction chan-
nels we treat the dynamical correlation functions within
the RPA. For graphene, this is well justified for q  kF

with kF the Fermi wave number. Plasmon dispersions are
determined by the zeros of the imaginary part of the RPA di-
electric function as εRPA(q, ω) = PRPA(q, ω)/P0(q, ω) where
PRPA(q, ω) ≡ ∑

ss′ [χRPA(q, ω)]ss
s′s′ . The RPA charge suscep-

tibility tensor χRPA(q, ω)]s1s2
s′

1s′
2

is obtained via a generalized
Dyson equation [46–48] given by

[χRPA]s1s′
1

s2s′
2
= [χ0]s1s′

1
s2s′

2
+ [χRPA]s1s′

1
uv [V l − V b]uv

xy [χ0]xy
s2s′

2
, (5)

where V b (V l ) is a vertex for bubble (ladder) diagrams
and repeated indices u, v, x, y are summed over. The Dyson
equation is schematically shown in Fig. 1(c). All the ten-
sors in Eq. (5) can be treated as matrices with row
index s1s′

1 and column index s2s′
2 and then the solu-

tion of Eq. (5) in matrix form is χRPA = χ0[1 − (V l −

V b)χ0]−1. The spin indices of the vertices V b(l ) vanish in
Eq. (5) because we have summed over all spin degrees
of freedom. The nonzero elements of the bubble contri-
bution are [V b]11(33)

11(33) = [V b]22(44)
22(44) = 4V

q + Uc(Uf ), [V b]11
33 =

[V b]22
44 = 4V

q , [V b]11
22(44) = [V b]33

22(44) = 4V
q e−q·(n1+n2 )/3 and we

have [V b]aa
cc = [V b]cc

aa. When calculating the ladder diagrams,
we ignore the contributions from q-dependent Coulomb
interactions which carry momentum-transfer processes. Con-
sequently, the remaining nonzero elements of the ladder
vertex read [V l ]13

31 = [V l ]31
13 = [V l ]24

42 = [V l ]42
24 = JK . Notice

that the contributions from on-site Hubbard repulsion Uc (Uf )
for ladder diagrams and from Kondo coupling JK for bubble
diagrams are zero after summing over all spin indices.

IV. NUMERICAL RESULTS

For a realistic graphene/α-RuCl3 system, we follow earlier
work [45] and fix W = 0.6 eV, t = 2.6 eV, and EF = 0 eV
to numerically compute χ (0) and χRPA. In general, we are
interested in collective excitations over the whole Brillouin
zone of the honeycomb model. The results of our calculations
are presented in Fig. 2 at zero temperature and for several
values of the different interaction parameters.

The graphene subsystem hosts three plasmon bands in-
duced by Coulomb interactions, e.g., one acoustic-like band
ω0 as well as two optical bands ω1 and ω2; see Fig. 2(a).
Similar plasmon dispersions in pure graphene systems have
been studied beyond the k · p approximation [21,49,50]. As
the graphene Dirac cone at μ = 0.6 eV is far away from the
Fermi energy, ω0 is dispersing as ∝ q rather than ∝ √

q at
lower frequencies and plunges into a p-h continuum at higher
frequencies. The two optical bands ω1 and ω2 are degenerate
at the K point and form a big crossing in the high-symmetry
direction �-K-M. ω2 hosts co-called π plasmons associated
with the van Hove singularity at the M point [19–21].

In addition to the three graphene plasmon bands, we find
a novel low-energy plasmon, ω3 ∼ J; see Fig. 2(a). Note that
for illustrative purposes, we have chosen a much larger value
of J ∼ 0.1 eV than determined in Ref. [45]. The flat plasmon
band originates from the flat electronic bands of the Kitaev
layer and barely changes as the interaction couplings vary.
However, a finite on-site repulsion Uf of the formerly Mott
insulating layer leads to two extra plasmon branches above
ω3, namely ω′

1 and ω′
2, forming a smaller and flatter crossing

in the �-K-M direction with an intersection at the K point,
as shown in Figs. 2(b) and 2(c). This flatter crossing at low
energies only depends on Uf . It is enlarged and pushed to
higher energy regions as Uf increases; see Fig. 2(c). Note
that for illustration purposes and imposing the local constraint
of Abrikosov fermions, we have used very large Hubbard
repulsion to demonstrate ω′

1 and ω′
2. These two bands do not

qualitatively change as Uf increases, and the higher order cor-
rections [51] must be considered to quantitatively determine
ω′

1 and ω′
2. Finally, we find that the main effect of moderate

Kondo and Hubbard interactions, JK and Uc, is to enhance the
signals of ω1 and ω3 [see Fig. 2(c)].

We note that there exists a temperature scale above which
a crossover from the hFL phase to the decoupled phase oc-
curs [44]. In the decoupled phase, the hybridization strength
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FIG. 2. The RPA energy loss function 1/Im[εRPA(q, ω)] on a log scale along the �-K-M direction for parameters J = 0.1 eV, K = 0.01 eV,
V = 6 eV, and (a) Uf = Uc = JK = 0 eV, (b) Uf = 120 eV, Uc = JK = 0 eV, and (c) Uf = 240 eV, Uc = JK = 3 eV. (d) 1/Im[εRPA(q, ω)] on
a log scale with finite sublattice-symmetry-breaking term of

∑
s(−1)s f †

s,k,σ
fs,k,σ for J = 0.1 eV, K = 0.01 eV, V = 3 eV, Uf = 120 eV, and

Uc = JK = 3 eV. For numerical purposes we set the damping constant δ ≈ 0.01 eV (see Appendix A).

renormalizes to zero and consequently the flat plasmon band
ω3 and the two emergent bands ω′

1 and ω′
2 all disappear. More

details about finite-temperature effects and disorder broaden-
ing can be found in Appendices A and B.

An experimentally important aspect so far not accounted
for in our minimal model is the lattice mismatch between the
two layers, which is expected to gap the flat Dirac cone of
the Kitaev layer around EF . This can be effectively mimicked
by introducing a τz term of

∑
s=1,2(−1)s f †

s,k,σ
fs,k,σ which

breaks the sublattice symmetry for the Kitaev layer. We find
that a finite and small τz term does not change our main
results. However, it pushes the flat plasmon band ω3 to higher
energy and opens a small gap at the flat crossing around the
K point; see Fig. 2(d). A similar effect on plasmons due to
a correlation-driven sublattice asymmetry has been discussed
recently in connection with TBG [30]. The sublattice asym-
metry endows the plasmons with a dipole moment which is
expected to lead to a stronger experimental response.

V. COMPARISON TO EXPERIMENT

In experiments, the scattering-scanning near-field optical
microscopy (s-SNOM) method [29,52–56] can be used to
measure the dispersions of collective charge modes, for ex-
ample, plasmons in (twisted bilayer) graphene [28,53,54,57].
In Ref. [34], the authors recently performed s-SNOM exper-
iments on the new graphene/α-RuCl3 heterostructures on a
SiO2/Si substrate encapsulated with hexagonal boron nitride
(hBN) and extracted the dispersions for plasmons. The experi-
mental data resolve two long-wavelength plasmon dispersions
shown as blue circles in Fig. 3: a lower branch in the region
of ω = 0.111 ∼ 0.136 eV and qa = 0.004 ∼ 0.0094 and an
upper branch spanning the region of ω = 0.171 ∼ 0.285 eV
and qa = 0.0018 ∼ 0.025. Here, a ≈ 0.25 nm is the lattice
constant of graphene. These two plasmon bands are separated
by a region of SiO2 and hBN phonons [34,58]. Therefore,
it was argued that the experimental response can be well
explained by the interplay of surface plasmon polaritons of
doped graphene and the hyperbolic phonon polaritons in hBN
[58–60]. However, the unusually large damping measured for
these modes was an indication of potential correlation effects
from the α-RuCl3 layer [34].

Alternatively, we can compare our flat and correlated plas-
mon bands of the correlation-driven hFL phase with the
experimental data on the graphene/α-RuCl3 interface [34].
Since we are now interested in the long-wavelength limit

with q  kF , we expand the terms of θK+k in Eq. (1) around
momentum K to obtain a k · p Hamiltonian H̃0. The plasmon
bands ω0, ω3, and ω′

1 from H̃0 are shown in Fig. 3. It turns out
that ω0 is gapped at q = 0 which differs from the usual Dirac
plasmons and ω3 merges with ω′

1 around the momentum point
where ω0 becomes damped. Notice that ω3 is not an exactly
flat band at large q anymore but has a finite slope due to the
k · p approximation. In the inset panel of Fig. 3, we compare
our dispersion with the experimental measurements. Intrigu-
ingly, it reproduces the available data for the upper plasmon
band with ω0, and the other lower band roughly matches the
tail of the ω3 and/or ω′

1 branch originating from the correlated
Kitaev layer.

VI. DISCUSSION AND SUMMARY

We have analyzed the charge response of
graphene/α-RuCl3 heterostructures within a minimal model.
At low temperatures, the Kondo-Kitaev lattice leads to a
peculiar electronic structure of a hFL with the formerly
fractionalized excitations of the correlated Kitaev layer
hybridized with the Dirac electrons. Within an RPA treatment,
we investigated the effect of various interactions on the
dynamical charge susceptibility, e.g., Coulomb interaction,
on-site Hubbard repulsion for both layers, and interlayer
Kondo coupling. We found a novel low-energy branch of

FIG. 3. The imaginary part of the inverse RPA dielectric func-
tions 1/Im[εRPA(q, ω)] of the linearized Hamiltonian in a log scale
with K = 0.05 eV, J = 0.12 eV, V = 3 eV, Uc = JK = 1 eV, and
Uf = 20 eV. Inset: Comparison of the plasmon dispersions from
experimental data (blue circles) and the linearized low energy model
Eq. (2). The model parameters are the same as those in the main plot.
The experimental data are collected from Fig. 2 in Ref. [34].
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FIG. 4. The energy loss function (the imaginary part of the inverse dielectric function) 1/Im[εRPA(q, ω)] on a log scale along the �-K-M
direction for parameters of J = 0.1 eV, K = 0.1 eV, V = 6 eV, Uc = JK = 0 eV, and Uf = 20 eV with variant damping constants δ.

flat plasmon bands over the entire Brillouin zone which
originates from the Kitaev layer. A large Hubbard repulsion
which is generically expected because of the Mott insulating
nature of the α-RuCl3 film leads to two correlated optical
plasmon branches above the flat plasmon band which look
like a zoomed-out version of two optical plasmon bands of
the doped graphene layer at much higher energy.

From a linearized Hamiltonian, we examined the plas-
mons in the low-energy limit with q  kF and argue that
our theory is consistent with the recent experimental data
on graphene/α-RuCl3 heterostructures [34]. It would be de-
sirable to extend the experimental measurements to larger
momenta which could directly verify our predictions of flat
and correlated plasmon bands with the potential to shed new
light on the proximate QSL of α-RuCl3. Similarly, we expect
that signatures of the hFL will be visible in scanning tunneling
microscopy and photoemission spectroscopy.

In general, we showed that the collective charge response
provides a direct probe of correlation effects in heterostruc-
tures, e.g., for understanding the interplay of fractionalized
excitations and itinerant electrons. We expect our theory to
be applicable in other systems like Bi2Se3 grown on α-RuCl3

[61], the Dirac hFL of graphene intercalated with cerium [62],
or in quantum many-body phases of TBG.
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APPENDIX A: DISORDER EFFECTS AND DAMPING
CONSTANTS

In graphene/α-RuCl3 heterostructures, the disorder in-
duced by, for instance, impurities and crystal defects are
inevitable. This disorder effect usually will impact the life-
time of plasmon excitations. Here, we discuss the qualitative
impact of disorder which will effectively result in a very
large damping constant δ when calculating the bare charge
susceptibility tensor χ0(q, ω) which explicitly reads

[χ (0)(q, ω)]s1s′
1

s2s′
2
= − 2

N
∑
kμν

n f (ωμ,k) − n f (ων,k+q)

ωμ,k − ων,k+q + ω + iδ

× [U ∗
μ,k]s1 [Uν,k+q]s′

1
[U ∗

ν,k+q]s2 [Uμ,k]s′
2
.

(A1)

Here n f is the Fermi function, ωμ,k is the energy of the μth
band of quadratic Hamiltonian H0 defined in the main text,
and Uμ,k is the four-component eigenvector associated with
energy ωμ,k. In Fig. 4, we plot the energy loss functions for
different damping constants δ. In the main text, we usually
set the damping constant δ ≈ 0.01 eV. As we can see, a
moderately large damping constant of δ = 0.15 eV broadens
the peak of the energy loss function 1/Im[εRPA(q, ω)], i.e.,
weakening the signals of plasmon excitations. Crucially, the
low-energy plasmons will be totally eliminated for strong
disorder as shown via a large damping constant of δ ≈ 2 eV,
for example.

APPENDIX B: FINITE-TEMPERATURE EFFECTS

There are two qualitatively different effects of increas-
ing temperature. First and most importantly, the finite-
temperature effect may destroy the heavy-Fermi-liquid phase,
i.e., the quadratic Hamiltonian H0 in the main text with its
effective hybridization which allows coupling to the insulating
layer. There exists a temperature scale β∗ ≈ 4 eV−1 above
which a crossover (manifest as a phase transition in the mean-
field treatment) from the heavy-Fermi-liquid phase to the
decoupled phase occurs. Notice that the transition temperature
β∗ is just a rough estimate and more details can be found in

FIG. 5. The energy loss function (the imaginary part of the in-
verse dielectric function) 1/Im[εRPA(q, ω)] on a log scale along
the �-K-M direction for parameters of J = 0.1 eV, K = 0.1 eV,
V = 6 eV, Uc = JK = 0 eV, and Uf = 20 eV with different
temperatures β.
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Ref. [44]. In the decoupled phase, the interlayer hybridiza-
tion strength is effectively J = 0 and consequently, the flat
plasmon band ω3 and the other two emergent bands ω′

1 and
ω′

2 disappear. Second, within the heavy-Fermi-liquid phase,
increasing temperature will lead to the standard broadening
effects from the smearing of the Fermi function. The plasmon
bands for different temperatures are shown in Fig. 5, where we

have assumed that the interlayer hybridization strength J does
not change a lot as a function of temperature within the heavy-
Fermi-liquid phase. We find that finite temperature does not
have a significant effect on the plasmon excitations. The flat
plasmon band ω3 is still observable for β > 4 eV−1, whereas
the emergent two plasmon bands ω′

1 and ω′
2 will gradually

disappear around the critical temperature β∗ ≈ 4 eV−1.
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