
PHYSICAL REVIEW B 104, 045138 (2021)

Inducing a metal-insulator transition in disordered interacting Dirac fermion
systems via an external magnetic field

Jingyao Meng ,1 Rubem Mondaini ,2 Tianxing Ma ,1,2,* and Hai-Qing Lin2,1

1Department of Physics, Beijing Normal University, Beijing 100875, China
2Beijing Computational Science Research Center, Beijing 100193, China

(Received 13 April 2021; revised 24 June 2021; accepted 14 July 2021; published 23 July 2021)

We investigate metal-insulator transitions on an interacting two-dimensional Dirac fermion system using the
determinant quantum Monte Carlo method. The interplay between Coulomb repulsion, disorder, and magnetic
fields, drives the otherwise semimetallic regime to insulating phases exhibiting different characters. In particular,
with the focus on the transport mechanisms, we uncover that their combination exhibits dichotomic effects.
On the one hand, the critical Zeeman field Bc, responsible for triggering the band-insulating phase due to
spin-polarization on the carriers, is largely reduced by the presence of the electronic interaction and quenched
disorder. On the other hand, the insertion of a magnetic field induces a more effective localization of the fermions,
facilitating the onset of Mott or Anderson insulating phases. Yet these occur at moderate values of B, and cannot
be explained by the full spin-polarization of the electrons.
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I. INTRODUCTION

Since Slater argued that a gap could be opened by magnetic
ordering with spin-dependent electronic energy [1], applying
a magnetic field has been a powerful means to elucidate novel
phenomena [2]. When making the Zeeman field a variable in a
system, fascinating properties are induced through interesting
physical mechanisms, which have been widely recognized,
such as the spin Hall effect [3], topological phase transition
[4], superconductor-insulator transition in disordered systems
[5], anomalous Hall states [6], magnetic ordering transition
[7,8], and metal-insulator transition [9]. Among them, metal-
insulator transitions (MITs) in correlated electron systems
have long been a central and controversial issue in material
science [10]. In Si MOSFETs [11–14] or graphene [15–17],
a magnetic field has been found to suppress metallic behavior
giving way to an insulating phase. In real materials, disorder
and interactions are both present, and thus, to fully understand
these problems, one needs to treat the challenging interplay
between the magnetic field, interactions, and disorder on the
same footing [18,19].

Recently, the physics in Dirac fermion systems with mag-
netic fields have attracted intensive studies, including on
graphene, topological insulators [20], and Weyl semimetals
[21]. Graphene is one of the most promising 2D materials
[22,23] due to its unique characteristics, such as excellent
electrochemical performance [24] and ultrahigh electrical
conductivity [25,26]. When subjecting it to a magnetic field,
interesting physics can be revealed through the conductivity’s
behavior. For instance, comparison of the bulk and edge con-
ductance is crucial for understanding symmetry breaking in
the quantum Hall effect (QHE) [16,17], or a parallel magnetic
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field coupling only to the spin, not to the orbital motion of
electrons [18,27], polarizes the graphene carriers, affecting
the density of states [28], and thereby tuning the resistivity.
The Coulomb interaction and disorder are two important as-
pects in graphene systems that may induce intriguing physics
[29–32]. In the limit of field strength B = 0, they can in-
troduce metallic behavior into the system even at the Dirac
point [33], and in the QHE, their interplay with the magnetic
field determines the combined four-flavor degeneracy [15],
which can be thought of as a single SU(4) isospin because
of the high-energy scales characterizing cyclotron motion and
Coulomb interactions [34,35]. Therefore, studies on the mag-
netic field and disorder in interacting Dirac fermion systems
may not only help us deepen the understanding of the internal
physical mechanism of the MIT but also help us design new
progress in the application of 2D materials.

In this paper, we studied the Hubbard model on a honey-
comb lattice through the exact determinant quantum Monte
Carlo (DQMC) method. Our data suggest that the Zeeman
effect suppresses metallic behavior and bring about a transi-
tion from a metallic phase to an insulating one at a critical
field strength, similar to what is seen in 2D holes in GaAs
[36]. This phenomenon occurs even with weak disorder and
interaction. Different from the Mott or Anderson insulators
(MI or AI), a sufficiently strong magnetic field opens a gap
by affecting the electrons with different spins, and thereby
inducing a band insulator. By making use of the density of
states at the Fermi level in the limit that the temperature
T → 0, we unambiguously determine the type of insulator
[37], arising from the competition of interaction, disorder, and
magnetic field in the phase diagram [Fig. 1(a)] of the model,
which further displays metallic behavior at sufficiently small
magnitudes of these terms.

Besides, the impact of these three “knobs” on the trans-
port properties is not isolated. Reducing the interaction and
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FIG. 1. (a) Phase diagram of the disordered Hubbard model of
a honeycomb lattice at half-filling with magnetic field B. � labels
the disorder, U the local Coulomb repulsion, and Bc the critical
magnetic field. The points on the surface represent the MIT, and
crossing the surface from below to above means that the metallic
system enters the insulating phase driven by the interaction, disorder,
or magnetic field. (b) The picture shows a 2 × 122 honeycomb lattice
with periodic boundary conditions, whose sublattices are labeled by
red and blue colors. The applied magnetic field is parallel to the plane
of the crystal lattice, which only affects the spin polarization of the
electrons and does not affect the degeneracy of the orbital angular
momentum.

disorder makes the influence of magnetic field more pro-
nounced. In contrast, switching on the magnetic field makes
electrons to be more easily localized, corresponding to a de-
crease in the critical disorder or interaction strength for the
corresponding metal-insulator transition. Their interplay is re-
flected in Figs. 3 and 4. Interestingly, although entering a fully
spin-polarized state often means a sudden change in transport
properties, the critical field strength for the B-driven phase
transition we investigate does not coincide with that of full
spin polarization, being actually much smaller. This suggests
that a weak magnetic field may promote a metal-insulator
transition with lower interaction strengths and smaller
disorder.

II. MODEL AND METHOD

The Hamiltonian of the disordered Hubbard model on a
honeycomb lattice on the presence of a magnetic field is
defined as

Ĥ = −
∑
〈ij〉σ

tij(ĉ
†
iσ ĉjσ + ĉ†

jσ ĉiσ ) + U
∑

j

(
n̂j↑ − 1

2

)(
n̂j↓ − 1

2

)

−
∑

jσ

(μ − σB)n̂jσ , (1)

where ĉ†
iσ (ĉiσ ) is the spin-σ electron creation (annihilation)

operator at site i, and n̂iσ = ĉ†
iσ ĉiσ is the occupation number

operator [see Fig. 1(b) for the lattice schematics]. Here, tij
is the nearest-neighbor (NN) hopping integral, U > 0 is the
on-site Coulomb repulsion, μ is the chemical potential, and B
is the Zeeman magnetic field along the lattice plane (thus not
generating orbital contributions [18]). Disorder is introduced
through the hopping parameters tij taken from the probability
distribution P (tij) = 1/� for tij ∈ [t − �/2, t + �/2] and
zero otherwise. � describes the strength of disorder, and t = 1
sets the energy scale in what follows. By choosing μ = 0,

the system is half-filled, and particle-hole symmetry takes
place [38].

We adopt the DQMC method [39] to study the MIT in the
model defined by Eq. (1), in which the Hamiltonian is mapped
onto free fermions in 2D+1 dimensions coupled to space-
and imaginary-time-dependent bosonic (Ising-like) fields. By
using Monte Carlo sampling, we can carry out the integra-
tion over a relevant sample of field configurations, chosen up
until statistical errors become negligible. The discretization
mesh �τ of the inverse temperature β = 1/T should be small
enough to ensure that the Trotter errors are less than those
associated with the statistical sampling. This approach allows
us to compute static and dynamic observables at a given
temperature T . Due to the particle-hole symmetry even in
the presence of the hopping-quenched disorder, the system
avoids the infamous minus-sign problem, and the simulation
can be performed at large enough β as to obtain properties
converging to the ground state ones [33,40]. We choose a
honeycomb lattice with periodic boundary conditions, whose
L = 12 geometry is shown in Fig. 1(b), and the total number
of sites is N = 2 × L2. In the presence of disorder, we average
over 20 disorder realizations [33,41–44] (see Appendix A for
a system size comparison and Appendix D for the impact of
realization averaging).

The T -dependent dc conductivity is computed via a proxy
of the momentum q and imaginary time τ -dependent current-
current correlation function (see Appendix C):

σdc(T ) = β2

π
�xx

(
q = 0, τ = β

2

)
. (2)

Here, �xx(q, τ ) = 〈 ĵx(q, τ ) ĵx(−q, 0)〉, and ĵx(q, τ ) is the
current operator in the x direction. This form, which avoids
the analytic continuation of the QMC data, has been seen to
provide satisfactory results for either disordered [33,41,45] or
clean systems [46–48].

By the same token, we define N (0), the density of states at
the Fermi level, as [47,49]

N (0) � β × G(r = 0, τ = β/2), (3)

to differentiate the several physical mechanisms responsible
for inducing the insulating phase, where G is the imaginary-
time dependent Green’s function. We finally introduce the
parameter P = |n↓ − n↑|/(n↓ + n↑) to study the spin po-
larization of electrons, where n↓ and n↑ are the averaged
spin-resolved densities of the corresponding number operators
in Eq. (1).

III. RESULT AND DISCUSSION

We start by reporting the σdc(T ) computed across several
representative sets of U and � and various fields B in Fig. 2.
While the conductivity decreases at lower temperatures in
the (semi-)metallic phase with sufficient small interaction and
disorder values, the effect of an increase in magnetic field is
unequivocal: It induces a suppression of metallic behavior,
displaying a downturn of σdc at small T s. It confirms a B-
driven MIT, verified in all panels in Fig. 2 (exhibiting different
combinations of (U,�)), whose results could be potentially
connected to what is observed in thin films of GaAs, also
featuring a two-dimensional hexagonal lattice [36]. A precise
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FIG. 2. Conductivity σdc as a function of temperature T for vari-
ous strengths of the Zeeman field, Coulomb interaction, and disorder.
The critical value of the magnetic field Bc, which indicates the
occurrence of the transition from metallic to insulating behavior, is
estimated to be � 0.15, 0.14, 0.13, and 0.12 at U = 2.0, � = 0.0 (a);
U = 2.0, � = 0.5 (b); U = 3.0, � = 0.0 (c); and U = 3.0, � = 0.5
(d), respectively.

definition of the critical magnetic field Bc(U,�) that triggers
the MIT is then obtained via dσdc/dT = 0 at low tempera-
tures. On a similar fashion, we can also obtain the �c and Uc

for the onset of the MIT, observing the signal of dσdc/dT .
A more evident display of the critical magnetic field is

obtained in Fig. 3, where the dc conductivity at different tem-
peratures T is shown as a function of B (see Appendix B for

FIG. 3. dc conductivity as a function of magnetic field B at vari-
ous temperatures with (a) U = 3.0, � = 0.0; (b) U = 3.0, � = 0.3;
(c) U = 2.0, � = 0.5; and (d) U = 3.0, � = 0.5. The effect of the
magnetic field is more obvious with weaker interaction and disorder
strength. With the change of U and �, the positions of the inter-
section points move quite obviously; Bc in (a), (b), (c), and (d) is
approximately 0.136, 0.132, 0.142, and 0.124, respectively.

FIG. 4. Critical magnetic field strength Bc (a) as a function of
� at different U and (b) as a function of U at different �. These
cuts represent how the phase diagram in Fig. 1(a) is constructed. The
intersection points of the curves with the horizontal axis indicate that
(a) � is large enough to induce an Anderson insulator (at U = 1.0,
2.0, and 3.0, �c is approximately 1.63, 1.31, and 0.96) and (b) U is
large enough to induce a Mott insulator (at � = 0.0, 0.6, and 0.9, Uc

is approximately 3.89, 3.64, and 3.14).

a similar analysis with growing interaction strengths instead).
In all cases, σdc monotonically decreases with increasing mag-
netic field, where the intersection of the curves defines the
critical field Bc for different U and �. We caution that this
determination of the B-driven MIT point is slightly more
problematic when both U and � are large, where often a
region of intersections is observed for the different fixed tem-
perature curves. Nonetheless, when increasing �, as shown in
Figs. 3(b)–3(d), or increasing U , as shown in Figs. 3(c)–3(d),
a clear change on the position of the intersection point is ob-
served, moving to smaller Bs. This suggests that Bc is reduced
either when the interaction or disorder are enhanced. These
results also show that the magnetic field more strongly inhibits
the metallic phase at lower temperatures, weaker interactions
and weaker disorder. A similar phenomenon also occurs in a
real material, hydrogenated graphene [50].

Lastly, we compile in Fig. 4 the results of Bc, showing
that it decreases as disorder � or interaction strength U are
enhanced, representing the separation of the metallic and in-
sulating phases. An important contrast is the sharp drop of the
critical field when entering the U -driven Mott insulating phase
[Fig. 4(b)], in comparison to a more gradual evolution of Bc

when impacted by the disorder � [Fig. 4(a)]. When summing
all these results, we can compile the whole phase diagram as
shown in Fig. 1(a), summarizing the interplay between the
magnetic field, interaction, and disorder.

It is worth noting that, in real materials as graphene, the es-
timated U is relatively small [29,51] and metallic behavior, in
opposition to a Mott phase, ensues. Our results suggest how-
ever that switching on a parallel magnetic field will decrease
the critical strength for the MIT for both the interaction and
disorder, providing a possibility of observing an interaction-
driven phase transition. For example, for the MIT at U = 3.14
and � = 0.9, applying a magnetic field B ≈ 0.33 reduces the
critical U to 3.0. For the MIT at U = 3.0 and � = 0.96, this
magnetic field reduces the critical � to 0.9. This phenomenon
suggests that electron localization becomes more effective as
the magnetic field increases, and we will now investigate the
influence of spin polarization in these results.

In the limit that B = 0, n↑ and n↓ are equal, and by the
interplay of interaction and hopping energy, electrons with
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FIG. 5. Degree of spin polarization P as a function of B at low
temperature. In panels (a) to (d), dashed lines depict the MIT, located
approximately at 0.14, 0.13, 0.14, and 0.12, respectively. The values
of P at the MIT in these conditions are all smaller than 0.02, which
are much lower than the value for full spin polarization.

opposite spins on NN sites can hop. If now introducing a
magnetic field, the increased spin polarization P favors lo-
calization in the system due to the onset of Pauli blockade,
which prevents the now more likely same-spin electrons to
conduct. In this regime, the transport is more influenced on
the maximum of n↑ and n↓ rather than on the total electron
density n = n↑ + n↓ [50,52].

Figure 5 shows the computed P as a function of B for
several (U,�) combinations. The polarization degree of the
system increases with both U and �, an opposite trend if com-
pared to the dc conductivity. P is always positively correlated
to temperature, increases monotonically with the magnetic
field, and, most importantly, does not show special properties
near Bc. Furthermore, P at the MIT is much smaller than 1,
indicating that the system is far from full-spin polarization.
For instance, at U = 3.0 and � = 0.0, Bc is approximately
0.14, which is much smaller than the field strength for full
spin polarization [see Fig. 5(a)]. The corresponding value of
P is only 10−2, which suggests that the MIT does not coincide
with the occurrence of a fully spin-polarized state [18,19,53],
and a small critical magnetic field strength is sufficient for the
onset of the phase transition.

So far we have discussed how the different terms in (1)
drive a MIT, based on the analysis of σdc. What this analysis
misses is the differentiation, beyond a qualitative level, of the
three different types of insulating phases one may reach. To
better contrast those, we show in Fig. 6 the density of states
at the Fermi level N (0) around the transitions driven by either
U , �, and B, discussing the different physical mechanisms
through which they induce the corresponding insulating state
[see Fig. 6(d) for schematics]. The interaction-induced Mott
insulator, characterized by the opening of a Mott gap, results
that N (0) tends to 0 when T → 0 [37], which is indeed
observed near U ≈ 3.9 in Fig. 6(a). In turn, the disorder-driven
Anderson insulator appears near � ≈ 1.6 in Fig. 6(c), whose

FIG. 6. Density of states at the Fermi energy N (0), as a function
of temperature T : (a) At various U . With U increasing, N (0) grad-
ually decreases, and when N (0) at T → 0 tends to zero, the system
becomes a Mott insulator. (b) At various U and B. A sufficiently
large B can induce the system into a band insulating phase, whose
N (0) tends to zero at T → 0. (c) At various �. N (0) of the An-
derson insulator at low T tends to a finite value. The MIT appears
near � ≈ 1.6. (d) Schematic diagram of the density of states for
different insulator types. In panels (a), (b), and (c), we use data at
low temperature to fit values of N (0) near T = 0. Since conditions at
even lower temperatures are challenging, our polynomial fittings at
T → (dashed lines) are to be interpreted on a qualitative level.

N (0) is always finite at T → 0 [37]. Lastly, in panel (b), when
B is increased from 0.0 to 0.2 at U = 1, � = 0, and U = 3,
� = 0, N (0) at T → 0 changes from a finite value to 0. It
indicates the formation of a band-insulating phase formed by
the imbalance of the density with different spins.

IV. SUMMARY

Using DQMC simulations, we studied the metal-insulator
transition of the disordered Hubbard model induced by a mag-
netic field on a honeycomb lattice. The parallel magnetic field,
coupling to the electron spin, suppresses metallic behavior at
low temperatures, and therefore induces the transition from
a conducting to an insulating phase. We defined Bc as the
critical magnetic field at which the dc conductivity does not
change in the low-temperature region. Bc is overall much
smaller than the strength required for full spin polarization,
being further affected by the Coulomb repulsion and disor-
der: It reaches a maximum at very small U and � and then
displays an accelerated downward trend upon reaching close
to the Anderson and Mott insulating phases. As a result, the
conductance is largely influenced by the interplay of the three
“knobs” we studied. For instance, the magnetic field has a
more pronounced effect at small U and �, and in turn, the
application of B will effectively reduce the critical U or �

for the system to become a Mott insulator or an Anderson
insulator. Right before the Mott insulating phase at U = 3.89
[54] and � = 0.0 [Fig. 4(b)], turning on B has an initially
insignificant effect, in which as B increases considerably, the
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FIG. 7. The conductivity σdc is shown as a function of tempera-
ture T at half-filling for various magnetic field strengths with lattice
sizes (a) L = 9 (b) L = 6.

critical U marginally decreases. Under a stronger magnetic
field, however, the effect is greatly enhanced. A similar phe-
nomenon also appears in the influence of B on the critical �.

In fact, an important differentiation can be drawn from the
conductance with and without a magnetic field in the presence
of U and �. As the application of B polarizes graphene carri-
ers, the carrier density is affected having direct consequences
on the transport [28,33]. A partial Pauli blockade mechanism
was interpreted as the basis of this positive magnetoresistance,
but under a material’s perspective, especially in light of recent
schemes of disorder manipulation that have been currently
advanced [55], one may wonder if this interplay can be ex-
perimentally investigated in order to directly observe the MIT
we disclose here.
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APPENDIX A: FINITE SIZE EFFECTS

To understand the influence of the system’s finiteness on
the physical results we have presented in the main text, we
now check the fate of the conductivity σdc with various values
of L. We start by reporting in Fig. 7 the conductivity σdc as
a function of the temperature T for the lattice sizes L = 9
and 6.

While different lattice sizes yield different values for the
conductivity (σdc grows as the system size decreases), the Zee-
man field under all conditions still induces a band insulating
phase at some critical value.

A more evident display is obtained in Fig. 8, where σdc at
different T s is shown as a function of magnetic field B for
a set of L values. In all cases, σdc monotonically decreases
with increasing magnetic field. As before, the decrease in
conductivity with growing lattice sizes is also observed, but
more importantly, the critical value of the field associated
with the metal-insulator transition (given by the intersection
of the curves) is marginally dependent on the system size. As
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FIG. 8. The conductivity σdc is shown as a function of B for
various temperatures T with (a) L = 9 (b) L =6.

a result, finite size effects in the “surface” describing the phase
diagram in Fig. 7(a) in the main text are rather small.

APPENDIX B: INTERACTION- OR DISORDER-INDUCED
INSULATING PHASES

Our results suggest the impact of the three “knobs” on
the transport properties is not isolated. The effect of the in-
teraction U and disorder � on magnetic field B are shown
in the main text, and here we provide data on how B influ-
ences U , i.e., how the U -driven Mott transition is affected
by the presence of a small magnetic field B. Figure 9 shows
the σdc as a function of the U in the clean case (� = 0)
in a lattice with L = 12. At low temperatures, the effect of
an increase in B is unequivocal: it not only suppresses the
metallic behavior, but furthermore, it moves the position of the
intersection point to smaller U s (if one increases the magnetic
field, this phenomenon will becomes even more pronounced).
It means that the critical interaction Uc is reduced when the
magnetic field is included, and similar phenomenon also ap-
pears on the disorder-induced insulating phases. This suggests
that localization becomes more effective as the magnetic field
increases.

APPENDIX C: THE DC CONDUCTIVITY FORMULA

In this paper, we use the low temperature behavior of dc
conductivity σdc to distinguish metallic or insulating phases.
We implemented the approach proposed in the Ref. [41],
which is based on the following argument. The fluctuation-
dissipation theorem yields

�xx(q, τ ) = 1

π

∫
dω

e−ωτ

1 − e−βω
Im�xx(q, ω), (C1)

FIG. 9. The dc conductivity σdc is shown as a function of U for
various T with (a) B = 0.0 (b) B = 0.1.
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FIG. 10. dc conductivity computed on the L = 12 lattice at
β =12, U = 3, and � = 0.5. For a given B, the data obtained from
an ensemble with growing disorder realizations are consistent within
the statistical errors.

where �xx is the current-current correlation function along x
direction. While Im�xx(q, ω) could be computed by a nu-
merical analytic continuation of �xx(q, τ ) data obtained in
DQMC, we instead here assume that Im�xx ∼ ωσdc below
some energy scale ω < ω∗. Provided the temperature T is
sufficiently smaller than ω∗, the above equation simplifies to

�xx

(
q = 0, τ = β

2

)
= π

β2
σdc, (C2)

which is Eq. (C2) in the manuscript.
It has been noted that this approach may not be valid for a

Fermi liquid [41], when the characteristic energy scale is set
by ω∗ ∼ N (0)T 2, and the requirement T < ω∗ will never be
satisfied. However, in our system, the energy scale is set by the
temperature-independent hopping-disorder strength ω∗ ∼ �,
so that Eq. (C2) is valid at low temperatures.

APPENDIX D: CONCERNING THE NUMBER
OF DISORDER REALIZATIONS

In general, the required number of realizations in simula-
tions with disorder must be determined empirically, which is
a complex interplay between “self-averaging” on sufficiently
large lattices, the disorder strength, and the location in the
phase diagram. In Fig. 10, we show the results of σdc averaged
over different number of random disorder realizations. For
any given magnetic field B, the averaged σdcs are already
consistent for realization numbers larger than 10. It justifies
the usage of 20 realizations, which we have performed in the
results in the main text. More precisely, our data suggest that
there is considerable self-averaging on lattices with 2L2= 288
sites.

APPENDIX E: CANTED ANTIFERROMAGNETIC PHASE

In the absence of disorder (� = 0), Eq. (1) has been inves-
tigated at T = 0 using unbiased projective QMC methods [8]
in lattices with similar size as the ones we tackle here. They
observe that in the semi-metallic phase, the in-plane magnetic
field gives rise to a canted antiferromagnetic state, that is, one
that displays a staggered magnetization perpendicular to the
applied field for arbitrarily small values of the interactions.

FIG. 11. Dependence of the transverse antiferromagnetic struc-
ture factor with the inverse temperature β in the absence of field, for
� = 0 (a) and � = 0.6 (b), and different lattice sizes. At β = 12,
S⊥

AFM is already close to the asymptotic value, denoting the results
are close to the ones at T = 0.

To characterize such phase, we compute the staggered
transverse antiferromagnetic structure factor as

S⊥
AFM = 1

N

∑
i, j

(−1)(i+ j)
(
Sx

i Sx
j + Sy

i Sy
j

)
, (E1)

where the phase factor is +1(−1) for sites i, j belonging to
the same (different) sublattices of the honeycomb structure. To
test that at β = 12 we are already assessing physics close to
the ground state, we show in Fig. 11 the dependence of S⊥

AFM
with the inverse temperature: saturation is readily observed for
values β � 12.

Fixing then at temperature T = 1/12, we now focus on the
dependence with the magnetic field, and the corresponding
polarization P in Fig. 12. In the clean case, the results of
the transverse antiferromagnetic structure factor are remark-
ably similar to the ones from Ref. [8] when cast in terms
of the polarization P [Fig. 12(a)]. A contrast though is in
order: Projective QMC methods are canonical simulations
and P is an input of the calculation; here, however, a typical

FIG. 12. (a) Dependence of the transverse antiferromagnetic
structure factor on the polarization P in the clean case; (d) the
same but with a dependence on the B field. (b) Similar results
but disclosing the longitudinal antiferromagnetic structure factor at
� = 0. (c) Influence of disorder on the transverse antiferromagnetic
structure factor; at a given system size, a growing � diminishes the
induced canted antiferromagnetic order. All data is taken at β = 12
and interaction U = 3.
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FIG. 13. (a) The finite size extrapolation of the normalized trans-
verse structure factor in the clean case � = 0 (a) and the disordered
one � = 0.6 (b), within a range of magnetic field strengths compati-
ble with the phase diagram in Fig. 1(a). Dashed lines are polynomial
fits to the points at B = 0.2.

grand-canonical simulation, P is an outcome that depends
on the magnetic field used (and the remaining Hamiltonian’s
parameters). If converting these same results to the magnetic
field strength, we notice that the regime where S⊥

AFM quickly
increases when tuning B is much beyond the one that gives
rise to the insulating transition, i.e., S⊥

AFM only grows when
the system is already in the insulating phase as quantified

by the dc conductivity. In particular, for U = 3 and � = 0,
the critical field that drives the metal-insulating transition is
Bc = 0.136 [see Fig. 3(a)]. In fact, for this interaction magni-
tudes, increasing the disorder � dampens this effect, and the
canted antiferromagnetic state becomes less prominent even
at large field magnitudes/polarizations [see Fig. 3(c)].

Lastly, the longitudinal structure factor, S‖
AFM ≡

(1/N )
∑

i, j (−1)(i+ j)Sz
i Sz

j , is much smaller and quickly
vanishes with growing lattice sizes below the critical
interaction strength [see Fig. 12(b)].

Now to verify whether the canted antiferromagnetic mag-
netic state survives when approaching the thermodynamic
limit, we promote in Fig. 13 a finite-size analysis of the
normalized S⊥

AFM, for values of the field concerned in the
original phase diagram, Fig. 1, i.e., B � 0.2. By scaling it
with the inverse linear size, we notice that the canted antifer-
romagnetism does not appear in L → ∞ limit in this regime
of small fields, that is, its corresponding structure factor is
not extensive, resulting in only short-range ordering. Further
investigations would be necessary to study it at larger fields,
and to test whether this state can overcome the disorder effects
when approaching the thermodynamic limit.
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