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Quantum magnetism of iron-based ladders: Blocks, spirals, and spin flux
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Motivated by increasing experimental evidence of exotic magnetism in low-dimensional iron-based materials,
we present a comprehensive theoretical analysis of magnetic states of the multiorbital Hubbard ladder in the
orbital-selective Mott phase (OSMP). The model we used is relevant for iron-based compounds of the AFe2X3

family (where A = Cs, Rb, Ba, K are alkali metals and X = S, Se are chalcogenides). To reduce computational
effort, and obtain almost exact numerical results in the ladder geometry, we utilize a low-energy description
of the Hubbard model in the OSMP—the generalized Kondo-Heisenberg Hamiltonian. Our main result is the
doping vs interaction magnetic phase diagram. We reproduce the experimental findings on the AFe2X3 materials,
especially the exotic block magnetism of BaFe2Se3 (antiferromagnetically coupled 2 × 2 ferromagnetic islands
of the ↑↑↓↓ form). As in recent studies of the chain geometry, we also unveil block magnetism beyond the 2 × 2
pattern (with block sizes varying as a function of the electron doping) and also an interaction-induced frustrated
block-spiral state (a spiral order of rigidly rotating ferromagnetic islands). Moreover, we predict new phases
beyond the one-dimensional system: a robust regime of phase separation close to half filling, incommensurate
antiferromagnetism for weak interaction, and a quantum spin-flux phase of staggered plaquette spin currents
at intermediate doping. Finally, exploiting the bonding/antibonding band occupations, we provide an intuitive
physical picture giving insight into the structure of the phase diagram.
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I. INTRODUCTION

The lattice geometry plays an important role in quantum
many-body systems, especially if the problem is reduced to
one (1D) or two (2D) dimensions. For example, the crossover
from 1D chains to 2D planes of the spin-1/2 Heisenberg
model shows that the system behaves fundamentally differ-
ently if one considers an even or odd number of coupled
chains [1]. Consequently, in the last three decades, there was
a tremendous effort devoted to understanding the physics of
quantum ladders, i.e., the systems at the crossroads between
1D and 2D worlds. Furthermore, while unbiased analytical or
numerical calculations are often not possible in 2D, the 1D
chains and quasi-1D ladders—due to the possibility of an ac-
curate treatment via quasiexact numerical simulations—have
become a playground for condensed-matter physicists to test
various theoretical scenarios.

The interest in the physics of the ladder systems goes
beyond a toy model investigation. There are many materials
whose lattice structure is of the ladder geometry. The unique
interplay between theory and experiment in low-dimensional
systems allows for an in-depth understanding of various
complex phenomena. For example, within cuprates the
so-called telephone-number two-leg ladder compounds
(La, Sr, Ca)14Cu24O41 were extensively studied motivated by
the presence of pressure-induced high-critical-temperature
superconductivity [2–4]. Interestingly, the latter was

numerically predicted [5,6], showing the power of theoretical
investigation of low-dimensional systems. Another series
of cuprate materials, SrxCuyOz, allows one to study the
differences between various lattice geometries, from chains
(Sr2CuO3), through two- (SrCu2O3) and three-leg (Sr2Cu2O5)
ladders, to 2D planes (SrCuO2). The first of these compounds
is one of the best realizations of a 1D system, with the intra-
chain exchange integral being four orders of magnitude larger
than the interchain one [7]. Despite that the hole doping nec-
essary for superconductivity is hard to achieve, the next two
exhibit a large contribution of magnons [8,9] to the thermal
conductivity, in agreement [10,11] with the thermal current
being a constant of motion of 1D quantum spin systems.

Iron-based ladders are far less explored, especially from
the theoretical perspective. Recent experimental investiga-
tions have shown that the two-leg ladder materials from the
so-called 123 family, i.e., AFe2X3 where A are alkali metals
and X chalcogenides, become superconducting under pressure
[12–14], as in the Cu-based equivalents. Canonical (π, 0)
order, i.e., staggered antiferromagnetic (AFM) ordering along
the legs and ferromagnetic (FM) along the rungs, was identi-
fied in (Ba, K)Fe2S3 [15] and (Cs, Rb)Fe2Se3 [16–18]. More
recent measurements on CsFe2Se3 [19] suggest that an in-
commensurate order emerges in this compound instead of the
AFM.

Interestingly, the magnetic orders identified in AFe2X3 lad-
ders display more variety than those found in cuprates. In a
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series of experiments on the BaFe2Se3 compound, an exotic
block-magnetic order was reported, with the spins forming
FM islands which are then AFM coupled ↑↑↓↓↑↑↓↓ (on
the ladder this takes the form of 2 × 2 FM blocks which are
AFM coupled). This unusual magnetic state was identified
with the help of inelastic neutron scattering (INS) [20], x-ray
[21] and neutron powder diffraction [21–23], and muon spin
relaxation [21]. Remarkably, yet again, the block-magnetic
order was predicted by numerical calculations [24]. It can be
argued that the spin arrangement of the BaFe2Se3 ladder is a
low-dimensional equivalent of the magnetic state found in 2D
iron-based systems, i.e., the double stripe or staggered dimer
ordering found in FeSe [25], the

√
5 × √

5 iron vacancies
ordering in (K, Rb)0.8Fe1.6Se2 [26–29], or the blocklike mag-
netism found in the family of 245 iron-based superconductors
(K, Rb)2Fe4Se5 [30,31]. Also, similar block magnetism was
predicted in a 1D iron selenide compound Na2FeSe2 [32].

The theoretical analysis of iron-based systems is a chal-
lenging task due to their multiorbital nature. While the
single-orbital Hubbard model is often sufficient to describe
the Cu-based parent compounds (with the charge density close
to one electron per site), the Fe-based materials need (in
principle) five orbitals filled with six electrons; i.e., they have
to be described by the multiorbital Hubbard model with intra-
and interorbital interactions treated on an equal footing. As
a consequence, exact-diagonalization many-body calculations
are challenging to achieve due to the exponential growth of
the Hilbert space of the Hamiltonian—dim(H) = 4�L with
� the number of active orbitals and L the number of sites
in the system. In order to study the physics of such sys-
tems, we must rely on some form of approximations. For
example, the full five-orbital Hubbard model was investigated
via the mean-field Hartree-Fock analysis [33–36], revealing
a complex filling-Hund/Hubbard interaction magnetic phase
diagram with many competing phases. Many of such phases
were also confirmed by density functional theory [34,37–
42]. Moreover, the electronic properties of the multiorbital
Hubbard model were extensively investigated via the dynami-
cal mean-field theory [43–45], especially the orbital-selective
Mott phase (OSMP), namely the possibility of the localization
of a fraction of the conduction electrons (on one or more
orbitals) [46–49]. The latter phase is regarded as a promising
candidate for the parent state of iron-based superconduc-
tors [50–53] and, most relevantly, of the 123-family ladders
[18,47,49,54–56].

Despite their value, the aforementioned theoretical ap-
proaches are limited in that they cannot properly incorporate
the effects of quantum fluctuations over long distances. This
issue is particularly important for low-dimensional systems,
where it is well known that quantum fluctuations must be
treated accurately, thereby requiring full many-body calcu-
lations. In order to facilitate the latter, an alternative route
has to be taken, such as decreasing the number of considered
orbitals. For instance, it was shown [57] that the three-orbital
Hubbard model can accurately describe the physics of iron-
based materials. In the latter, the eg orbitals (dx2−y2 and dz2 )
are far enough from the Fermi level to be neglected, rendering
only the t2g orbitals (dxy, dxz, dyz) active. Importantly, the
three-orbital model was used to predict [24,58] and confirm

FIG. 1. Schematic representation of (a) the ladder geometry,
(b) density of states in the orbital-selective Mott phase, (c) the
generalized Kondo-Heisenberg model, (d)–(i) the unveiled exotic
magnetic orders.

[59] the INS result on BaFe2Se3 [20] related to the block-
magnetic order, while also tracing its origin to the presence
of the OSMP. Nevertheless, it should be noted that accurate
many-body simulations of three-orbital systems are mostly
restricted to the chain geometry, with ladders being largely
out of reach. Recently, it was realized that one may further
reduce the number of degrees of freedom captured within
minimal models by noting that the dyz and dxz orbitals are
close to being degenerate in tetragonal systems of the 123
family [49,54]. As a result, two-orbital models were designed,
which, within the OSMP, were found to correctly reproduce
both the static [60,61] and dynamic [62] properties of the
three-orbital chains.

In this work, we use such a minimal approach to go beyond
the chain geometry—bridging the gap between theory and
experiment—and perform a comprehensive analysis of the
magnetic phases within the OSMP of a multiorbital Hubbard
ladder. To facilitate numerically exact many-body calcula-
tions, we focus on a two-orbital model, which we further
map onto an accurate low-energy description, the generalized
Kondo-Heisenberg Hamiltonian. We unveil a rich variety of
exotic magnetic phases [see Figs. 1(d)–1(i) for sketches],
summarized in our central result: the doping vs interaction
magnetic phase diagram. In particular, we reproduce the
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experimental finding on BaFe2Se3, i.e., the ↑↑↓↓
↑↑↓↓ block phase,

and predict the possibility of experimentally realizing larger
blocks, e.g., ↑↑↑↓↓↓

↑↑↑↓↓↓ , by doping this or related compounds.
Furthermore, we report a highly unusual block-spiral state
(with the blocks rigidly rotating throughout the system), dis-
covered first using a chain geometry [61], and predict this
spiral to be stable also on the experimentally relevant ladder.
Surprisingly, we reveal that the ladder supports also phases
absent in its chain counterpart. For example, in the vicinity
of half filling, we discover incommensurate AFM order as
well as a robust regime of phase separation (relating our effort
to previous works on cuprates and manganites, respectively).
Last but not least, we report the emergence of a novel quantum
spin flux state at intermediate doping, with staggered spin
currents circulating around 2 × 2 plaquettes. Our magnetic
phase survey is supplemented by an intuitive physical picture
involving the bonding/antibonding ladder bands, which ex-
plains the observed magnetic tendencies and generalizes our
conclusions to models with more orbitals.

The paper is organized as follows. In Sec. II, we intro-
duce the two-orbital Hubbard ladder relevant for the AFe2X3

compounds and simplify this formalism into the generalized
Kondo-Heisenberg Hamiltonian. Then, we describe the com-
putational method used to solve the many-body problem. In
Sec. III, we present the main result: the doping vs interaction
magnetic phase diagram. Each reported phase is discussed in
detail within three subsections III A, III B, III C, addressing
the cases of large, low, and intermediate doping, respectively.
Finally, in Sec. IV, we give a summary and draw conclusions.
In the Appendix, we discuss additional details regarding the
computational accuracy.

II. MODEL AND METHOD

We aim to establish the magnetic properties, within the
OSMP, of a two-orbital Hubbard model on a two-leg ladder.
In the generic SU(2)-symmetric form, the Hamiltonian reads

HH =
∑

γ 〈r m〉σ
tγ c†

γ rσ cγ mσ +
∑
γ r

�γ nγ r

+ U
∑
γ r

nγ r↑nγ r↓ + (U − 5JH/2)
∑

r

n0rn1r

− 2JH

∑
r

S0r · S1r + JH

∑
r

(P†
0rP1r + H.c.). (1)

Here, c†
γ rσ (cγ rσ ) creates (annihilates) an electron with spin

σ = {↑,↓} at orbital γ = {0, 1} of site r = (�‖, �⊥), where
�‖ = {1, . . . , L‖} and �⊥ = {1, 2} enumerate the sites in di-
rections parallel and perpendicular to the legs, respectively.
The total number of sites is L = 2 × L‖. The 〈r m〉 brackets
indicate summation over nearest-neighbor (NN) sites in the
ladder geometry [see the sketch in Fig. 1(a)]. The first two
terms of the Hamiltonian constitute the kinetic energy part,
with tγ denoting the hopping matrix elements, �γ denoting
the crystal-field splitting, and nγ r = ∑

σ nγ rσ = ∑
σ c†

γ rσ cγ rσ
being the total electron density at (γ , r). The remaining four
terms form the interaction part: the first is the standard intraor-
bital Hubbard repulsion U > 0, the second is the interorbital
repulsion U − 5JH/2, the third is the ferromagnetic Hund

exchange JH (which couples spins Sγ r on different orbitals
γ ), and the fourth is the interorbital pair hopping (Pγ r =
cγ r↑cγ r↓). Note that all the interaction terms follow directly
from the matrix elements of the fundamental 1/r Coulomb
interaction [63–65].

We adopt the following set of hopping amplitudes (eV
units): t0 = 0.5 and t1 = 0.15. The interorbital hybridiza-
tion is neglected, as it was shown that a realistically small
hybridization leaves the overall physics unaffected [60].
Moreover, here, we choose equal hoppings along the legs
and the rungs, i.e., t‖

γ = t⊥
γ = tγ , although density-functional

theory [34] and spin-wave theory [20] analyses suggest that
this is only an approximation for real materials. Nevertheless,
below we shall argue that such a choice does not compromise
the generality of our results. The crystal-field splittings are
assumed as (eV units) �0 = 0, �1 = 1.6, where the latter is
taken large enough to energetically separate the two orbitals.
The rationale behind the above values of tγ and �γ is to
reproduce the essential feature of the band structure of the
123-family materials—the coexistence of nondegenerate wide
and narrow orbitals [24,34,43,46,56,57]—and, in this sense,
these values are generic. The total kinetic-energy bandwidth
W = 3.55 eV is here the energy unit throughout the paper. To
further reduce the number of free parameters in the model, we
also fix the Hund exchange to JH = U/4, a value widely ac-
cepted to be experimentally relevant for iron-based materials
[66–70]. Finally, we note that our choice of model parameters
ensures that for a wide region of electronic fillings, 2 < nH <

3, and Hubbard interaction strengths, U � W , the ground state
is in the OSMP [60,62], where the narrow (γ = 1) orbital
undergoes Mott localization while the wide (γ = 0) orbital
remains itinerant [see Fig. 1(b)]. In the following, we shall
vary both nH and U to produce a rich variety of magnetic
phases [see Figs. 1(d)–1(i)].

The selective localization implies that the charge degrees
of freedom in the narrow orbital are essentially frozen out and
should no longer play a role in low-energy processes. Let us
consider the single-particle spectral function of the two-orbital
Hubbard ladder (1) defined as

Aγ (q, ω) = − 1

π
√

L

∑
r

eiq(r−c) Im

〈
c†
γ r

1

ω++(H − εGS)
cγ c

〉

− 1

π
√

L

∑
r

eiq(r−c) Im

〈
cγ r

1

ω+−(H − εGS)
c†
γ c

〉
,

(2)

where c†
γ r = ∑

σ c†
γ rσ , c = (L‖/2, 1), q = (q‖, q⊥), ω+ =

ω + iη, and 〈·〉 ≡ 〈GS| · |GS〉 with |GS〉 being the ground-
state vector with energy εGS. In Fig. 2, as an example we show
the case of Aγ (q, ω) for γ = 0, 1, nH = 2.75, and U/W = 1.
Several conclusions can be drawn from the results. (i) The
interaction U heavily modifies the dispersion relation which in
the U → 0 limit would have a simple cosine form (see also the
discussion in the next section). (ii) As expected in the OSMP
regime, already at U/W � 1 the electrons at the γ = 1 orbital
localize, which can be deduced from the flat (momentum-
independent) spectral function A1(q, ω). The two modes of
the latter, separated by a wide charge gap, resemble the lower
and upper Hubbard subbands of a Mott insulator. Similar
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FIG. 2. Single-particle spectral function Aγ (q, ω) of the two-
orbital Hubbard model (1) in the vicinity of the Fermi level εF. The
itinerant (γ = 0) orbital is presented as blue-green color, whereas
the localized (γ = 1) as dark purple. Both q⊥ = 0, π components
of each orbital are displayed. The frequency resolution was chosen
to be �ω = 0.02 eV with the broadening η = 2�ω. The results
were obtained for a ladder of L = 72 sites, filling nH = 2.75, and
interaction U/W = 1.

properties of the OSMP were also identified in 1D systems
[61,62].

The charge gap of the localized orbital is robust enough
to result in vanishing charge fluctuations already for U � W .
Correspondingly, the double occupancy of the latter orbital
can be traced out via the standard Schrieffer-Wolff transfor-
mation [71], leaving only the spin degrees of freedom active.
Such a procedure results [60] in the generalized Kondo-
Heisenberg (gKH) Hamiltonian

HK = t0
∑

〈r m〉σ
c†

0rσ c0mσ + U
∑

r

n0r↑n0r↓

+ K
∑
〈r m〉

S1r · S1m − 2JH

∑
r

S0r · S1r, (3)

where K = 4t2
1 /U is a Heisenberg-like exchange between the

localized γ = 1 spins. See Fig. 1(c) for a graphical represen-
tation of the Hamiltonian. The electronic filling nK of the gKH
model is obtained from the original filling nH by subtracting
the occupancy of the γ = 1 orbital, i.e., nK = nH − 1. How-
ever, it is noteworthy that due to the particle-hole symmetry of
(3), one could equivalently choose nK = 3 − nH. The effective
description (3) reveals that the OSMP naturally favors exotic
magnetism due to the coexistence of itinerant electrons and
well-developed local magnetic moments. In particular, within
the OSMP, the Hund exchange induces a remarkably complex
correlated behavior where the total on-site magnetic moment
〈S2

r〉 (Sr = ∑
γ Sγ r) is completely maximized [24,58,60] as in

an insulator, despite the system remaining metallic.
Previous comparisons between models (1) and (3) con-

cluded that the latter not only qualitatively but also quanti-
tatively reproduces both the static [60,61] and dynamic [62]
properties of the former (provided that the system is in the
OSMP). Accordingly, hereafter, in our numerical calculations,
we exclusively use the model (3), utilizing its considerably
smaller Hilbert space to perform extensive simulations with
feasible computational cost. The many-body ground state

(temperature T = 0) of the system is studied via the density
matrix renormalization group (DMRG) method within the
single-center site approach [72,73]. Throughout the DMRG
procedure, we typically keep up to M = 1200 states and
perform 20–30 full sweeps in the finite-size algorithm, main-
taining the truncation error below 10−6. We focus on the
subspace with zero total spin projection and a fixed particle
number N , which sets the filling nK = N/L. Open boundary
conditions are assumed. All results are obtained using the
DMRG++ computer program developed at Oak Ridge Na-
tional Laboratory [73,74], and the input scripts are available
online [75]. Additional details regarding the computational
accuracy are discussed in the Appendix.

The key observables used to identify the magnetic orders
are the total spin-spin correlation function 〈Sr · Sm〉 (viewed
as a function of distance or on NN bonds) and its Fourier
transform—the spin structure factor, defined as S(q) = 〈Sq ·
S−q〉, where Sq = (1/

√
L)

∑
r exp(iqr) Sr. These two quanti-

ties, albeit very useful, cannot distinguish between all possible
magnetic orders. Therefore, we supplement our analysis with
the chirality correlation function, which is explicitly defined
in the next section. Note that the exotic magnetic patterns we
observe are not static (as would be the case for a combination
of domain walls or a spin density wave), but exhibit significant
quantum fluctuations. For example, in the case of the block
pattern ↑↑↓↓ (whose extended version we report), exact di-
agonalization studies confirm [59] that the many-body ground
state is in at least 50% of the singlet form |↑↑↓↓〉 − |↓↓↑↑〉.
Accordingly, the individual magnetic blocks should be con-
sidered as regions with strong FM correlations, as opposed to
domains with finite magnetization.

III. RESULTS

To better understand the general structure of the magnetic
phase diagram reported below, it is instructive to recall the
properties of a noninteracting (U = 0) ladder system. In such
a case, the Hamiltonian (3) retains only the kinetic-energy
term which can be easily diagonalized by first introducing
the bonding and antibonding (symmetric and antisymmetric,
respectively) combinations of the rung states and then Fourier
transforming along the leg direction (here, we assume periodic
boundary conditions). In the general case of unequal leg and
rung hoppings, one obtains the dispersion relation ε(q) =
2t‖

0 cos(q‖) + t⊥
0 cos(q⊥), consisting of two bands (bonding

q⊥ = 0 and antibonding q⊥ = π ) separated by the energy 2t⊥
0

[see Fig. 3(a)]. The respective fillings are denoted by nb
K, na

K.
Since these bands can host at most 2L‖ electrons, the max-
imum possible filling is max{nb

K} = max{na
K} = 1, and thus

nb
K, na

K ∈ [0, 1], consistent with the relation nK = nb
K + na

K.
Note that this dispersion corresponds only to the γ = 0 or-
bital, as the γ = 1 orbital is completely localized within the
model (3). To avoid any confusion, hereafter, we reserve the
term band to denote the latter bonding/antibonding bands and
not the underlying orbitals.

Owing to the band structure, the behavior of the ladder
system is nontrivial even in the noninteracting case. The
Fermi level εF can cross either one or both bands [see the
sketches in Fig. 3(c)], giving rise to qualitatively different
Fermi “surfaces” with two (±kb

F) or four (±kb
F, ±ka

F) Fermi
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FIG. 3. Properties of the band structure. (a) Noninteracting (U =
0) band structure of (3) for t⊥

0 = t‖
0 . The dispersion concerns only the

itinerant γ = 0 orbital, as the γ = 1 orbital is completely localized.
The dashed line marks the Fermi level εF at half filling, nK = 1.
(b) nK-t⊥

0 phase diagram of the noninteracting ladder. The dashed
line marks the point where the Fermi level touches the tip of the
antibonding (q⊥ = π ) band, while the dot marks the phase boundary
between the one- and two-band regimes for t⊥

0 = t‖
0 . (c) DMRG

results for the antibonding band filling na
K vs the interaction U and

the total filling nK at fixed t⊥
0 = t‖

0 . The plot is composed of 37 × 40
data points obtained for the generalized Kondo-Heisenberg ladder
of L = 72 sites. The sketches show the one-band (na

K � 1) and two-
band (both bands fractionally occupied) regimes. The dashed line is
a contour at na

K � 1.

points, respectively. Whenever convenient, we will use the
abbreviated notation kF = {kb

F, ka
F} to collectively refer to both

wave vectors. To tune between the one- and two-band regimes,
one may use both the filling nK (to shift the Fermi level)
and/or the rung hopping t⊥

0 (to vary the band separation). This
is summarized in the nK-t⊥

0 phase diagram [76], Fig. 3(b),
where one clearly recognizes the complementary role of the
two parameters in deciding whether one or two bands are
fractionally occupied.

The picture of one- and two-band regimes can be extended
also beyond the U = 0 case. Here, although finite U inevitably
renormalizes the band fillings, the latter retain their physical
meaning and can be calculated in a straightforward manner. In
Fig. 3(c), we show the antibonding band filling na

K (with na
K =

nK − nb
K) as a function of the total filling nK and the interaction

strength U at fixed t⊥
0 = t‖

0 . We observe that there exists a
robust region where na

K � 1; i.e., the antibonding band is com-
pletely filled. This condition provides a convenient definition
of the one-band regime for a general U 
= 0. Starting from
U = 0, the boundary between the one- and two-band regimes
occurs at three-quarter filling nK = 1.5 [in agreement with
Fig. 3(b)] and shifts rightward with increasing U . Notably,
although the width of the one-band regime decreases with

the interaction, it does not vanish up to the largest considered
U/W = 4.

The significance of the above discussion lies in the fact
that the block magnetism of the gKH chain was shown to be
controlled by the Fermi wave vector of the itinerant orbital
[60], even though U � W . In the following, we shall see that
this insight remains meaningful also on the ladder, where the
distinct Fermi surfaces of the one- and two-band regimes will
necessarily come into play. In particular, we are already in
a position to argue that the main influence of varying t⊥

0 on
the magnetic properties of our system should come precisely
from tuning between the one- and two-band regimes. Con-
sider first the one-band regime. Here, as long as t⊥

0 is varied
in a range that will not push the system into the two-band
regime, there is only one Fermi wave vector kb

F available,
whose position does not depend on t⊥

0 . This suggests that the
magnetism, which depends on the Fermi wave vector, shall
remain mostly unaffected. At a few points within the one-band
regime, we checked (not shown) that this indeed holds true, at
least for a modest perturbation of the t⊥

0 /t‖
0 ratio (since one

expects that for t⊥
0 � t‖

0 the system will behave as uncoupled
rung dimers and our argument will eventually break). In the
two-band regime, the situation becomes more complicated, as
here varying t⊥

0 at a fixed filling nK does change the values
of kF. Nevertheless, judging by Fig. 3(b), it is reasonable to
assume that the latter change of Fermi wave vectors—and
the resulting impact on magnetism—will be complementary
to that achievable by tuning nK at fixed t⊥

0 . In that sense,
although in the following we fix t⊥

0 = t‖
0 , we do not expect

a qualitatively different magnetic phase diagram for other
t⊥
0 /t‖

0 ratios, but rather a similar diagram with renormalized
magnetic phase boundaries, originating in the renormalization
of the one- and two-band regimes. Finally, let us stress that it
is the one-band regime where we reproduce the experimen-
tally reported block magnetism, and clearly this is the regime
which is least affected by the perturbation of t⊥

0 .
The central result of this work, shown in Fig. 4, is the

nK-U magnetic phase diagram of the gKH model on a lad-
der geometry, relevant for the low-dimensional 123-family
iron-based superconductors within the OSMP. The details on
each reported magnetic phase are provided in the following
three sections: Sec. III A discusses the one-band regime, i.e.,
nK � 1.6, whereas Secs. III B and III C discuss the two-band
regime at low (nK � 1.3) and intermediate fillings (nK ∼ 1.5),
respectively. Here, let us first focus on a few generic phases.
(i) For all considered electronic fillings nK, the system is a
paramagnet at small values of the interaction strength U/W �
0.5. Note that in this regime our effective description (3) only
approximately depicts the behavior of the full multiorbital
Hubbard model. This stems from the fact that the latter is
not yet within the OSMP and the magnetic moments 〈S2

r〉 are
not yet fully developed. (ii) In the other extreme, when U �
W , the system is a ferromagnet for all noninteger fillings,
1 < nK < 2, due to the dominance of the double-exchange
mechanism (favored by a large value of the Hund exchange
JH). This phase is also present at moderate interaction strength
U � W in the proximity of nK = 2. (iii) For special values of
the electron density nK = 1 and nK = 2, i.e., at half filling and
in the case of a band insulator, respectively, the usual (π, π )
(staggered along the legs and rungs) AFM order develops.
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ŚRODA, DAGOTTO, AND HERBRYCH PHYSICAL REVIEW B 104, 045128 (2021)

FIG. 4. Schematic nK-U magnetic phase diagram of the gen-
eralized Kondo-Heisenberg ladder of L = 72 sites. The vertical
lines within the phase-separation regime mark special fillings nK =
1.17, 1.25, where perfect block order is recovered (see the discussion
in Sec. III B). The phase diagram was inferred from extensive DMRG
calculations performed at 37 × 40 data points uniformly distributed
over the range of the plot. The phase boundaries are necessarily
approximate as they cannot be exactly determined from finite-size
calculations.

A. Block and block-spiral magnetism (one-band regime)

As follows from Fig. 3(c), the spatially isotropic (t⊥
0 = t‖

0 )
system is in the one-band regime for nK � 1.6. In the rest of
this subsection, we shall argue that this is the most exper-
imentally relevant region hosting the block-magnetic phase
found in BaFe2Se3. It is important to note that the filling nK

of the OSMP effective model (3) does not correspond to the
electronic density of the real materials or to the full five-orbital
Hubbard model. However, as we will argue below, it is the
position of the Fermi wave vectors kF that is crucial for the
magnetism within the block phase (as well as strongly influ-
ences the behavior of the other phases, even in the two-band
regime). This remains true also beyond the noninteracting
U → 0 limit where the kF become, in principle, a nontriv-
ial function of the electronic density. As a consequence, we
believe that our findings are generic provided that the mul-
tiorbital system is in the OSMP and has similar values of the
Fermi points kF, irrespective of the precise densities necessary
to attain them or the number of active orbitals.

Previous efforts [24,59,60] showed that the magnetic order
of the ↑↑↓↓ form can be stabilized on the chain lattice in
the U ∼ O(W ) region of the phase diagram. In such a case,
the block magnetism follows twice the Fermi wave vector
of the noninteracting limit 2kF = π (2 − nK) (recall that we
work above half filling, nK > 1). On the ladder geometry, in
the one-band regime, the latter is given by 2kb

F = π (2 − 2nb
K),

where the additional factor of 2 arises due to max{nb
K} = 1.

Our results shown in Fig. 5 support that the latter predicts also
the block-magnetic order of the two-leg ladder for U/W �
1 → 2. Namely, in Fig. 5(a), we present the spin-spin cor-
relation function 〈SL‖/2,1 · Sr〉 between the sites on the same
or different legs (lines and symbols, respectively). Clearly,
both correlation functions lie on top of each other and ex-
hibit a characteristic steplike pattern. This indicates that the

FIG. 5. Block-magnetic order. (a) Spin-spin correlations
〈SL‖/2,1 · Sr〉 as a function of distance with r = (�‖, 1) (intraleg)
or r = (�‖, 2) (interleg). Top to bottom: π/2 block (nK = 1.75,
U/W = 1), π/3 block (nK = 1.83, U/W = 1.1), mixed block
(nK = 1.81, U/W = 1). (b) Spin structure factor S(q) being the
Fourier transform of the correlations shown in (a). (c) Bond
correlations 〈Sr · Sr+1〉 corresponding to (a) and (b). 1 connects the
nearest-neighbor sites on the ladder. All results were obtained for a
generalized Kondo-Heisenberg ladder of L = 72 sites.

spins are arranged in, e.g., AFM-coupled 2 × 2 FM blocks for
nK = 1.75 [sketched in Fig. 1(e)], i.e., the so-called π/2-block
pattern ↑↑↓↓

↑↑↓↓ . This unusual magnetic order can be also iden-
tified via the spin structure factor S(q); see Fig. 5(b). Here,
the bonding component S(q‖, 0) (along the legs) has a well-
pronounced maximum at (2kb

F, 0) for all considered fillings
nK. On the other hand, the antibonding component S(q‖, π )
has only a weak momentum dependence. We again stress that
the observed alternating FM block patterns are inferred from
the spin-spin correlations and not the static magnetization
〈Sz

r〉.
On our finite lattice of L = 72 sites, the largest perfect (i.e.,

AFM-coupled FM) block that we have stabilized is of 3 × 2
size, the so-called π/3 block ↑↑↑↓↓↓

↑↑↑↓↓↓ [sketched in Fig. 1(f)],
present at nK = 1.83. However, it was shown [60] that a
small spin anisotropy can be used to stabilize even larger FM
islands, possibly accessible here using larger L. The block
nature of the correlations can be also seen in the NN bond
correlations 〈Sr · Sr+1〉 shown in Fig. 5(c) (here, 1 connects
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the NN sites on the ladder geometry). Interestingly, the block-
magnetic order is not restricted to perfect blocks of the same
size, as those above, but can also involve complicated patterns
of differently sized blocks. This is the case of nK = 1.81, for
which the real-space and bond correlation functions indicate
a repeating motif of a large 5 × 2 magnetic unit cell, within
which smaller blocks can be nevertheless still discerned. The
unusual periodicity of the latter pattern leads to a strong
maximum in S(q‖, 0) at q‖/π � 0.4, in agreement with the
2kb

F prediction. This finding is consistent with the analysis of
the block-magnetic orders in 1D systems [60,62]. There, the
perfect block order can be found for 2kF = π/m with m ∈ Z.
On the other hand, for 2kF 
= π/m, complex block patterns
are stabilized. It is important to note that these are not phase-
separated regions but true complicated spin arrangements in
an overall spatially isotropic system (see also the discussion
in the next section).

As already discussed, for U � W , the system orders
ferromagnetically due to the double-exchange mechanism
dominating for large Hund exchange JH. Furthermore, it was
recently shown in 1D systems [61] that between the block and
the FM phases another order exists: the frustrated block-spiral
state. In Fig. 6(a), we show the evolution of the spin structure
factor S(q) starting from the block phase at U/W = 1, for
the important special case of nK = 1.75, i.e., the π/2 block
of ↑↑↓↓

↑↑↓↓ form. Upon increasing U , the maximum of S(q‖, 0)
smoothly interpolates from q‖ = π/2 toward q‖ → 0, taking
incommensurate values in between. However, the real-space
correlations [shown in Fig. 6(b)] reveal that this order dif-
fers significantly from a “simple” block pattern. To gain an
understanding of this behavior, let us focus on the chirality
correlation function along the legs, i.e., 〈κr · κm〉 with

κr = Sr × Sr+1. (4)

Here, 1 connects NN sites along the legs (in Sec. III C we
shall generalize it to involve also NN sites along the rungs).
Since the above operator is proportional to the angle φ be-
tween NN spins, κr ∝ sin(φ), it is evident that if NN bond
correlations are of FM (φ = 0) or AFM (φ = π ) kind, the
operator vanishes. On the other hand, if NN spins are ro-
tated by 0 < φ < π , the 〈κr · κm〉 correlation can detect the
spiral order. In Fig. 6(c), we present the spatially resolved
〈κL‖/2,1 · κr〉 vs the interaction strength U for nK = 1.75. As
expected, in the block phase (U/W = 1) the chirality corre-
lation function vanishes. In this phase, spin correlations are
alternating between FM and AFM [see Figs. 5(c) and 6(b)].
Surprisingly, at U/W � 2, 〈κr · κm〉 takes finite values even at
distances as long as L‖/2, and exhibits a zigzag-like decaying
pattern. Such behavior continues until U/W � 2.6, when the
system enters the FM phase with φ = 0.

The above behavior was identified [61] as the block-spiral
phase: upon increasing the strength of the Hubbard interaction
U , the FM islands of the block phase start to rigidly rotate with
respect to each other. The zigzag (small-large) pattern reflects
the fact that within the 〈κr · κm〉 correlation the κr operators
act between the blocks (large value) or within the block (small
value). Here, we establish that such a phase is also stable on
the ladder geometry, where—in the particular case of the π/2
block at nK = 1.75—all four spins of the block start to rotate

FIG. 6. Block-spiral magnetic order. (a) Interaction U evolu-
tion of the spin structure factor S(q‖, 0) for the 2 × 2 block spiral
(nK = 1.75). (b) Spin-spin correlations 〈SL‖/2,1 · Sr〉 as a function of
distance corresponding to (a). (c) Chirality correlations 〈κL‖/2,1 · κr〉
as a function of distance corresponding to (a). In (a) and (b), both the
intraleg [r = (�‖, 1)] and interleg [r = (�‖, 2)] components are pre-
sented (as lines and symbols, respectively). All results were obtained
for a generalized Kondo-Heisenberg ladder of L = 72 sites.

↑↑↗↗→→↘↘↓↓
↑↑↗↗→→↘↘↓↓ [see also the sketch in Fig. 1(h)]. As marked
on the phase diagram, Fig. 4, the block spiral is not restricted
to nK = 1.75, but develops also for the other block patterns
at different nK. The unique block modulation of our spiral is
expected to be visible also in the Fourier decomposition, i.e.,
in the spin structure factor S(q). In Fig. 7(a), we present a
zoom-in plot of S(q) for the 2 × 2 block spiral. Apart from the
standard strong peak at q‖ � π/3 related to the spiral’s pitch,
there is an additional weaker peak at q‖ � π − π/3, which
is precisely the fingerprint of the block structure persisting
during the spiral rotation [61]. In the same plot, Fig. 7(a), we
point out that the perfect blocks with 2kb

F = π/m also exhibit
a unique secondary Fourier peak inherent to their steplike
structure [61,62].
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FIG. 7. Special features of the block-spiral phase. (a) Secondary
Fourier mode (arrows) being a fingerprint of the block and block-
spiral order. Shown are the representative cases of π/3 block (nK =
1.83, U/W = 1.1) and 2 × 2 block spiral (nK = 1.75, U/W = 2.2).
(b) Spectral function of the itinerant orbital A0(q, ω) corresponding
to the 2 × 2 block spiral of (a). The frequency resolution was chosen
to be �ω = 0.02 eV with the broadening η = 2�ω. All results were
obtained for a generalized Kondo-Heisenberg ladder of L = 72 sites.

Finally, let us briefly comment on another unique feature of
the block-spiral phase which can be observed in the behavior
of the itinerant orbital γ = 0. Since the OSMP system is in
an overall metallic state, the spiral-like arrangement of the
spins heavily modifies the single-particle spectral function
A0(q, ω), Eq. (2). In Fig. 7(b), we present the bonding (q⊥ =
0) and antibonding (q⊥ = π ) components of A0(q, ω) near
the Fermi level εF (evaluated within the gKH model). Both
components develop an additional two branches which can be
associated with parity-breaking quasiparticles; i.e., q‖ → −q‖
changes the character (branch) of the particles. We want to
note that this phase was proposed [19] as a possible mag-
netic order of the CsFe2Se3 ladder compound. Furthermore,
a superconducting OSMP system with the parity-breaking
quasiparticles was recently predicted [77] to exhibit nontriv-
ial topological properties with Majorana modes emerging at
the edges of the system. We refer the interested reader to
Refs. [61] and [77] for details of this exotic phase.

B. Incommensurate antiferromagnet and phase separation
(two-band regime at low doping)

We now move to discuss the two-band regime. Here, we
find that the four-point Fermi surface makes this regime host
qualitatively different magnetic phases than those present in
the one-band case. Based on the magnetic phases found, we
will split this region into two parts: low and intermediate
doping. The latter will be discussed in the next section.

In Fig. 8(a), we show the spin structure factor S(q) for
an intermediate interaction strength U/W = 1 and a range

FIG. 8. Incommensurate antiferromagnet. (a) The filling nK evo-
lution of the spin structure factor S(q) within the two-band regime
at U/W = 1. The main panel (inset) shows the antibonding S(q‖, π )
[bonding S(q‖, 0)] component. (b) The filling nK evolution of the
bond correlations 〈Sr · Sr+1〉 corresponding to the structure factors
shown in (a). 1 connects the nearest-neighbor sites on the ladder.
Note the evident amplitude modulation of the AFM correlations. All
results were obtained for a generalized Kondo-Heisenberg ladder of
L = 72 sites.

of fillings 1 < nK < 1.3 in the vicinity of half filling. Here,
in contrast to the block phase of the one-band regime, the
antibonding component S(q‖, π ) (main panel) exhibits a well-
defined maximum and dominates the bonding part S(q‖, 0)
(inset), indicating that the rungs are predominantly AFM
coupled. As expected, the half-filled (nK = 1) system is a
two-orbital Mott insulator with a (π, π ) AFM order. Upon
doping, the S(q‖, π ) maximum shifts to smaller wave vectors.
In contrast to the one-band regime, here, the latter max-
imum does not correspond to magnetic blocks, as clearly
evidenced by the bond correlations [Fig. 8(b)] which do not
show any alternating FM/AFM pattern. Instead, for all nK

in this region, the bond correlations are AFM with an ad-
ditional amplitude modulation. Clearly, it is the periodicity
of the latter modulation that is responsible for shifting the
S(q‖, π ) peak away from (π, π ). Moreover, the evolution
of the S(q‖, π ) peak also follows the (noninteracting) Fermi
wave vectors kF of the itinerant orbital. Being deep in the
two-band regime, both Fermi wave vectors play a role and the
maximum occurs at (kb

F + ka
F, π ) � (2π − πnK, π ), a result

recognized already on a single-orbital Hubbard ladder [76].
Indeed, this type of exponentially decaying (short-range) in-
commensurate AFM is not an exclusively multiorbital feature,
but relates to the long-standing problem of charge stripes,
studied extensively in the doped single-orbital Hubbard model
beyond 1D [76,78–84], as relevant in the context of cuprate
high-Tc superconductors [85–87]. These stripes are a combi-
nation of codirectional charge-density waves and modulated
AFM correlations (or spin-density waves in the case of a
symmetry-broken state), wherein the region of maximum
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FIG. 9. Phase separation. (a), (b) Bond correlations 〈Sr · Sr+1〉 for two fillings (a) nK = 1.11 ∈ [1, 1.17], (b) nK = 1.19 ∈ [1.17, 1.25]
lying within the intervals of unstable densities. 1 connects the nearest-neighbor sites on the ladder and the system size is L = 72 sites. (c)–(e)
Grand-canonical electron density 〈〈nK〉〉 vs μ for different values of the interaction U/W = 1, 2, 3 and three system sizes L = 24, 72, 96. The
horizontal lines mark 〈〈nK〉〉 = 1.17 (π/3 block) and 〈〈nK〉〉 = 1.25 (π/2 block). All results were obtained for a generalized Kondo-Heisenberg
ladder.

charge density coincides with a domain wall in the AFM
[82]. In other words, the AFM correlations experience a π -
phase shift across each charge-density peak, explaining the
incommensurate tendencies [78,81]. We checked (not shown)
that the spin correlations of Fig. 8 are indeed accompanied
by striped charge-density waves and exhibit the appropriate
phase shift. For completeness, we also verified that the chi-
rality correlation 〈κr · κm〉 is zero in this phase. Finally, let us
comment that incommensurate AFM was also reported before
in the context of the multiorbital Hubbard model [88,89].

Intuitively, the single-orbital behavior is recovered in
the above since in the vicinity of half filling the double-
exchange mechanism requires larger Hund exchange JH to
fully develop. Correspondingly, upon increasing U (hence
also increasing JH = U/4), we find that the double exchange
starts to play an important role. The bond correlations change
drastically: the incommensurate AFM is lost in favor of the
returning block formation tendencies; see Figs. 9(a) and 9(b).
At special fillings nK = 1.17, 1.25, the system again develops
π/3-block ↑↑↑↓↓↓

↑↑↑↓↓↓ and π/2-block ↑↑↓↓
↑↑↓↓ orders, respectively.

However, in contrast to the block phase of the one-band
regime—where at arbitrary fillings nK also other (more com-
plicated) block-magnetic patterns emerged—here, the system
coexists in spatially separated regions of the π/3-block (nK =
1.17), π/2-block (nK = 1.25), and the π -AFM (nK = 1) cor-
relations instead. For example, at nK = 1.11 ∈ [1, 1.17] the
system is divided into regions with AFM and π/3-block-like
correlations for all presented values of U [Fig. 9(a)]. The
closer the density is to nK = 1.17, the more the π/3-block
regions grow at the cost of the AFM regions, and vice versa
when moving closer to nK = 1. At nK = 1.19 ∈ [1.17, 1.25],
on the other hand, the system shows first AFM-π/2 sepa-
ration for U/W � 1.3, and then a π/3-π/2 separation for
U/W � 2.7 [Fig. 9(b)]. Such irregular local correlations are

also reflected in an irregular behavior of the structure fac-
tor S(q) which does not show any pronounced maximum or
shows maxima that appear at seemingly random wave vectors
for different values of U .

In order to truly identify the above behavior as phase
separation, one usually analyzes whether the compressibil-
ity acquires negative values, which signals the system being
unstable [90,91]. However, this can be troublesome, as it
involves the evaluation of a second-order derivative, which
is highly prone to the smallest numerical errors. Therefore,
we opt to use another observable—we investigate the 〈〈nK〉〉
vs μ curves, where 〈〈nK〉〉 is the (grand-canonical) electron
density at a given chemical potential μ. If 〈〈nK〉〉(μ) exhibits a
discontinuity, then there are densities that cannot be stabilized,
irrespective of the value of μ. For calculations within the
canonical ensemble, as performed here, this means that if the
system is initialized with a density in the unstable interval,
it will spontaneously separate into two regions of different
densities [90–92], i.e., the behavior implied by Figs. 9(a) and
9(b).

Although, in principle, 〈〈nK〉〉(μ) needs to be calculated in
the grand-canonical ensemble, it is possible to obtain it from
the fixed-density DMRG results by searching for the particle
number N that minimizes the expectation value 〈HK − μN̂〉 =
εGS(N, L) − μN at each μ [90,93], where N̂ is the total
particle number operator and εGS(N, L) is the ground-state
energy for a fixed density nK = N/L. In this way, we are able
to study large system sizes, as presented in Figs. 9(c)–9(e),
enabling us to distinguish a true discontinuity from one be-
ing a finite-size effect. One may observe that for U/W = 1
and the smallest size L = 24 [Fig. 9(c)], the 〈〈nK〉〉(μ) curve
is manifestly discrete. However, this discreteness disappears
for larger sizes L = 72, 96, where the 〈〈nK〉〉(μ) curves col-
lapse and become smooth. This is the standard nonseparated
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behavior. Contrarily, for U/W = 2 [Fig. 9(d)], there are sev-
eral clear discontinuities at 1 < 〈〈nK〉〉 � 1.4, which persist
despite the increasing system size. In particular, there is a dis-
continuity between 〈〈nK〉〉 = 1 and 〈〈nK〉〉 = 1.17 (AFM-π/3
separation), and another between 〈〈nK〉〉 = 1.17 and 〈〈nK〉〉 =
1.25 (π/3-π/2 separation), in perfect agreement with the
bond correlation results [Figs. 9(a) and 9(b)]. Figure 9(e) leads
to the same conclusions, but for U/W = 3. Therefore, we
conclude that a clear tendency to phase-separate exists in our
model for relatively low fillings nK, close to half filling.

Finally, from Figs. 9(c)–9(e) it also follows that the phase
separation is absent in the one-band regime; in particular,
even the complicated block patterns [e.g., the one shown in
Fig. 5(c) at nK = 1.81] are robust uniform phases with no
phase separation. Curiously, here, in the two-band regime, the
blocks with complicated unit cells are in fact entirely absent,
as we only see phase separation between AFM, π/3, and π/2
blocks. It is possible that larger system sizes would need to be
accessed to find separation between the blocks with unusual
periodicities. We do, however, find the signatures of block
spirals at the special points nK = 1.17, 1.25, which appear
before FM for excessively large values of U . We have also
checked (not shown) that phase separation is not present in
the chain geometry. This is consistent with the picture that the
chain can approximate the ladder well but only in the one-
band regime, while the two-band regime cannot be captured
(as the Fermi surface is closer to 2D). It is also worth noting
that phase separation tendencies were reported experimentally
in a layered iron superconductor K0.8Fe1.6Se2 [94], albeit
they concern separation between magnetic and nonmagnetic
regions of different lattice constants.

C. Spin flux (two-band regime at intermediate doping)

Let us now describe the last region of our phase diagram—
the two-band regime at intermediate doping, i.e., in the
vicinity of three-quarter filling nK ∼ 1.5. We find this region
to behave surprisingly very differently from the low-doping
case, despite the same (noninteracting) Fermi surface. We
shall attribute this difference to the strong renormalization of
the Fermi surface due to the simultaneous competition of all
energy scales at this intermediate parameter regime.

In the inset of Fig. 10(a), we present the spin structure
factor S(q) at nK = 1.5 and at an intermediate interaction
strength U/W = 1. We observe a dominant maximum in
the bonding component S(q‖, 0) at wave vector (π, 0) and
a rather structureless antibonding part S(q‖, π ). This result
corresponds to the case of FM rungs and AFM legs, ↑↓↑↓

↑↓↑↓ , i.e.,
the canonical magnetic order found experimentally in several
iron-based ladders (see the introduction) and also widely be-
lieved to be the parent state of 2D iron-based superconductors
[25,95]. Surprisingly, with increasing U , we find that this
order is suppressed (albeit does not vanish) in favor of a max-
imum in the antibonding S(q‖, π ) developing at (0, π ) [main
panel of Fig. 10(a)]. Similar behavior was recently reported
in Ref. [89], which studied the pairing-related properties of
the two-leg ladder BaFe2S3. Figure 10(b) shows that this
behavior is not restricted to nK = 1.5, but occurs consistently
at other fillings in the entire 1.3 � nK � 1.6 interval and also
in a wider range of interactions 1 � U/W � 4. The dominant

FIG. 10. Spin structure factor and momentum distribution func-
tion in the spin-flux region. (a) Spin structure factor S(q) at nK = 1.5
and U/W = 1 (inset), U/W = 2 (main panel). (b) The same as in
(a) but at nK = 1.47 (lines), nK = 1.53 (symbols), and U/W = 2.
The inset shows the bond correlations 〈Sr · Sr+1〉 corresponding to
nK = 1.47. Here, red (blue) color marks AFM (FM) bonds and 1
connects the nearest-neighbor sites on the ladder. (c) Momentum
distribution function n(q) at nK = 1.47, 1.5, 1.53 and U/W = 2. All
results were obtained for a generalized Kondo-Heisenberg ladder of
L = 72 sites.

peak at (0, π ) leads to the bond correlations taking now the
form of AFM rungs and FM legs [inset of Fig. 10(b)].

Although in the bond correlations there is no discernible
pattern related to the weak S(q‖, 0) features present in both
Figs. 10(a) and 10(b), further analysis offers a useful insight.
In particular, from Fig. 10(b) it follows that the structure factor
S(q) behaves identically at both nK = 1.47 and nK = 1.53,
pointing to a symmetry around the nK = 1.5 point, quite un-
expected in the two-band regime. Crucially, here, we are in
fact at the crossroads between the one- and two-band regimes,
as the latter is enforced solely due to the finite interaction U
[Fig. 3(c)]. In the noninteracting case, we would have two
Fermi wave vectors for nK < 1.5, but only one for nK > 1.5,
meaning that neither the noninteracting 2kb

F prediction from
Sec. III A nor the kb

F + ka
F prediction from Sec. III B can be

meaningfully applied to the apparent symmetry in the struc-
ture factors.

To elucidate this issue, we investigate the momentum dis-
tribution function defined as n(q) = 〈n0q〉 = 〈∑σ c†

0qσ c0qσ 〉,
where c†

0qσ = (1/
√

L)
∑

r exp(iqr) c†
0rσ . The results are
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FIG. 11. Spin flux. (a)–(d) Chirality correlations 〈κL‖/2,1 · κr〉 at nK = 1.5, U/W = 2 as a function of distance. Shown are all possible
components: (a) intraleg, (b) interleg, (c) rung-rung, (d) leg-rung. The sketches show the proposed magnetic order and also highlight the bonds
which are involved in the calculation. (e) Comparison of the distance-dependent rung-rung chirality 〈κ⊥

L‖/2,1 · κ⊥
r 〉 between the flux (nK = 1.5,

U/W = 2) and the 2 × 2 block spiral (nK = 1.75, U/W = 2.2). (f) Rung-rung chirality in the flux phase with nK = 1.53, U/W = 2. The dark
symbols correspond to cos(2k̃b

F �‖) fit using the effective Fermi wave vector k̃b
F obtained from Fig. 10(c). (g) Interaction U evolution of the

rung-rung chirality for the spin flux with nK = 1.5. All results were obtained for a generalized Kondo-Heisenberg ladder of L = 72 sites.

presented in Fig. 10(c) for the three fillings nK =
1.47, 1.5, 1.53 and the interaction U/W = 2. One immedi-
ately notices that the momentum distribution of the antibond-
ing band (q⊥ = π ) is highly renormalized with respect to the
U = 0 case, where it would be a step function centered at ka

F.
Here, it is strongly flattened instead, and its shape seems to be
weakly dependent on the filling nK. The bonding band (q⊥ =
0), on the other hand, acts as though it was the only one being
filled: Adding (removing) particles shifts its effective Fermi
wave vector k̃b

F [taken here as the inflection point of n(q‖, 0)],
and the function n(q‖, 0) appears relatively sharp despite the
large interaction U . Remarkably, the weak peak in S(q‖, 0)
corresponds to (2k̃b

F, 0), explaining why the structure factors
at the two fillings nK = 1.47, 1.53 are identical [Fig. 10(b)].
This is precisely due to the symmetric behavior of n(q‖, 0)
around the nK = 1.5 point. Therefore, although both bands are
fractionally filled, as follows from both Figs. 3(c) and 10(c),
the interaction U promotes an emergent one-band behavior.
This stands in contrast to the low-doping case (deep within
the two-band regime), where such a behavior is absent.

The strong (0, π ) peak and the bond correlations with
FM legs and AFM rungs suggest that this order could be
a ladder analog of 2D patterns argued [25] to be relevant
for the layered compounds Fe(Se,Te). However, the analysis
of chirality correlations offers a different interpretation. In
Fig. 11(a), we present the intraleg chirality correlation func-
tion 〈κr · κm〉 at nK = 1.5 and U/W = 2.0. Remarkably, we
observe significant and slowly decaying chirality correlations,
indicating that the spins are noncollinear. This is quite unex-
pected considering the commensurate structure factors shown
in Fig. 10(a). Moreover, the chirality displays an intriguing
staggered pattern, which is present not only in the intraleg

correlations but also in the interleg case [Fig. 11(b)], and the
highly nontrivial rung-rung and leg-rung cases [Figs. 11(c)–
11(d)]. It is hard to imagine a (quantum) spin ordering
which would lead to all the chirality correlation functions
simultaneously showing the same staggered pattern. The so-
lution to this conundrum can be found by noticing that the
z component of the chirality correlation function is in fact
equal to the spin-current correlation function, κz

r = Sx
r Sy

r+1 −
Sy

rSx
r+1 = i/2 (S+

r S−
r+1 − S−

r S+
r+1). Indeed, we checked that the

z component has a significant contribution to the presented
chirality values. Therefore, we propose that the system re-
alizes a novel quantum spin-flux phase, wherein the spin
currents circulate around 2 × 2 plaquettes and are staggered
from plaquette to plaquette [see the sketches in Figs. 11(a)–
11(d) and 1(i)], with no net current flow.

Since all the chirality functions behave in the same manner,
in the following we discuss only the representative rung-rung
case 〈κ⊥

r · κ⊥
m〉, which corresponds to spin currents flowing

along the rungs. In Fig. 11(e), we compare the spin flux to the
other chiral phase of our model—the block spiral. Clearly, in
the latter the rung-rung (and also leg-rung) chirality vanishes,
highlighting that it is indeed unique to the flux. Moreover,
this unique chirality is not restricted to the nK = 1.5 filling,
but appears also for nK 
= 1.5 in the entire regime being
discussed in this section, i.e., for 1.3 � nK � 1.6 and 1 �
U/W � 4. Variation of the filling introduces an additional
modulation of the staggered pattern, as shown in Fig. 11(f) for
nK = 1.53. Furthermore, the latter modulation is controlled
by the effective Fermi wave vector k̃b

F, i.e., 〈κ⊥
r · κ⊥

r+d〉 ∝
cos(2k̃b

F d ) [96]. This “hidden” periodicity—which is readily
seen in the chirality correlations but not in the real-space spin
correlations—elucidates the origin of the (2k̃b

F, 0) maximum
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we earlier noted in S(q‖, 0), which accompanies the strong
(0, π ) peak [Figs. 10(a)–10(b)]. In particular, at nK = 1.5, we
have (2k̃b

F, 0) = (π, 0). This understanding is consistent with
the results for the 2D FM Kondo lattice of classical spins,
where the similar-weight structure factor maxima at (π, 0)
and (0, π ) were recognized as the hallmark of the spin flux
[97–99]. The latter spin configuration cannot be specified by
only one wave vector [97]. In our case, the spin-flux phase
emerges within a fully quantum model and, moreover, it is
promoted by the interaction U , as follows from Fig. 11(g).
Consistently, the structure factor peak at (0, π ) [Fig. 10(a)]
acquires significant weight only when the staggered chirality
correlations are well developed. From this perspective, we
treat the canonical (π, 0) order of AFM legs and FM rungs,
↑↓↑↓
↑↓↑↓ , present at U/W = 1 [inset of Fig. 10(a)], as an under-
developed flux, rather than a separate phase, and we do not
mark it individually on the phase diagram, Fig. 4.

IV. CONCLUSIONS

To summarize, using an accurate computational tech-
nique we have studied the magnetic phase diagram of
the two-leg multiorbital ladder in the orbital-selective Mott
phase. Although our effective model, the generalized Kondo-
Heisenberg Hamiltonian, describes the electron densities of
the iron-based systems in an approximate manner, it properly
captures the symmetric and antisymmetric bands (bonding
and antibonding, respectively). The latter are crucial to a
proper description of the magnetic order.

The magnetic phase diagram of the ladder OSMP is domi-
nated by tendencies to form magnetic blocks of various shapes
and sizes. At large fillings, nK � 1.6, where the antibond-
ing band (q⊥ = π ) is fully filled and only the bonding band
(q⊥ = 0) carries the Fermi wave vectors, the system devel-
ops perfect blocks of ↑↑↓↓

↑↑↓↓ form at U ∼ W . Increasing the
strength of the interaction U leads to the uniform rotation
of the blocks, i.e., to the formation of the exotic block-spiral
phase with nontrivial properties. In the opposite limit, close
to half filling nK ∼ 1, the four Fermi wave vectors present
in two bands drive the system toward phase separation with
(predominantly) π/2 and π/3 blocks. Finally, when nK ∼ 1.5,
the ladder system develops a quantum spin flux originating in
the competing energy scales inherent to the OSMP. This phase
can be naively viewed as staggered spin currents circulating
within 2 × 2 plaquettes (however, no plaquette carries net
current due to its quantum nature in a finite system).

Our phase diagram indicates that the magnetism of iron-
based ladders, due to the presence of charge, spin, and
orbital degrees of freedom, combines phenomena known from
cuprates with those found in manganites [100,101]. Namely,
at small interaction U and close to half filling nK ∼ 1, we
have found the striped incommensurate antiferromagnetism—
the challenging and still not fully understood magnetic order
relevant for 2D cuprate superconductors. On the other hand,
increasing the interaction strength U , one can find the
phase-separated region known from the manganites. Most
importantly, our results indicate that the family of iron-
based AFe2X3 compounds lies within the one-band regime,
where the block and block-spiral orders can be found (also
experimentally). We believe that our comprehensive study

provides motivation and theoretical guidance for crystal grow-
ers and experimentalists to discover new iron-based ladder
compounds that may display the highly unusual magnetic
properties reported here.
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APPENDIX: COMPUTATIONAL ACCURACY REGARDING
THE SU(2) SYMMETRY

It is well-known that within DMRG implementations
which exploit only the U(1) spin symmetry, and not the full
SU(2) symmetry, it is possible to converge to a state with finite
local magnetization 〈Sz

r〉, even though a finite system cannot
break the SU(2) symmetry. This effect is more pronounced
in simulations beyond 1D and is a recurring issue in the
studies of 2D Hubbard and t-J models [79,80,83,102,103].
Although here we discuss a two-leg ladder, its two-orbital
nature makes it effectively a four-leg problem, and in some
cases our DMRG indeed ends up in a state with nonvanishing
〈Sz

r〉. This issue can be mitigated by drastically increasing
the number of states kept [79,83,103], but then the already
demanding computational effort would quickly become pro-
hibitively expensive. Still, where feasible, we did verify that
increasing M in our DMRG procedure does drive 〈Sz

r〉 to zero,
while preserving the spin-spin correlations and introducing
a minimal adjustment of the ground-state energy. Moreover,
sometimes a slight perturbation of the model parameters (e.g.,
changing U by as little as 5%) was enough to tip the algorithm
toward a final state which respects the SU(2) symmetry, but
appears otherwise unchanged with respect to other quanti-
ties. These observations suggest that the finite 〈Sz

r〉 arises
because the DMRG selects a subset of states (with a partic-
ular direction of the order parameter) from the macroscopic
superposition present within the true ground state [79,104].
Since the states in the latter superposition are expected to
be (nearly) degenerate, the difference in the final energy is
minimal, making it hard to completely converge. Nonetheless,
such a spurious “partial” symmetry breaking within the final
state should not lead to a misrepresentation of the magnetic
order existing in our system, nor should it affect the behavior
of itinerant carriers doped into those states (see the discussion
in Ref. [79]). We therefore conclude that the occasional pres-
ence of finite 〈Sz

r〉 is insignificant for our study and does not
invalidate our results. That being said, the nondecaying nature
of the static magnetization can make the maxima in S(q) ap-
pear excessively sharp. To avoid the misinterpretation of S(q),
while plotting the latter we discard the fictitious spin-density
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contribution; i.e., we define 〈Sr · Sm〉 ≡ 〈Sr · Sm〉 − 〈Sz
r〉〈Sz

m〉.
The fact that this does not reduce 〈Sr · Sm〉 to zero confirms
that our ground state retains most, if not all, quantum fluctua-
tions on top of the artificial magnetization.

The issue described above is especially troublesome in the
intermediate-doping (nK ∼ 1.5) region discussed in Sec. III C,
which seems to be the most demanding for the DMRG
method. There, all the energy scales are simultaneously at

play, making it hard to fully stabilize the system within current
computational limitations. As a consequence, a more detailed
analysis focusing solely on the latter region is called for,
involving also a systematic study of the t⊥

0 influence, which is
however beyond the scope of the present, more general, survey
of the magnetic phases. Our already interesting findings re-
ported here provide motivation for such a more in-depth study
of the intermediate-doping region in the near future.
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