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Magnons and phonons are two fundamental neutral excitations of magnetically ordered materials which can
significantly dominate the low-energy thermal properties. In this work we study the interplay of magnons and
phonons in honeycomb and kagome lattices. When the mirror reflection with respect to the magnetic ordering
direction is broken, the symmetry-allowed in-plane Dzyaloshinskii-Moriya (DM) interaction will couple the
magnons to the phonons and the magnon-polaron states are formed. Besides, both lattice structures also allow
for an out-of-plane DM interaction rendering the uncoupled magnons to be topological. Our aim is to study
the interplay of such topological magnons with phonons. We show that the hybridization between magnons
and phonons can significantly redistribute the Berry curvature among the bands. Especially, we found that the
topological magnon band becomes trivial while the hybridized states at lower energy acquire Berry curvature
strongly peaked near the avoided crossings. As such the thermal Hall conductivity of topological magnons shows
significant changes due to coupling to the phonons.
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I. INTRODUCTION

The notion of band topology has become ubiquitous in
condensed matter systems such as band insulators [1,2] and
superconductors [3] in two- and three-dimensional spaces,
Weyl and Dirac semimetals [4,5], photons [6–8], magnons
[9,10], phonons [11–14], plasmons [15,16], and even in clas-
sical systems [17–19]. In another frontier, attempts are put
forward to induce topological phases by proper combina-
tions of otherwise trivial states. Famous examples include the
Floquet topological insulators, where a periodically driven
electronic system by light becomes topologically nontrivial
[20], and topological polaritonic states emerge from the in-
teraction of single photons with excitons [21]. Recently, in
a work by one of the authors, it is shown that a proper hy-
bridization of spin and plasma waves gives rise to topological
collective modes [22].

Magnons and phonons are two fundamental collective ex-
citations in solids. Magnons are quanta of collective spin
waves in magnetically ordered solids, and phonons describe
the elastic modes of a solid. The topological properties
of magnons and phonons have been extensively studied.
Both excitations have neutral charge and usually the ther-
mal Hall conductivity measurements are used to probe the
possible nontrivial dynamics of thermal carriers. The ex-
perimental observation of magnon mediated thermal Hall
response in ordered magnet Lu2V2O7 [23], planar kagome
magnet Cu(1,3-benzenedicarboxylate) [24], and in metallic
ferromagnetic kagome YMn6Sn6 [25] can be understood us-
ing the notion of topological magnons [9]. The topological
magnons have been studied in three-dimensional structures
[26,27], honeycomb [28] and kagome [29,30] lattices, and in
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pyrochlore thin films [31]. The phonon Hall effect has been
observed in the paramagnetic dielectric Tb3Ga5O12 [11,32],
and the phenomenon is associated with magnetic ions coupled
to lattice vibrations [33–36]. Also, the anomalous thermal
Hall response in the frustrated magnet Tb2Ti2O7 [37] is at-
tributed to phonons [38].

On the other hand, and besides the applications in
magnon spintronics [39], the interaction between magnons
and phonons may also lead to thermal Hall effect. In Ref. [40]
it is shown that the interaction between magnons and acoustic
phonons induces the Berry curvature which can modify the
dynamics of the wave packets. Using a spin-phonon model on
the square lattice, the in-plane Dzyaloshinskii-Moriya (DM)
interaction, resulting from the mirror symmetry breaking,
hybridizes the magnons and phonons. The generated Berry
curvature at the crossings of magnon and phonon energy
bands induces the thermal Hall conductivity [41–43], while in
the absence of interaction neither magnons nor phonons carry
thermal Hall response.

In this work we study spin systems coupled to phonons
in the honeycomb and kagome lattices. The spin models on
these lattices, when endowed with proper DM interactions,
allow for realization of topological magnons. While in previ-
ous works both bosonic modes are trivial, we designate the
spin model to yield topological magnons, yet the phonons
are trivial in the absence of interaction between them. We
ask the following questions: (i) how does the nontrivial band
topology of magnons influence the phonons? (ii) how does
the Berry curvature redistribute among the hybridized energy
bands? and (iii) how does the latter hybridization, resulting
in magnon-polaron excitations, reflect in the thermal Hall
conductivity of magnons due to coupling to trivial phonons?
For comparison, on the honeycomb lattice we also compute
the thermal Hall conductivity of hybridized modes otherwise
being trivial when decoupled. For the case of the honeycomb
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FIG. 1. A schematic of honeycomb (left) and regular kagome
(right) lattices studied in this work. Primitive lattice vectors a1 and a2

are shown by dashed arrows. Double arrows indicate the directions
of the in-plane Dzyaloshinskii-Moriya vector D‖ on nearest neighbor
bonds. In the middle top, the Brillouin zone is shown with high
symmetry points indicated.

lattice, the coupling of topological magnons to phonons has
also been studied in Ref. [44], where the spin is coupled
to out-of-plane displacements [45,46]. In our model sys-
tems, however, we couple the spin fluctuations to in-plane
displacements through the DM interaction which could be
more relevant in two-dimensional and layered materials. The
observation of giant thermal magnetoconductivity in the lay-
ered compound CrCl3, an insulating magnet with underlying
honeycomb lattice, indicates that the phonons and their scat-
tering from the magnons play an important role [47]. In
cubic antiferromagnetic compound Cu3TeO6, whose magnon
excitations are shown to be topological [48,49], the inelastic
neutron scattering provides compelling evidence of magnon-
phonon coupling [50]. The same measurements on hexagonal
multiferroic YMnO3 reveal a gap opening below the order-
ing temperature rendering low-energy excitations with strong
coupling between magnons and phonons [51]. The hybridiza-
tion of magnons with phonons in the topological semimetal
Mn3Ge, a breathing kagome antiferromagnet, has been em-
ployed to understand the neutron scattering measurements
[52,53]. Also, the optically excited magnon-phonon hybrid
excitations has also been reported in nanograting galfenol
Fe0.81Ga0.19 [54].

Therefore, the above observations call for a deep in-
vestigation of magnon-phonon couplings and their impacts
on physical properties. Especially, we aim at studying
the topological contents of magnon-polaron excitations on
the honeycomb and kagome lattices. After introducing the
magnon-phonon model, we elaborate on the questions posed
above. In particular, we derive an effective model describing
the hybridization between magnons and phonons and the en-
hancement of Berry curvature in the vicinity of the avoided
crossings. We show that the Berry curvature of high-energy
magnons are redistributed to low-energy hybrid bands. As
such the intrinsically magnon-mediated thermal Hall conduc-
tivity substantially changes upon coupling to phonons. For
the kagome lattice, in addition to the regular lattice shown in
Fig. 1, we also consider a distorted lattice obtained by solid
twistings of the unit cells [see Fig. 8(a)] and study the cou-
pling to the magnons. The twisting results from the particular

structure of the short-range inter-ion potential energy on the
kagome lattice.

The paper is organized as follows. In Sec. II we derive
the magnon-phonon Hamiltonian on the honeycomb lattice
and study the magnetoelastic spectrum, the Berry curvature of
energy bands, and the thermal Hall response in Sec. III. The
case of kagome lattice is studied in Sec. IV, and we conclude
in Sec. V. Some details of derivation of Hamiltonians are
relegated to Appendices.

II. HYBRID MAGNON-PHONON MODEL: THE
HONEYCOMB LATTICE

We begin our discussion of hybrid modes by considering
the following Hamiltonian:

H = Hm + Hph + Hc. (1)

In this model Hm describes the magnetic Hamiltonian, Hph

gives the phonon dynamics and vibrational modes of the sys-
tems, and the last term Hc accounts for the coupling between
magnetic excitations and phonons. In subsections below we
will describe each Hamiltonian, separately.

A. Magnetic Hamiltonian

The magnetic Hamiltonian consists of magnetic interac-
tions between localized magnetic ions residing on the vertices
of the honeycomb lattice shown in Fig. 1:

Hm = −
∑
i, j

Ji jSi · S j +
∑
〈〈i, j〉〉

Di j · (Si × S j ), (2)

where the first sum runs over nearest and next-nearest neigh-
bor sites with exchange interactions J and J ′, respectively.
We assume that J, J ′ > 0, implying a collinear ferromagnetic
classical ground state below the transition temperature. The
second term between next-nearest neighbors is the antisym-
metric Dzyaloshinskii-Moriya (DM) interaction specified as
Di j = νi jDẑ with νi j = ±, depending on right (+) or left (−)
turning of site j with respect to site i.

The low-energy magnetic excitations, the magnons, are
readily described using the Holstein-Primakoff transformation
of spins to bosons,

S+
i =

√
2S − b†

i bi bi, S−
i = (S+

i )†, Sz
i = S − b†

i bi, (3)

where S±
i are raising and lowering spin operators, and bi’s are

the bosonic operators [bi, b†
j] = δi j . Within the linear spin-

wave approximation, S+
i ≈ √

2S bi and S−
i ≈ √

2S b†
i . The

magnon description reads as [55]

Hm = −Jn

∑
〈i, j〉

b†
i b j − Js

∑
〈〈i, j〉〉

e−iφi j b†
i b j + H.c., (4)

where Jn = JS, Js = S
√

J ′2 + D2, and φi j = νi j tan−1(D/J ′).
Without loss of generality and for sake of simplicity we as-
sume J ′ → 0 yielding φi j = πνi j/2. In momentum space the
magnon Hamiltonian becomes

Hm =
∑

k

b†
kHm(k)bk, (5)
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where bk = (bkA, bkB)T is the vector of boson operators act-
ing on sublattices A and B of the honeycomb lattice. The
magnon energy dispersion is given by eigenvalues of the
Bloch Hamiltonian Hm(k) = h0(k)1 + h(k) · σ with σ as vec-
tor of Pauli matrices, and

hx(k) + ihy(k) = −Jn f (k), f (k) = 1 + e−ik·a1 + e−ik·a2 ,

(6)

hz(k) = 2Js[sin k · a1 − sin k · a2 − sin k · (a1 − a2)], (7)

h0(k) = 3Jn. (8)

Note that the classical ferromagnetic ordering has to be
stabilized by adding either an on-site anisotropic interaction
[41] or a small magnetic field to the magnetic Hamiltonian.
In the latter case the only change in the above expressions
is h0(k) = 3Jn + BS, where B is the magnetic field. Such a
small field however does not affect the results significantly
and we drop it out for simplicity. The magnon band structure
has been extensively studied in the literature. In the absence
of DM interaction the magnon energy bands cross each other
at the corner of BZ, forming Dirac dispersions, like the elec-
tron energy bands in graphene, where f (K±) = 0. The DM
interaction adds phase winding to magnons via e−iφi j in the
nearest-neighbor hoppings. This is a bosonic analog of the
famous Haldane model [55,56]. A topological gap is opened
at the Dirac nodes and the energy bands are characterized by
integer Chern numbers c = ±1.

B. Phonon Hamiltonian

For a magnetic insulator, besides magnons described
above, the vibrational modes also contribute to the low-energy
properties of the system. The first quantized Hamiltonian de-
scribing the ionic motions is

Hph =
∑

i

p2
i

2M
+

∑
i, j

V (Ri, j ), (9)

where the first term is the kinetic energy with M as the ion
mass, and the second term accounts for the inter-ion potential
energy. Here Ri, j = Ri − R j is a spatial vector connecting
ions. To describe the phonons we consider slight deviations
from equilibrium positions, i.e., Ri = R0

i + ui, where R0
i de-

notes the equilibrium positions of ions. Up to first nonzero
terms in the expansion of potential, we obtain

V
(
R0

i j + ui − u j
) ≈ V

(
R0

i j

) + 1

2

∑
αβ

uα
i j

∂2V

∂uα
i ∂uβ

j

uβ
i j, (10)

where α, β = x, y and uα
i j = uα

i − uα
j . Note that we ignored

the out-of-plane vibrations as they constitute energy modes
higher than the in-plane modes. For our purposes in this work,
we restrict the potential energy in (10) to only first and second
neighbors. Moreover, we consider the linear deviations along
the bonds. Hence, we get

Hph =
∑

i

p2
i

2M
+ 1

2
M

∑
i, j

	2
i j

[
(ui − u j ) · R̂0

i j

]2
, (11)

where 	<i j> = 	 and 	〈〈i j〉〉 = 	′ are the bond vibrational
frequencies of the first and second neighbors, respectively.
Here R̂0

i j = R0
i j/||R0

i j || is the unit vector.
It is instructive to make the momentum and position

operators dimensionless by defining p̃ = √
1/M	h̄p and

ũ = √
M	/h̄u with the commutation relation as [ũα, p̃β ] =

iδαβ . With this change of variables, the phonon Hamiltonian
becomes

Hph = 1

2
h̄	

{∑
i

p̃2
i +

∑
i j

ξi j
[
(ũi − ũ j ) · R̂0

i j

]2

}
, (12)

where ξ〈i j〉 = 1 and ξ〈〈i j〉〉 = ξ ′ = 	′2/	2. Fourier trans-
formed to momentum space, the phonon Hamiltonian
reads as

Hph = 1

2

∑
k

φt
−kH̃ph(k)φk, (13)

where φk = (ux
kA, uy

kA, ux
kB, uy

kB, px
−kA, py

−kA, px
−kB, py

−kB)t .
Note that, hereafter with the abuse of notation, we drop
the tilde from the dimensionless position and momentum
variables. Then H̃ (k) reads as

H̃ph(k) = h̄	

(
V (k) 04×4

04×4 14×4

)
, (14)

with 04×4 and 14×4 as zero and identity matrices. The ma-
trix V (k) = [Vnn(k) + ξ ′Vnnn(k)]/2 contains the first Vnn and
second Vnnn neighbor potential terms between ions. The first
neighbor terms are

Vnn(k) = V10 + V11e−ik·a1 + V12e−ik·a2 + H.c., (15)

Vnnn(k) =V20 + V21e−ik·a1 + V22e−ik·a2

+ V23e−ik·(a1−a2 ) + H.c., (16)

where V10, . . . ,V23 are 4 × 4 matrices and are given in Ap-
pendix A. To obtain the energy spectrum of phonons one
may use the equation of motion for field operator φk [41],
ih̄∂tφk = [φk, Hph], yielding

ih̄∂tφk = ηphH̃ph(k)φk, (17)

where ηph = [φk, φ
†
k] = −σ y ⊗ 14×4. Therefore, the positive

energy eigenvalues of ηphH̃ph(k) will give the energy bands
of phonon. Alternatively, one may unitarily transform the
phonon Hamiltonian in (13) to bosonic creation and annihi-
lation operators of phonons using uα

ks = (ak,αs + a†
−k,αs)/

√
2

and pα
ks = −i(ak,αs − a†

−k,αs)/
√

2, where s = A, B is the sub-
lattice index, and a and a† are, respectively, the phonon
annihilation and creation operators. A paraunitary transfor-
mation is then used to Bogoliubov diagonalize the obtained
bosonic Hamiltonian in particle and hole spaces.

C. Magnon-phonon coupling

We now derive the last term in (1) describing the hybridiza-
tion between magnon and phonon modes. To couple them,
the spatial dependency of magnetic exchange interactions to
the instant position of magnetic ions is taken into account.
In writing down the magnetic Hamiltonian in (2), we could,
in principle, assume that the exchange Ji j (Ri j ) and also the
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DM interaction D(Ri j ) depend on the separation between
ions even when they are out of equilibrium positions. The
exchanges Ji j is expanded as

Ji j (Ri j ) ≈ Ji j
(
R0

i j

) +
∑

α

∂Ji j

∂Rα
i j

∣∣∣∣
R0

i j

(
uα

i − uα
j

)
. (18)

The second term depends on the vibrations of ions. How-
ever, when combined with spin exchange interaction terms
Si · S j , they generate higher order bosonic couplings such as
ab†b, falling out of linear spin-wave theory used here. There-
fore, we ignore such couplings and, as discussed in Sec. II A,
the magnetic exchange interactions J and J ′ are assumed to
have the same values as in equilibrium.

The DM interaction could in general have both out-
of-plane and in-plane components, D(Ri j ) = Dz(Ri j )ẑ +
D‖(Ri j ), with ẑ · D‖(Ri j ) = 0. The direction of DM vector
is restricted by lattice symmetry [57,58]. For exchange path
between second neighbors on the honeycomb lattice, the
out-of-plane component Dz(Ri j )ẑ is allowed by symmetry as
this path is locally asymmetric. On the honeycomb lattice as
shown in Fig. 1, for the path between A sites, site B is located
on the left or right of the paths along the a1 and a2, respec-
tively. Therefore, this exchange component naturally occurs
in honeycomb lattice. However, and in parallel arguments
made above for Ji j , the expansion of Dz(Ri j ) in displacements
will generate higher-order interactions between magnons and
phonons. Thus, we only consider the equilibrium distribu-
tion of Dz(R0

i j ). Also note that for a pristine honeycomb
lattice the first neighbor bonds are symmetric and therefore
the Dz(Ri j )ẑ is identically zero. However, upon breaking the
mirror symmetry with respect to the plane, say by growing the
2D honeycomb lattice on a substrate, an in-plane component
arises. That is D‖(Ri j ) = −D‖(Ri j )ẑ × R̂i j . In Fig. 1 the direc-
tions of D‖ on first neighbor bonds are shown. Note that the
latter vector will not affect the magnon spectrum within the
linear spin wave theory, as considered in Eq. (2). For example,
let us consider Dx(Si × S j )x. Up to first order in magnon
operators, Dx(Sx

i Sz
j − Sz

i Sx
j ) ∝ (bi + b†

i − b j − b†
j ), and thus it

vanishes by sum over all sites.
We shall however argue that the spatial dependency of

D‖(Ri j ) will generate magnon-phonon coupling [41]. Doing
so, let us write the spin operators as Si = Sẑ + δSi, where the
first term is the magnetic ordering of the classical ground state
and δSi describes the fluctuations around it. The in-plane DM
interaction is then cast into

D‖(Ri j ) · (Si × S j ) = D‖(Ri j )S(δSi − δS j ) · R̂i j . (19)

Coupling to phonons arises by expanding D‖(Ri j ) in its
argument, Ri j = R0

i j + ui − u j , around equilibrium positions
up to first order in displacements. We also expand the unit
vector R̂i j to the same order. The magnon-phonon coupling
Hamiltonian reads as [41]

Hc =
∑
〈i j〉

(
uα

i − uβ
j

)
T αβ

i j

(
δSα

i − δSβ
j

)
, (20)

where

T αβ
i j = D‖S

R

[
δαβ − (1 + γ )R̂0α

i j R̂0β
i j

]
, (21)

with D‖ = D‖(R0
i j ) and γ = −(dD‖/dR)(R/D‖). In momen-

tum space the coupling Hamiltonian (20) takes the following
form:

Hc =
∑

k

φ
†
ph(k)Hc(k)φm(k), (22)

where φph(k) = (ux
kA, uy

kA, ux
kB, uy

kB)t and φm(k) =
(δSx

kA, δSy
−kA, δSx

kB, δSy
−kB)t group the displacements’

and magnetic fluctuations’ fields. Note that in terms of
magnon operators δSx

k = √
S/2(bk + b†

−k ) and δSy
−k =

−i
√

S/2(bk − b†
−k ). The coupling Hc(k) is written as

Hc(k) =
(

Tk=0 −Tk
−T−k Tk=0

)
. (23)

Here the entities are matrices in sublattice basis: Tk = T0 +
T1e−ik·a1 + T2e−ik·a2 , where

T0 = ζSD‖

(
1 0
0 −γ

)
,

T1 = ζSD‖
4

(
1 − 3γ −√

3(1 + γ )
−√

3(1 + γ ) 3 − γ

)
,

T2 = ζSD‖
4

(
1 − 3γ

√
3(1 + γ )√

3(1 + γ ) 3 − γ

)
, (24)

where ζ = (1/R)
√

h̄/2M	 is a dimensionless quantity and
we set γ = 0 for simplicity. By a proper choices of parameters
relevant to materials, ζ � 0.1. Now we can write the total
Hamiltonian in (1) as

H = 1

2

∑
k

ψ̃
†
kH̃ (k)ψ̃k, (25)

where ψ̃k = (δSx
kA, δSy

−kA, δSx
kB, δSy

−kB, ux
kA, uy

kA, ux
kB, uy

kB,

px
−kA, py

−kA, px
−kB, py

−kB)t and

H̃ (k) =
(

H̃m(k) H̃c(k)
H̃†

c (k) H̃ph(k)

)
. (26)

Here H̃m(k) is obtained from (5) by adding a hole space to
the particle space, i.e.,

H̃m(k) =
(

Hm(k) 02×2

02×2 HT
m (−k)

)
(27)

and

H̃c(k) = (H†
c (k) 04×4). (28)

The Bloch Hamiltonian H̃ (k) in (25) yields a full account
of band structure of the hybrid magnon-phonon modes, and
the effects of magnetoelasticity on the energy bands and the
transport properties can be readily studied. The energy bands
are obtained by diagonalizing η̃H̃ (k) with η̃ = [ψk, ψ

†
k ], the

positive eigenvalues yield the energies and the negative ones
are redundant.

III. MAGNETOELASTIC SPECTRUM AND BERRY
CURVATURE: THE HONEYCOMB LATTICE

A. Energy bands

The band structure of the honeycomb model (25) along
the high-symmetry lines of the Brillouin zone is shown in
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FIG. 2. (a) Energy bands of magnons (solid red lines) and
phonons (solid blue lines) in the absence of in-plane DM interaction.
The magnons energy bands are gapped due to out-of-plane DM inter-
action Dz endowing them with nontrivial band topology. The in-plane
vibrational modes of two ions lead to four phonon branches: trans-
verse acoustic (TA), longitudinal acoustic (LA), transverse optical
(TO), and longitudinal optical (LO). (b) The hybridized magnon-
phonon energy bands in the presence of in-plane DM interaction D‖.
The inset indicates an avoided crossing between the magnon (red)
and phonons (blue) along �-M direction. The parameters are J =
2 meV, Dz = 0.1 meV, D‖ = 0.5 meV, h̄	 = 5 meV, h̄	′ = 2 meV.

Fig. 2. In the absence of magnon-phonon coupling the phonon
dispersion is depicted by solid blue lines and the magnon dis-
persion by solid red lines as shown in Fig. 2(a). As explained
in Sec. II A, the latter bands are topologically nontrivial char-
acterized by nonzero Chern numbers c = ±1. The phonon
spectrum consists of four energy bands, two acoustic and two
optical modes being consistent with having two sublattices
and x, y displacements of each magnetic ion. In the absence of
second neighbor ionic interactions 	′ = 0 in (12), the trans-
verse acoustic (TA) mode becomes completely flat with zero
energy over the entire BZ. Also, the transverse optical (TO)
branch becomes flat but at finite energy corresponding to the
frequency 	. The former TA branch form a set of deformation
modes of zero energy, the so-called floppy modes, due to
small coordination number below the isostatic point [59]. The
number of zero modes are consistent with Maxwell criterion.
According to this criterion, for a d-dimensional lattice with N
sites and coordination z < 2d , the number of zero modes is
N0 = dN − 1

2 zN giving rise to N0 = 1
2 N for the honeycomb

lattice. This is equal to the number of unit cells, i.e., the
number of k points in BZ. Of this huge set of zero modes, two
modes are trivial associated with the rigid translations and the
remaining modes are internal floppy modes [59]. Therefore,
by adding the second neighbor interactions, i.e., by increasing
the coordination number, the zero deformation modes become
dispersive and acquire finite energy. Hence, the lattice be-
comes an elastic solid and the mechanical stability is achieved.
We shall derive an effective description of low-energy bands
where the dependency on 	′ becomes manifest.

In Fig. 2(b) we show the energy bands in the presence of
in-plane DM interaction D‖. For the parameters chosen, the
magnon bands are hybridized with the phonons significantly.
The lower magnon band only crosses the TA branch [40]. At
crossings, the DM interaction hybridizes the bands causes en-
ergy splitting. For the lowest bands along the �-M direction,
the avoided crossing is shown in the inset. It is clearly seen
that the wave function contents of the bands change from
purely magnons to phonons and vice versa. We will show

that such avoided crossings generate a new Berry curvature
in addition to the intrinsic Berry curvature of magnons bands.

In order to understand the band hybridization in the vicin-
ity of avoided crossings, we develop an effective model of
magnon-phonon hybridization. For sake of simplicity we con-
sider the crossing along the �-M direction as shown in the
inset of Fig. 2(b). In the coordinate system describing the
ion vibrations in the x-y plane (ux − uy vibrations), of all
symmetry related �-M directions, we choose the one along the
y axis. Therefore, the transverse modes will have vibrations
along the x axis. In this restricted subspace the inter-ionic
interaction reads

VT = 1

2

∑
k

{
[3M	2 + 2M	′2(1 − cos k)]

× (
ux

−kAux
kA + ux

−kBux
kB

)
− 3M	2(e−ikux

−kAux
kB + eikux

−kBux
kA

)}
. (29)

Using the following transformation to transverse modes:

uTA(k) = 1√
2

(
eikux

kA + ux
kB

)
,

uTO(k) = 1√
2

( − eikux
kA + ux

kB

)
, (30)

the phonon Hamiltonian including the interaction (29) be-
comes

Hph,T = 1

2M

∑
k

[|pTA(k)|2 + |pTO(k)|2]

+ M

2

∑
k

[
	2

TA(k)|uTA(k)|2 + 	2
TO(k)|uTO(k)|2],

(31)

where we define the acoustic and optical dispersion frequen-
cies as

	TA(k) = 	′[1 − cos k]1/2, (32)

	TO(k) = 	[3 + ξ ′2(1 − cos k)]1/2. (33)

The transverse phonons become dispersionless for 	′ = 0
(ξ ′ = 	′/	 = 0). In particular, the dispersion vanishes for
the TA branch, implying that a second neighbor inter-ion
potential energy is required to have a stable lattice. Since
we are interested in low-energy part of the spectrum, be-
low we only consider the TA modes in (31). Changing
the displacement and momentum to dimensionless variables
uTA(k) = √

h̄/M	TA(k)uk and pTA(k) = √
h̄M	TA(k)pk and

using the transformation uk = (ak + a†
−k )/

√
2 and pk =

(ak − a†
−k )/

√
2i, the transverse phonon Hamiltonian can be

written as

Hph,T =
∑

k

εph,k

(
a†

kak + 1

2

)
, (34)

where εph,k = h̄	TA(k).
The lower magnon band is described by the following

Hamiltonian:

Hm,l =
∑

k

εm,kb†
k,−bk,−, (35)
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FIG. 3. Main panel: Energy bands of effective magnon-phonon
model in (40), around the avoided crossing, along the �-M direction.
The blue and red dashed lines are energy dispersion of phonons εph,k

and magnons εm,k , respectively, in the absence of hybridization �k

(i.e., D‖ = 0). The crossing is avoided with in-plane DM interaction
shown by thick lines. Inset: Berry curvatures of hybridized bands
along the same direction. The color spectrum and the parameters are
the same as in Fig. 2.

where εm(k) = 3SJ − JS| f (k)| is the magnon dispersion with
f (k) = 1 + 2e−ik = | f (k)|e−iθk , and magnon creation (anni-
hilation) operators b†

k,− (bk,−) describes the projection to the
lowest magnon band indicated by subindex “−”. In the fol-
lowing we drop the subindex and identify bk ≡ bk,−. Finally,
by projecting the magnon-phonon coupling Hamiltonian (23)
to lowest bands, we obtain

Hc,l =
∑

k

gkuTA(−k)(bk + b†
−k ), (36)

where

gk = 1

2
√

2

SD‖
R

(1 − eik )(1 − e−iθk ). (37)

Using (34)–(36), the low-energy modes are described by
the following effective Hamiltonian:

Heff = 1

2

∑
k

ϕ
†
k Heff(k)ϕk . (38)

Here the boson creation and annihilation operators are
grouped in ϕk = (ak, bk, a†

−k, b†
−k )t , and

Heff(k) =
(

hk Mk

M†
k ht

−k

)
, (39)

where

hk =
(

εph,k �k

�−k εm,k

)
, Mk =

(
0 �k

�−k 0

)
. (40)

The magnon-phonon band hybridization is given by �k:

�k = ζgk

(1 − cos k)1/4
, (41)

where ζ = (1/R)
√

h̄/2M	′ is a dimensionless parame-
ter. In Fig. 3 we plot the energy spectrum of effective
Hamiltonian (39). Besides the hybridized energy bands, we

also depict the bare energy bands in the absence of hybridiza-
tion �k shown by dashed lines. The spectrum demonstrates
that the effective model (39) readily reproduces the spectrum
shown in the inset of Fig. 2, where we used the full Hamil-
tonian (26). We also found that if the particle-hole coupling
matrix Mk is manually set to zero, i.e., we neglect the product
of two creation and annihilation operators, the spectrum of
Heff(k) is continuously connected to spectrum generated by
two-band model hk in Eq. (40) without gap closing; the Mk

just changes the values of energies slightly. Therefore, we
assert that the hybridization of magnon and phonons can be
described by hk and the splitting is triggered off by �k in
(41). The color density indicates the weights of magnons and
phonons in the wave functions. Moving along one of the bands
the hybridization �k winds the wave function from magnons
to phonons and vice versa.

B. Berry curvature of hybridized bands

As discussed in Sec. II A, the pure magnon bands are
topologically nontrivial characterized by Chern number c =
−1 for the lower band and c = +1 for the higher band,
respectively. The pure phonon bands, on the other hand,
are topologically trivial. We show that the avoided crossings
caused by the in-plane DM interaction endows the hybridized
bands with nonzero Berry curvature.

To compute the Berry curvature of the model (26), we use
the following expression [60]:

Fn(k) = iεμν[η∂μT †
k η∂νTk]nn, (42)

where Tk is a paraunitary transformation used to
obtain the spectrum of a bosonic Hamiltonian in the
particle-hole space and ∂μTk = ∂Tk/∂kμ. For numerical
calculations we rewrite the above expression into a more
convenient form. We unitarily transform the H̃ (k) in
(26) to H (k) = U †H̃ (k)U , where U is the corresponding
unitary transformation ψ̃k = Uψk to a new basis: ψk =
(bkA, bkB, ax

kA, ay
kA, ax

kB, ay
kB, b†

−kA, b†
−kB, ax†

−kA, ay†
−kA, ax†

−kB,

ay†
−kB)t . Doing so, the paraunitary transformation satisfies [10]

TkηT †
k = η, H (k)Tk = ηTkεk, (43)

where η is a diagonal matrix with +1 for particle space and −1
for hole space, and εk is a matrix of energy eigenvalues with
values Ek > 0 for particles and −E−k < 0 for holes. Taking
the momentum derivative of the above eigenvalue problem,
we obtain the following matrix element:

〈n|∂μTk|m〉 = − 〈n|ηV̄μk|m〉
(εk )nn − (εk )mm

, (44)

where V̄μk = T †
k ∂μH (k)Tk. Using this matrix element and

ηT †
k = T −1

k η, the Berry curvature (42) is cast as [27,61]

Fn(k) = iεμν

∑
m 
=n

〈n|ηV̄μk|m〉〈m|ηV̄νk|n〉
[(εk )nn − (εk )mm]2 . (45)

In the inset of Fig. 3 we plot Berry curvature (45) along
the �-M direction. When the hybridization is set to zero,
for which the energy bands are shown by dashed lines, the
Berry curvature of magnons along this direction is nearly
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FIG. 4. Main panel: Berry curvature of two lowest magnetoelas-
tic energy bands along the high-symmetry lines �-K+-K−-�. Inset:
The corresponding lowest energy bands. Two negative pronounced
peaks in the main panel are associated with massive Dirac cones
of magnon bands shown by long curved dashed arrows. Besides,
new peaks appear in Berry curvature resulting from the hybridized
magnon-phonon bands. Color spectrum indicates the magnon (the
reddest one) versus phonon (the bluest one) contributions of the
Berry curvature. The parameters used are the same as in Fig. 2

zero. Note that main contribution to the Berry curvature of
magnons result from the region neat the Dirac points K±
resulting in nontrivial band topology [55,56]. The inset clearly
indicates that upon hybridization of magnon and phonons,
the Berry curvature of states near the avoided crossing is
strongly increased: more the states are hybridized, as shown
by light colors, more the corresponding Berry curvatures are
pronounced.

Figure 4 shows the Berry curvature of two lowest energy
bands (shown in the inset) along a direction including Dirac
points and avoided crossings. Two pronounced negative peaks
around K± in the Berry curvature are associated with the
band topology of magnons. Note that these peaks exist even
in the absence of phonons, and as pointed out before, when
integrated over the entire BZ, it yields Chern number c = −1
for the lower magnon band. The band hybridization adds
new features to the Berry curvature near the crossings. The
locations of avoided crossings are shown by dashed circles in
the inset and the small curved arrows point to the correspond-
ing peaks in the Berry curvature of lower and upper bands.
As we pointed out above, in the absence of hybridization
the Berry curvature is mainly distributed around the Dirac
nodes of magnon located at energies higher than the phonons.
Hybridization redistributes the Berry curvature by creating
new peaks near the avoided crossings. Now the lower band
is characterized by the sole negative Berry curvature, while
the Berry curvature of the upper band acquires both positive
(due to hybridization to phonons) and negative (due to sole
magnons) contributions. Therefore, when integrated over the
entire BZ, the Chern number of lower band is −1 and for the
upper band is 0. This redistribution of Berry curvature from
the upper to lower bands will have important implications on
the thermal Hall conductivity.

FIG. 5. The same as Fig. 4 but with trivial magnon bands. Inset
shows the two lowest energy bands. The magnon spectrum around
K− now has positive Berry curvature while the spectrum around K+
has negative values. The crossings in magnetoelastic bands shown
by dashed circles lead to peaks in Berry curvatures around anti-
crossing points. Note that here the numbers on vertical axis are
sgn[F (k)] ln[1 + |F (k)|].

Next, we consider an interesting case of trivial magnon
energy bands. The latter are achieved by considering a
ferromagnetic state with slightly different magnetizations on
sublattices, e.g., the ferrimagnet Fe2Mo3O8 [43] with dif-
ferent magnetic ions on sublattices. The Holstein-Primakoff
transformation yields Sz

i Sz
j � −Sib

†
jb j − S jb

†
i bi. Taking the

classical magnetization to be Si = S + δS and S j = S − δS,
a sublattice potential term JδS(b†

i bi − b†
jb j ) is added to the

magnetic Hamiltonian (4). This is equivalent to the sublat-
tice potential for spinless electrons in the Haldane model.
In the absence of normal DM interaction, i.e., Dz = 0, the
magnons bands are trivial with zero Chern numbers. Yet, the
magnetoelastic energy bands arise in the presence of in-plane
DM interaction D‖ and, interestingly, leads to topological
bands. Figure 5 shows the profile of Berry curvature of two
lowest magnetoelastic bands. In contrast to the topological
magnons bands in Fig. 4, the magnon wave functions near
the Dirac points have opposite Berry curvatures resulting in
zero Chern number. However, when hybridized with phonons,
the lower band acquires negative Berry curvatures near the
avoided crossings and the upper band would develop positive
values. That is, the lower magnetoelastic band is characterized
by Chern number −1 and the upper one by +1. This means
that the topological bands emerge out of trivial bands by
proper hybridization due to D‖. A similar observation has
also been reported for the spin-plasma modes in magnetic
topological interfaces [22]. Since the magnetoelastic bands,
as shown in the inset, have different energy dispersions, the
collective modes of the hybrid system yield a finite thermal
Hall conductivity response [22,41,43]. We discuss it in the
following subsection.

C. Thermal Hall conductivity: The honeycomb lattice

The magnons and phonons are electrically neutral, calling
for thermal Hall responses to diagnose their nontrivial Berry

045139-7



SHEIKHI, KARGARIAN, AND LANGARI PHYSICAL REVIEW B 104, 045139 (2021)

FIG. 6. The temperature dependence of thermal Hall conductivity κxy for different values of in-plane DM interaction D‖. In (a) we set
Dz = 0.1 meV: the magnon spectrum is topological. In (b) the magnon spectrum is made topologically trivial by setting Dz = 0 and sublattice
potential JδS = 0.1 meV. The magnetoelastic bands arising from D‖, otherwise trivial bands, carry finite thermal Hall response.

curvatures and band topology. For bosons the thermal Hall
conductivity κxy, which measures the transverse heat current
density in response to an applied temperature gradient as
JQ

xy = κxy(−∇T )y, is described as [60,62,63]

κxy = −k2
BT

h̄A
∑

k

n=N∑
n=1

{
c2[g(Enk )] − π2

3

}
Fn(k), (46)

where A is the area of the system, kB is the Boltzmann con-
stant, g(ε) = (eε/kBT − 1)−1 is the Bose-Einstein distribution
function, Enk is the energy of the magnetoelastic waves, and
c2(x) = (1 + x)(ln 1+x

x )2 − (ln x)2 − 2Li2(−x) with Li2(x) as
the polylogarithm function of second order.

Figure 6 shows the temperature dependency of the thermal
Hall conductivity for various values of in-plane DM interac-
tion D‖. In Fig. 6(a) the magnons are topological by setting
Dz = 0.1 meV. By coupling to the phonons the magnitude of
κxy increases. We ascribe this to the redistribution of Berry
curvature among the bands as shown in Fig. 4. In particular,
the contribution of the Berry curvature of magnons (peaks at
K±) in κxy is washed out by positive values of Berry curvatures
(peaks appearing between �-K±) near the band hybridiza-
tion. However, new sharp features appearing between �-M
(see inset in Fig. 3) belonging to states at different energies
give rise to the increase of the thermal Hall conductivity. On
the other hand, the hybridization leads to finite thermal Hall
response even when both magnons and phonons are trivial.
The results are shown in Fig. 6(b), where we set Dz = 0 and
sublattice potential JδS = 0.1 meV endowing the magnons
with trivial band topology. Upon hybridization, the lowest
energy bands becomes topologically nontrivial. As explained
in the discussion of Fig. 5, the lower band acquires negative
Berry curvatures throughout the BZ. The emergent Berry cur-
vature underlies the finite values of κxy shown in Fig. 6(b).
By increasing D‖ from 0.2 to 1.0 meV, the magnitude of Hall
response increases. Stronger hybridization gives rise to larger
values of thermal Hall conductivity. Indeed, for the trivial
bands, the in-plane DM interaction act like gauge fields for
phonons, which upon the time-reversal symmetry breaking
yields topological bands. We use the same parameters in
both figures. One, however, observes that the thermal Hall

conductivity of a posterior topological magnon is an order of
magnitude larger than that of trivial modes.

Note that the obtained values of thermal Hall conductiv-
ity κxy � 10−12 W K−1 is consistent with values obtained in
Refs. [41,43]. For that the heat current density JQ

xy should
be understood as surface current density in 2D systems with
unit Watt/Length. However, if the latter is to be measured as
bulk current density with unit Watt/Area, our obtained values
should be divided by the thickness of the samples. For layers
with thickness of order of t ∼ 10−10–10−9 m, the thermal Hall
conductivity becomes κxy � 10−2–10−3 W K−1 m−1.

IV. HYBRID MAGNON-PHONON MODEL:
THE KAGOME LATTICE

In this section we present hybrid magnon-phonon modes in
the kagome lattice. A piece of this lattice is shown in Fig. 1.
Each unit cell contain three sites yielding three magnon bands
and six phonon bands considering only the vibration within
the plane. The kagome lattice with coordination number z = 4
is at the isostatic point separating floppy from rigid behaviors
[59]. The zero-energy floppy modes become dispersive by
adding second-neighbor inter-ionic potentials, i.e., by increas-
ing the coordination number. Alternatively, since the lattice is
at the isostatic point, the unit cells are twisted and the floppy
modes becomes dispersive and the rigidity condition arises
[59]. We call the former case as a regular kagome lattice and
the latter one as a twisted one. Below, we study both cases
when coupled to magnons.

A. Regular kagome lattice

The regular kagome lattice lattice is shown in Fig. 1.
We follow the procedures outlined in Sec. II to obtain the
magnetoelastic Hamiltonian on the kagome lattice. The de-
tails of different parts of the Hamiltonian are relegated to
Appendix B. Unlike the honeycomb lattice, on the
kagome lattice the nearest-neighbor out-of-plane DM in-
teraction Dz is allowed. In Fig. 7(a) we show the low-
est energy bands of the phonon spectrum by consider-
ing only the nearest-neighbor inter-ion potentials V (Ri j )
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(a)

(b)

(c) (d)

(e)

FIG. 7. (a) Low-energy phonon spectrum of regular kagome lattice with only nearest-neighbor inter-ion potential h̄	 = 5 meV and
h̄	′ = 0. The zero modes along �-M are the floppy modes. (b) The same band structure including the second-neighbor inter-ion potential
h̄	′ = 1 meV. The floppy modes become dispersive. (c) The magnetoelastic spectrum of hybrid magnon (the reddest color) and phonon (the
bluest color) modes. The avoided crossings are visible by change in the color. We show the lowest magnetoelastic bands with different colors,
blue, red, green, and purple in (d). The corresponding Berry curvatures of three lowest bands are shown in (e) using the same colors as in
(d). In (e) the numbers on vertical axis should be understood as sgn[F (k)] ln[1 + |F (k)|], and the asterisks marked the locations of avoided
crossings.

in (10). As seen, there are zero floppy modes along
the �-M direction and all symmetry-related directions in
the BZ imply that the lattice is at the isostatic point.
By adding second-neighbor inter-ion potentials, the floppy
modes become dispersive with typical energy of the order of
h̄	′ as shown in Fig. 7(b), and therefore only the zero modes
at � associated with the trivial translations and rotations are
retained.

The magnon spectrum consists of three energy bands
whose their band topology are characterized by Chern num-
bers c = ±1, 0 in the presence of DM interaction Dz. As in the
honeycomb lattice the in-plane DM interaction D‖ hybridizes
the magnons and phonons as shown in Fig. 7(c). The two low-
est magnon bands cross the phonon bands at multiple points,
as illustrated by light colors, where the avoided crossings
and magnetopolaron states are formed. It is also seen that
the dispersive modes along �-M direction, otherwise being
zero-energy modes in the absence of coupling to magnons, get
hybridized with magnons. The lowest magnetoelastic modes
are shown in Fig. 7(d) along with the corresponding Berry
curvature in Fig. 7(e). We used the same colors blue, red, and
green for three lowest bands and their Berry curvatures. It is
clearly seen that states near the avoided crossings lead to large
enhancement in the Berry curvature. The peaks associated
with avoided crossings are marked by asterisks. Note that the
zero crossings between phonon bands, like those at K±, also
result in large Berry curvature, e.g., the blue and red peaks
at K±. However, since the the bands are degenerate at these
crossings, they do not contribute in thermal Hall conductivity,
to be discussed later on. The green peaks at K± are associated
with the topological magnon states, while the adjacent green
peaks appearing along �-K+, K+-K−, and K−-� result from
the avoided crossings. Since the sates around these points are
split in energy, they would influence the thermal Hall response
as we demonstrated for the case of honeycomb lattice.

B. Twisted kagome lattice

As discussed in the preceding section the floppy zero
modes become dispersive by including second-neighbor po-

tential with frequency 	′ > 0. In this case the lattice retains
its C6 symmetry. In the absence of second-neighbor potential,
i.e., 	′ = 0, the floppy zero modes can also be removed
by twisting the unit cells as shown in Fig. 8(a), where up
and down triangles are twisted by an angle α > 0 and −α,
respectively. The symmetry reduces to C3 and the lattice vec-
tors are squeezed to |a1,2| = 2a cos α where a is the bond
length. We obtain the phonon Hamiltonian as before, and
the details are given in Appendix C. The phonon energy
spectrum is shown in Fig. 8(b) for α = π/12 and clearly
shows that the floppy zero modes between �-M are replaced
by finite dispersive modes [59], hence yielding a stable lat-
tice. This phonon spectrum should be compared with the
one shown in Fig. 7(b), where the floppy zero modes are
removed by taking 	′ > 0. Therefore, either adding second-
neighbor interaction or twisting the cells disperses the floppy
modes.

Next, we couple phonons to the magnons. The low-energy
part of the hybrid spectrum is shown in Fig. 8(c). The de-
tails of the magnon-phonon coupling matrices are given in
Appendix C. At the crossings the bands are split off due
to magnon-phonon coupling similar to those in the regular
kagome lattice. To study the Berry curvature of energy bands
we replot the low-energy bands in Fig. 8(d) and used the blue,
red, and green colors to label the lowest to highest ones. The
corresponding Berry curvature along the same high-symmetry
lines is shown in Fig. 8(e). Besides the features associated
with the bands crossings of the phonon spectrum, we note
that the avoided crossings marked by asterisks lead to creation
of Berry curvatures with opposite signs. The sharp features
around K± are due to phonon band degeneracies, and as
we pointed out they do not contribute to the thermal Hall
response. The features around � point is due to the nearly
degenerate phonon bands. Other peaks emanating from the
magnon-phonon band hybridization are split in energy, hence
having different contribution in the thermal Hall conductivity.
Therefore, the redistribution of the Berry curvatures from the
purely topological magnon bands to the magnetoelastic bands
could influence the thermal Hall measurements as we discuss
in the next subsection.
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FIG. 8. (a) A piece of twisted kagome lattice. The up (purple) and down (pink) triangles are twisted by α > 0 and −α, respectively. The
unit cell still contains three sites. (b) The low-energy phonon spectrum of the twisted kagome lattice with h̄	 = 5 meV and h̄	′ = 0. The twist
removes the floppy modes otherwise having zero energy between �-M direction. (c) The magnetoelastic spectrum of twisted lattice. (d) same
as the spectrum in (c) but the bands are colored as blue, red, and green for the three lowest ones, and the corresponding Berry curvatures are
shown in (e). The asterisks show the regions of avoided crossing where the Berry curvatures are created for magnetoelastic bands with different
energies. In (e) the numbers on vertical axis should be understood as sgn[F (k)] ln[1 + |F (k)|].

C. Thermal Hall conductivity: The kagome lattices

Informed by the magnetoelastic bands and Berry curva-
tures, we show the thermal Hall conductivity of the regular
and the twisted kagome lattices in Figs. 9(a) and 9(b), respec-
tively. Both lattices show similar behaviors. For temperatures
below ∼10 K the response is nearly zero especially for
small values of in-plane DM interaction. By increasing the
temperature the response acquires large values of order of
∼10−11 W K−1. It also shows that the in-plane DM interac-
tion D‖ adds more positive contributions to κxy, hence the
magnitude of the response decreases especially at higher tem-
peratures. This is attributed to the thermal populations of
higher bands with negative Berry curvatures, e.g., the red
plots in Figs. 7(e) and 8(e) near the band hybridizations.
We also observe that for large values of D‖, the thermal
Hall response changes sign by temperatures. We note that a
sign change in κxy has been observed in the kagome mag-
net Cu(1,3-benzenedicarboxylate) [24]. Note that this occurs
in the presence of magnon-phonon couplings, and thus, any
interpretation of possible observation of sign change in the

measurements should take both carriers into account. Usually
such sign change is related to the energy distribution of states
near peaks of the Berry curvatures. While the total Berry
curvature of a band could be positive, e.g., the lowest energy
band of magnons on the kagome lattice [64], the coupling to
phonons may create states at low energy with negative Berry
curvatures and and states with positive Berry curvature at
higher energy. Therefore, the occupations of states by increas-
ing the temperature leads to the sign change in thermal Hall
response.

V. CONCLUSIONS

This work is partly motivated by recent observa-
tion of topological bosonic modes in several compounds
such as Lu2V2O7 [23], planar kagome magnets Cu(1,3-
benzenedicarboxylate) [24] and YMn6Sn6 [25], Tb3Ga5O12

[11,32], Tb2Ti2O7 [37], and CrCl3 [47] as discussed in the
Introduction. The heat conduction supplemented to the sys-
tem by a temperature gradient however excites both magnons

FIG. 9. The temperature dependence of thermal Hall conductivity κxy of (a) regular and (b) twisted kagome lattices. In both cases we set
Dz = 0.1 meV, hence topological magnons, and colored curves from bottom to top correspond to different values of D‖: 0.2 (red), 0.3 (blue),
0.5 (green), 1.0 (purple) meV. For the twisted lattice we set α = π/12.
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and phonons. Therefore, it is interesting to investigate the
interplay of such collective modes and the issue of magnon-
phonon couplings in determining the thermal properties of the
system.

We theoretically introduced a hybrid magnon-phonon
models on the honeycomb and kagome lattices, for which
the lattice structures allow for topological magnons to rise by
adding phase windings, resulting from out-of-plane DM inter-
action, to the propagating magnons. The in-plane components
of DM interaction arising from the mirror symmetry break-
ing, however, couple magnons and phonons and generate
magnetoelastic modes. Our effective description of magnon-
phonon hybridization clearly demonstrates that the change of
wave function components from magnons to phonons and
vice versa leads to a pronounced enhancement of the Berry
curvature near the avoided crossings. The observation is that
the Berry curvatures, while appearing with opposite signs,
belong to states with different energies. We found that this

latter point and the magnon-phonon induced redistribution
of Berry curvature among the energy bands have significant
effects on the thermal Hall conductivity. For the honeycomb
lattice the magnon-phonon coupling increases the thermal
Hall response. In particular, we found that for topological
magnon bands, the hybridization to phonons increases the
response, an order of magnitude larger than the trivial bands.
For both regular and twisted kagome lattices we found that the
magnon-phonon coupling gives rise to a sign change of the
thermal Hall response at low temperature. Therefore, we an-
ticipate that in any interpretations of responses both magnons
and phonons should be treated on equal footings.
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APPENDIX A: FIRST AND SECOND NEIGHBOR POTENTIAL MATRICES BETWEEN THE SITES
OF THE HONEYCOMB LATTICE

For the first neighbors the matrices are

V10 =

⎛
⎜⎝

3/2 0 0 0
0 3/2 0 −1
0 0 3/2 0
0 −1 0 3/2

⎞
⎟⎠, V11 =

⎛
⎜⎜⎝

0 0 −3/2 −√
3/2

0 0 −√
3/2 −1/2

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, V12 =

⎛
⎜⎜⎝

0 0 −3/2
√

3/2
0 0

√
3/2 −1/2

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, (A1)

and for the second neighbors we obtain V20 = 314×4 and remaining matrices are as

V21 =

⎛
⎜⎜⎝

−1/2 −√
3/2 0 0

−√
3/2 −3/2 0 0

0 0 −1/2 −√
3/2

0 0 −√
3/2 −1/2

⎞
⎟⎟⎠, V22 =

⎛
⎜⎜⎝

−1/2
√

3/2 0 0√
3/2 −3/2 0 0
0 0 −1/2

√
3/2

0 0
√

3/2 −1/2

⎞
⎟⎟⎠, V23 =

⎛
⎜⎝

−2 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 0

⎞
⎟⎠.

(A2)

APPENDIX B: THE MAGNETOELASTIC HAMILTONIAN OF THE REGULAR KAGOME LATTICE

The regular lattice is shown in Fig. 1. Assuming a ferromagnetic classical ground state and within the linear spin-wave theory,
the magnon Hamiltonian reads as

HM = 1

2

∑
k

ψ̃
†
kH̃M (k)ψ̃k, (B1)

where, using A, B, and C to label three sites of the unit cell, ψ̃k = (bkA, bkB, bkC, b†
−kA, b†

−kB, b†
−kC )t and

H̃M (k) =
(

Q(k) 03×3

03×3 Qt (−k)

)
, Q(k) =

⎛
⎝ f1 f12(k) f13(k)

f ∗
12(k) f1 f23(k)

f ∗
13(k) f ∗

23(k) f1

⎞
⎠, (B2)

with

f1 = 4JS, f12 = −Jneiφ (1 + e−ik·a1 ), f13 = −Jne−iφ (1 + e−ik·a2 ), f23 = −Jneiφ (1 + e−ik·(a2−a1 ) ), (B3)

and φ = tan−1(D/J ). The phonon Hamiltonian reads as

Hph = 1

2

∑
k

φt
−kHph(k)φk, (B4)

where φk = (ux
kA, uy

kA, ux
kB, uy

kB, ux
kC, uy

kC, px
−kA, py

−kA, px
−kB, py

−kB, px
−kC, py

−kC )t and

Hph(k) = h̄	

(
V (k) 06×6

06×6 16×6

)
. (B5)
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Here V (k) = [Vnn(k) + ξ 2Vnnn(k)]/2 describes the nearest and next-nearest neighbor inter-ion potentials:

Vnn(k) = V0(k) + V1(k) + V2(k) + V3(k), (B6)

Vnnn(k) = V ′
0 (k) + V ′

1 (k) + V ′
2 (k) + V ′

3 (k), (B7)

V0(k) = 2V0, V1(k) = V1e−ik·a1 + V †
1 eik·a1 , (B8)

V2(k) = V2e−ik·a2 + V †
2 eik·a2 , V3(k) = V3e−ik·(a1−a2 ) + V †

3 eik·(a1−a2 ), (B9)

V ′
0 (k) = 2V ′

0, V ′
1 (k) = V ′

1e−ik·a1 + V ′†
1 eik·a1 , (B10)

V ′
2 (k) = V ′

2e−ik·a2 + V ′†
2 eik·a2 , V ′

3 (k) = V ′
3e−ik·(a1−a2 ) + V ′†

3 eik·(a1−a2 ). (B11)

The nearest-neighbor matrices are

V0 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

10 2
√

3 −4 0 −1 −√
3

2
√

3 6 0 0 −√
3 −3

−4 0 10 −2
√

3 −1
√

3
0 0 −2

√
3 6

√
3 −3

−1 −√
3 −1

√
3

√
3 0

−√
3 −3

√
3 −3 0 12

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, V1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (B12)

V2 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −2 −2
√

3
0 0 0 0 −2

√
3 −6

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, V3 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −2 2

√
3

0 0 0 0 2
√

3 −6
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B13)

The next-nearest-neighbor matrices are

V ′
0 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

6 −2
√

3 0 0 0 0
−2

√
3 10 0 0 0 0

0 0 6 2
√

3 0 0
0 0 2

√
3 10 0 0

0 0 0 0 12 0
0 0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎠

, V ′
1 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −6 2
√

3
0 0 0 0 2

√
3 −2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −6 −2

√
3 0 0

0 0 −2
√

3 −2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B14)

V ′
2 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 −8 0 0
0 0 0 0 −6 −2

√
3

0 0 0 0 −2
√

3 −2
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, V ′
3 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −6 2
√

3
0 0 0 0 2

√
3 −2

0 0 0 0 0 0
0 −8 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B15)

The magnon-phonon coupling Hamiltonian Hc is

Hc =
∑

k

φ
†
ph(k)Hc(k)φm(k), (B16)

where φph(k) = (ux
kA, uy

kA, ux
kB, uy

kB, ux
kC, uy

kC )t , φm(k) = (δSx
kA, δSy

−kA, δSx
kB, δSy

−kB, δSx
kC, δSy

−kC )t , and

Hc(k) =
⎛
⎝ 2(T1 + T3) −T1(1 + e−ik·a1 ) −T3(1 + e−ik·a2 )

−T1(1 + eik·a1 ) 2(T2 + T1) −T2(1 + e−ik·(a2−a1 ) )
−T3(1 + eik·a2 ) −T2(1 + eik·(a2−a1 ) ) 2(T3 + T2)

⎞
⎠. (B17)

The above T matrices, describing the magnon-phonon couplings along δ1 = x̂, δ2 = x̂/2 + √
3/2ŷ, and δ3 = −x̂/2 + √

3/2ŷ
connecting the nearest-neighbor sites, are

T1 = ζD‖S

(−γ 0
0 1

)
, T2 = ζSD‖

4

(
3 − γ

√
3(1 + γ )√

3(1 + γ ) 1 − 3γ

)
, T3 = ζSD‖

4

(
3 − γ −√

3(1 + γ )
−√

3(1 + γ ) 1 − 3γ

)
. (B18)
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APPENDIX C: THE MAGNETOELASTIC HAMILTONIAN OF THE TWISTED KAGOME LATTICE

For the twisted kagome lattice the magnetic Hamiltonian is as (B2). For the phonon part the nearest-neighbor V matrices are
as follows:

V0 =cos2 α

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

10 2
√

3 −4 0 −1 −√
3

2
√

3 6 0 0 −√
3 −3

−4 0 10 −2
√

3 −1
√

3
0 0 −2

√
3 6

√
3 −3

−1 −√
3 −1

√
3 4 0

−√
3 −3

√
3 −3 0 12

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ sin2 α

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

6 −2
√

3 0 0 −3
√

3
−2

√
3 10 0 −4

√
3 −1

0 0 6 2
√

3 −3 −√
3

0 −4 2
√

3 10 −√
3 −1

−3
√

3 −3 −√
3 12 0√

3 −1 −√
3 −1 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ sin 2α

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −2
√

3 1
0 6 −2 0 1 −√

3
0 −2 0 0 −√

3 1
−2 0 0 0 1

√
3√

3 1 −√
3 1 0 0

1 −√
3 1

√
3 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (C1)

V1 = cos2 α

⎛
⎜⎜⎜⎜⎜⎝

0 0 −2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ + sin2 α

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 −2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ + sin 2α

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (C2)

V2 = cos2 α

4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −2 −2
√

3
0 0 0 0 −2

√
3 −6

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ sin2 α

4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −6 2
√

3
0 0 0 0 2

√
3 −2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ sin 2α

4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −2
√

3 −2
0 0 0 0 −2 2

√
3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (C3)

V3 = cos2 α

4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −2 2

√
3

0 0 0 0 2
√

3 −6
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ sin2 α

4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −6 −2

√
3

0 0 0 0 −2
√

3 −2
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ sin 2α

4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 2

√
3 −2

0 0 0 0 −2 −2
√

3
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C4)

For the magnon-phonon coupling there are T matrices along nearest-neighbor bonds δ1,2,3 and δ′
1,2,3 shown in Fig. 8(a). We

denote the corresponding matrices by T1,2,3 and T ′
1,2,3, respectively, and they read as follows:

T1 = ζD‖S

(
1 − (1 + γ ) cos2 α −(1 + γ ) sin α cos α

−(1 + γ ) sin α cos α 1 − (1 + γ ) sin2 α

)
, (C5)

T2 = ζD‖S

4

(
4 − (1 + γ )(1 + 2 sin2 α + √

3 sin 2α) (1 + γ )(
√

3 cos 2α + sin 2α)
(1 + γ )(

√
3 cos 2α + sin 2α) 4 − (1 + γ )(1 + 2 cos2 α − √

3 sin 2α)

)
, (C6)

045139-13



SHEIKHI, KARGARIAN, AND LANGARI PHYSICAL REVIEW B 104, 045139 (2021)

T3 = ζD‖S

4

(
4 − (1 + γ )(1 + 2 sin2 α − √

3 sin 2α) −(1 + γ )(
√

3 cos 2α − sin 2α)
−(1 + γ )(

√
3 cos 2α − sin 2α) 4 − (1 + γ )(1 + 2 cos2 α + √

3 sin 2α)

)
, (C7)

T ′
1 = ζD‖S

(
1 − (1 + γ ) cos2 α (1 + γ ) sin α cos α

(1 + γ ) sin α cos α 1 − (1 + γ ) sin2 α

)
, (C8)

T ′
2 = ζD‖S

4

(
4 − (1 + γ )(1 + 2 sin2 α − √

3 sin 2α) −(1 + γ )(
√

3 cos 2α + sin 2α)
−(1 + γ )(

√
3 cos 2α + sin 2α) 4 − (1 + γ )(1 + 2 cos2 α + √

3 sin 2α)

)
, (C9)

T ′
3 = ζD‖S

4

(
4 − (1 + γ )(1 + 2 sin2 α + √

3 sin 2α) −(1 + γ )(
√

3 cos 2α + sin 2α)
−(1 + γ )(

√
3 cos 2α + sin 2α) 4 − (1 + γ )(1 + 2 cos2 α − √

3 sin 2α)

)
. (C10)

And the magnon-phonon coupling Hamiltonian is

Hc(k) =
⎛
⎝(T1 + T3 + T ′

1 + T ′
3 ) −(T1 + T ′

1 e−ik·a1 ) −(T3 + T ′
3 e−ik·a2 )

−(T1 + T ′
1 eik·a1 ) (T2 + T1 + T ′

2 + T ′
1 ) −(T2 + T ′

2 e−ik·(a2−a1 ) )
−(T3 + T ′

3 eik·a2 ) −(T2 + T ′
2 eik·(a2−a1 ) ) (T3 + T2 + T ′

3 + T ′
2 )

⎞
⎠. (C11)
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