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Suppression of effective spin-orbit coupling by thermal fluctuations in spin-orbit
coupled antiferromagnets
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We apply the finite-temperature variational cluster approach to a strongly correlated and spin-orbit coupled
model for four electrons (i.e., two holes) in the t2g subshell. We focus on parameters suitable for antiferromagnetic
Mott insulators, in particular, Ca2RuO4, and identify a crossover from the low-temperature regime, where spin-
orbit coupling is essential, to the high-temperature regime where it leaves few signatures. The crossover is seen
in one-particle spectra, where xz and yz spectra are almost one dimensional (as expected for weak spin-orbit
coupling) at high temperature. At lower temperature, where spin-orbit coupling mixes all three orbitals, they
become more two dimensional. However, stronger effects are seen in two-particle observables like the weight in
states with definite on-site angular momentum. We thus identify the enigmatic intermediate-temperature “orbital-
order phase transition,” which has been reported in various x-ray diffraction and absorption experiments at T ≈
260 K, as the signature of the onset of spin-orbital correlations.
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I. INTRODUCTION

Ruthenium oxides have for decades attracted considerable
attention, first for their complex phase diagrams that bear
some similarities to those high-TN cuprate superconductors,
with superconducting and Mott-insulating phases [1]. More
recently, the interplay of spin-orbit coupling (SOC), electron
itineracy, electronic correlations, and lattice degrees of free-
dom, which are all present, has attracted attention. The exotic
behavior emerging on this stage includes a potential spin liq-
uid in α-RuCl3 [2,3], enigmatic superconductivity in Sr2RuO4

[4], and a nonequilibrium Weyl semimetal in Ca2RuO4 [5].
This last compound, Ca2RuO4, had already been discussed

as a Mott-insulating end member of the family of compounds
including enigmatic superconductors. Its high-temperature
metal-insulator transition has been well described by a combi-
nation of density-functional theory and dynamical mean-field
theory [6]. The emerging picture is that of a lattice-supported
Mott transition, where the c-axis bond length is shortened so
that the xy orbital is lowered in energy and becomes nearly
doubly occupied [7,8], while a Mott gap opens in the ap-
proximately half-filled xz and yz orbitals. SOC, which had
alternatively been argued to drive the metal-insulator tran-
sition [9], was later shown to have only a weak impact on
the gap [6]. More recently, ab initio calculations performed
in the context of nonequilibrium studies have corroborated
the intimate relation of the c-axis bond length, and thus the
resulting crystal field (CF), to the metal-insulator transition
[10].

However, SOC turns out to be highly relevant for the
magnetic properties of the antiferromagnetic state observed
at even lower temperatures. For weak SOC and the dominant
CF, one would expect the half-filled xz and yz orbitals to form

a spin one, while the doubly occupied xy orbital would be
magnetically inert. However, magnetic excitations turn out to
show pronounced X -Y symmetry [12] as well as Higgs modes
[13,16], which can more naturally be explained in terms of
“excitonic” antiferromagnetism, which fundamentally relies
on SOC. A basic sketch of the observed transitions is shown
in Fig. 1.

The orbital angular momentum of two t2g holes can be
modeled as an effective L = 1. In the idealized picture of
an undistorted Ru-O octahedron (i.e., with equivalent xy, yz,
and xz orbitals), SOC would couple the total spin S = 1
with L = 1 into a singlet ground state with the total angular
momentum J = 0 [17]. When superexchange connects ions,
however, higher-energy triplets gain kinetic energy and may
condense into a magnetically ordered state. In one dimension,
the resulting ground-state phase diagram has been estab-
lished by use of the density-matrix renormalization group
and includes a parameter regime supporting excitonic mag-
netism [18,19]. Recent numerical work using a combination
of density-functional theory and the variational cluster ap-
proach (VCA) has further indicated that the excitonic scenario
with SOC as a decisive player indeed applies to the antiferro-
magnetic low-temperature state of Ca2RuO4 [20].

It would thus be highly desirable to investigate temper-
atures between the ground state with a large role for SOC
and the high-temperature state, where it only yields small
corrections, also with a view towards other ruthenates with
similar energy scales. While the metal-insulator transition and
the interplay of lattice and correlations is accessible to dynam-
ical mean-field theory with a Monte-Carlo impurity solver,
the fermionic minus-sign problem is present at lower tem-
peratures [10]. Adjusted one-particle states based on the total
angular momentum can reduce the minus-sign problem [21],

2469-9950/2021/104(4)/045125(9) 045125-1 ©2021 American Physical Society

https://orcid.org/0000-0002-1765-5009
https://orcid.org/0000-0001-9434-8937
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.045125&domain=pdf&date_stamp=2021-07-15
https://doi.org/10.1103/PhysRevB.104.045125


JAN LOTZE AND MARIA DAGHOFER PHYSICAL REVIEW B 104, 045125 (2021)

FIG. 1. Sketch of the temperature-driven phase transitions ob-
served in Ca2RuO4. Below the Néel temperature TN ≈ 110 K [11],
there is an antiferromagnetic insulator (AFI) with spins mostly lying
in plane and with strong signatures of SOC in magnetic excita-
tions [12,13]. The metal-insulator transition TMI ≈ 360 K separates
insulating and metallic paramagnetic states (PMI and PMM). The
metal-insulator transition also involves a shortening of the c-axis
bond length and concomitant increase in xy occupation. (Note that
even the “short” c bonds are considerably longer than the a and
b bonds, as Ca2RuO4 is a layered material [22]). Between these
two phase transitions, within the PMI phase, there is an additional
transition at TO ≈ 260 K that affects orbital degrees of freedom, but
does not change the unit cell [14,15].

however, such an optimal basis cannot easily be identified in
realistic models, where CFs or anisotropic hoppings compete
with SOC.

In order to address low-temperature scales of spin-orbit
coupled t2g orbitals, described by the three-orbital Hubbard
model of Sec. II, we thus implement a finite-temperature vari-
ant of the VCA (see Sec. II A). Exact diagonalization is used
to solve a small cluster and to extract its self energy, which
is then used to evaluate the Green’s function of the thermo-
dynamic limit. This allows us to treat the antiferromagnetic
order, and since we focus here on the Mott-insulating regime,
bath sites are less necessary.

Based on the results presented in Sec. III, we identify
a temperature range above the Néel temperature, but in
the Mott-insulating regime, where the spin-orbital character
strongly changes. While the on-site singlet and triplet states
describe the ionic state at low temperatures very well, as
expected for the excitonic scenario, they become less useful
at higher temperatures. Here, the original orbitals provide a
clearer picture, especially in the presence of a CF, as will be
seen in the one-particle spectra discussed in Sec. III B.

In t2g models with SOC of a magnitude suitable for ex-
citonic magnetism, there is thus a third temperature scale
intermediate between the metal-insulator transition related to
charge fluctuations and lattice distortions and the Néel tem-
perature related to magnetic degrees of freedom. We discuss in
Sec. IV how this ties in with the enigmatic “orbital ordering”
transition that has been debated at intermediate temperatures
in Ca2RuO4 [14,15] (see also Fig. 1).

II. MODEL AND METHODS

We study here a three-orbital Hubbard model for t2g elec-
trons on a square lattice, where we focus on nearest-neighbor
(NN) hopping and tetragonal symmetry. The kinetic energy is
then diagonal in orbital indices and takes the form

Hkin = −t
∑

〈i, j〉,σ
c†

i,xy,σ c j,xy,σ − t
∑

〈i, j〉‖x,σ

c†
i,xz,σ c j,xz,σ

− t
∑

〈i, j〉‖y,σ

c†
i,yz,σ c j,yz,σ + H.c., (1)

where ci,α,σ (c†
i,α,σ ) annihilates (creates) an electron with spin

σ =↑ and ↓ in orbitals α = xy, xz, and yz at site i. Nearest-
neighbor bonds 〈i, j〉 along the two directions x and y are
considered, as Ca2RuO4 is a layered compound [22], and we
use t ≈ 0.2 eV as our unit of energy.

Tetragonal CF splitting

HCF = −�
∑
i,σ

ni,xy,σ (2)

with ni,xy,σ = c†
i,xy,σ ci,xy,σ and � > 0 is motivated by

the shortened octahedra of the low-temperature phase of
Ca2RuO4. For a filling of four electrons (two holes), it favors
a doubly occupied xy orbital with half filled xz and yz or-
bitals. We tune it to interpolate between an orbitally polarized
spin-one system at large � and a more equal interplay of
degenerate orbitals at small �.

In the present paper, the impact of SOC is particularly
important, which takes the form

HSOC = λ
∑

i

li · si = iλ

2

∑
i

∑
α,β,γ

σ,σ ′

εαβγ τα
σσ ′c†

i,β,σ ci,γ ,σ ′ (3)

for t2g orbitals, with the totally antisymmetric Levi-Civita
tensor εαβγ and Pauli matrices τα , α = x, y, and z [23,24].
We focus here on intermediate SOC that is not strong enough
to suppress magnetic ordering.

Finally, there are effective on-site Coulomb interactions
[25]:

Hint = U
∑
i,α

niα↑niα↓ + U ′

2

∑
i,σ

∑
α 	=β

niασ niβσ̄

+ 1

2
(U ′ − JH )

∑
i,σ

∑
α 	=β

niασ niβσ

− JH

∑
i,α 	=β

(c†
iα↑ciα↓c†

i,β↓ciβ↑ − c†
iα↑c†

iα↓ciβ↓ciβ↑), (4)

with Coulomb interactions U and U ′ and Hund’s coupling JH

connected via U ′ = U − 2JH. We are here less interested in
varying interactions and rather focus on the Mott-insulating
regime with a Hund’s-rule coupling larger than SOC, so that
L-S coupling provides a clearer description than j- j coupling.
We thus choose U = 12.5t and JH = 2.5t , which is consistent
with their order of magnitude in Ca2RuO4 [26].

A. Finite-temperature variational cluster approach

We use the finite-temperature [27] VCA [28,29], where
the grand potential 
 of the system is approximated in terms
of a “reference system” that consists of small disconnected
clusters, but has the same electron-electron interactions as the
Hamiltonian of interest [30]:


(�cl ) = 
cl + Tr ln
( − G−1

cl

) − Tr ln
( − G−1

CPT

)
, (5)

with the grand potential 
cl and Green’s function Gcl ob-
tained from the cluster. The cluster-perturbation-theory (CPT)
Green’s function G−1

CPT = (G−1
cl − G−1

cl,0 + G−1
0 )−1 replaces the

noninteracting cluster Green’s function Gcl,0 by the non-
interacting Green’s function G0 of the full system. The
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approximation thus consists of replacing the self energy of
the physical system by that of the small cluster. In order
to improve the approximation, the self-energy–functional ap-
proach [29] allows us to optimize the cluster self energy �cl by
varying one-particle parameters of the reference Hamiltonian.
The best approximation to the system’s grand potential is
a stationary point of 
 with respect to the variational one-
particle parameters. Note that this variation affects only the
small cluster; the noninteracting Green’s function given by the
one-particle part of the physical Hamiltonian remains fixed.

We numerically evaluate the cluster grand potential


cl = −β−1 ln(�) = −β−1 ln
∑

m

e−βεm (6)

with partition function � and cluster energies εn, as well as
the cluster Green’s function, whose electron part reads

[G(+)
cl ]αβ (z) =

∑
m,n

e−βεm

�

[ 〈
m|cα|
+
n 〉〈
+

n |c†
β |
m〉

z − E+
nm + i0+

]
(7)

with the energy difference E±
nm = ε±

n − εm. We largely fol-
low Seki et al. [27] and obtain the spectrum and eigenstates
with band Lanczos to resolve (approximately) degenerate
eigenenergies. We use eight starting vectors and converge 120
eigenvectors, which are used to evaluate the Green’s functions
in a second Lanczos run. In this second step, band Lanczos
did not turn out to be advantageous, and we thus use the
conventional algorithm.

Assembling the cluster Green’s function is accelerated with
the help of a high-frequency expansion for frequency argu-
ments with absolute values larger than that of the largest pole
[27]. [Other frequencies are obtained via Eq. (7).] Following
Seki et al. [27], the high-energy Green’s function is expanded
to 15th order as

Gαβ (z) =
∞∑

k=0

M (k)
αβ

zk+1
(8)

with moments M (0)
αβ (z) = δαβ and

M (k>0)
αβ =

∑
m,n

(E+
nm)k e−βεm

�
〈
m | cα | 
+

n 〉〈
+
n | c†

β | 
m〉

+
∑
m,n

(−E−
nm)k e−βεm

�
〈
m | c†

β | 
−
n 〉〈
−

n | cα | 
m〉.

(9)

In order to fix the density to N = 4 electrons (i.e., two
holes), the grand potential is transformed to the free en-
ergy F (N,V, T ) = 
(μ,V, T ) + μN by means of a Legendre
transform [31]. There are thus at least two variational pa-
rameters, the chemical potential μ to fix the density and the
cluster chemical potential μ′ to ensure thermodynamic con-
sistency [32,33]. Additionally, we consider antiferromagnetic
order parameters with ordered moment within the a-b plane
or along the c axis. Previous work for T = 0 has shown that
the z and in-plane components lead to quite different grand
potentials (as expected for finite SOC), but that the grand
potential is very similar for operators like spin, magnetization,
or total angular momentum [20]. For this reason and in order

to easily compare to the spin-one antiferromagnet, we use
here the spin as the order parameter. It has also been shown
that a sizable CF as well as SOC both favor “checkerboard”
magnetic patterns with ordering vector Q = (π, π ), so that we
use the fictitious Weiss field

HWeiss = h
∑

i

eiQri Sx/z
i , (10)

where i labels the site at ri and Sx
i = ∑

α c†
i,α,↑ci,α,↓ + H.c. and

Sz
i = ∑

α (c†
i,α,↑ci,α,↑ − c†

i,α,↓ci,α,↓) are the x and z components
of the total spin, respectively.

For variational parameters μ, μ′, and h giving stationary
grand potentials, we evaluate one-body expectation values
(like magnetization or orbital densities) from the Green’s
function, as is done for T = 0. The entropy S is determined
as the derivative of the grand potential via contour integrals:

S = Scl + SCPT + Scl − (
CPT − 
cl )/T, (11)

with the contributions

Scl = −(
cl − 〈H〉cl )/T, (12)

SCPT =
∮
C

dz f (z)tr
[(

GclG−1
CPTGcl

)−1
Gmod

]
/T 2, (13)

Scl =
∮
C

dz f (z)tr
[( − G−1

cl

)
Gmod

]
/T 2, (14)

and the abbreviations

〈H〉cl = �−1
∑

m

εm exp(−βεm), (15)

Gmod =
∑
m,n

(〈H〉cl − εm)�−1 exp(−βεm)[G+
cl + G−

cl ]

−
∑
m,n

(T z)�−1 exp(−βεm)

[
∂G+

cl

∂z
+ ∂G−

cl

∂z

]
. (16)

The specific heat C(T ) is then obtained as the numerical
derivative C(T ) = T (�S/�T ) of the entropy.

Since the ordered moment in an excitonic magnet arises
through a superposition of the J = 0 state preferred by on-site
SOC and J = 1 states [17], it is helpful to consider the weights
〈J〉 found in eigenstates of the total on-site angular momentum
J . Unfortunately, this is a two-particle quantity and thus not
readily available from the VCA. We approximate it as the
exact-diagonalization expectation value obtained for the Nsites

sites of the reference cluster with optimized parameters:

〈J〉 := 1

Nsites�

∑
i,Jz

∑
m

e−βεm
〈
m

∣∣Ji, Jz
i

〉〈
Ji, Jz

i

∣∣m〉
. (17)

Eigenstates |Ji, Jz
i 〉 denote here the state at site i defined by the

angular momentum J = L + S.

III. RESULTS

A. Temperature dependence of the on-site angular momentum

At T = 0, the VCA for the t2g model with four electrons
and the CF � = 0 has revealed two different ordering patterns
depending on λ [20]: at small λ � 0.4 t , orbitals and spins
order in a stripy pattern with orthogonal ordering momenta
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FIG. 2. Thermodynamics of the excitonic antiferromagnet with-
out CF splitting. Panel (a) gives the magnetic order parameter, i.e.,
staggered out-of-plane spin and panel (b) gives the specific heat
for SOC λ = 0.6t , 0.8t , and t . (We do not intend to discuss the
complicated spin and orbital stripe pattern found at λ = � = 0 [20],
and accordingly, we leave out the regime of small λ � 0.4t).

(0, π ) for spins and (π, 0) for orbitals. For larger λ, the exci-
tonic antiferromagnetic (AFM) order with momentum (π, π )
takes over, where the out-of-plane z component is favored over
in-plane directions. We are here interested in the latter regime
and thus focus on λ > 0.4t .

Figure 2(a) shows the ordered spin moment depending on
temperature. As expected, the value at T = 0 is reduced when
larger λ increases the energy gap between the ionic singlet and
triplet states, which in turn reduces the triplet admixture into
the ground state. Somewhat surprisingly, the Néel temperature
is not monotonic. While we can certainly not exclude strong
finite-size effects due to the 2 × 1 site cluster, an alternative
explanation may be that the system at the smallest λ = 0.6 t
is affected by its closeness to the competing stripy phase. The
corresponding specific heat is given in Fig. 2(b) and has a
second broad hump at higher temperature T > TN in addition
to the expected peak at the magnetic ordering transition. This
feature exists for all three values of λ and shifts to slightly
higher temperatures for λ = t .

Figure 3 shows the average weight Eq. (17) found in
eigenstates with J = 0, 1, and 2 of the total on-site angular
momentum. Weights are constant in the regime of constant
magnetization, and the J = 0 (J = 1) state loses (gains)
weight when the magnetic order is lost. This is in clear con-
trast to a (somewhat artificial) transition to a paramagnet at
constant temperature: reducing the ordering field h at T = 0
pushes weight from the J = 1 states into the J = 0 state [20].
At TN , the curves get abruptly steeper and weights in J = 0

FIG. 3. Temperature evolution of the average weight found in
eigenstates of the total angular momentum [see Eq. (17)]. (a) λ =
0.6t , (b) λ = 0.8t , and (c) λ = t .

FIG. 4. Thermodynamics of the spin antiferromagnet at the large
CF � = 5t . Panel (a) gives the magnetic order parameter, i.e., stag-
gered magnetization, and panel (b) gives the specific heat for SOC
λ = 0.1t and λ = 0.8t . (λ = 0 was numerically less stable). Panels
(c) and (d) give the average overlaps of Eq. (17) for λ = 0.1t and
λ = 0.8t , respectively.

and J = 1 states change substantially at higher temperatures
T > TN . Weight in the J = 2 states is completely negligible
below TN , but similarly begins to grow at T > TN . We are
going to argue that this spin-orbital rearrangement is the origin
of the second hump in the specific heat.

For comparison, Fig. 4(a) gives the magnetization and the
specific heat for the CF � = 5t that is large enough to enforce
complete orbital polarization with a doubly occupied xy or-
bital at all temperatures shown. The two holes are then found
in xz and yz orbitals and form a conventional spin one, with
an ordered moment close to 2 in the AFM state. The specific
heat shown in Fig. 4(b) has here only the peak at the Néel
temperature and no further features. The expected weights of
eigenstates with total on-site angular momenta J = 0, 1, and
2 are given in Figs. 4(c) and 4(d) and present a quite different
picture from the excitonic case discussed in Fig. 3: while the
weights in J = 0 and J = 1 states change appreciably below
TN , only little variation is seen above TN .

Finally, Figs. 5 and 7 discuss intermediate � = 1.5t ,
an order of magnitude appropriate to describe Ca2RuO4.
Ground-state VCA calculations have here shown in-plane
magnetic moments to be favored over out-of-plane moments
[20], in agreement with the AFM state of Ca2RuO4. Again,
the Néel temperature is not very sensitive to SOC λ while
the ordered moment is substantially reduced by it. The system
without SOC has the largest ordered moment close to 2 [see
Fig. 5(a)]. As is discussed below, its xy orbital is completely
filled below the Néel temperature [see Fig. 7(a)], so that it
comes close to a spin-one scenario. Larger λ � 0.6 t reduce
the ordered moment, which indicates that orbital polarization
is not strong enough to quench SOC. The specific heat shown
in Fig. 5(b) looks qualitatively much more similar to the
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FIG. 5. Transition from spin to excitonic antiferromagnet at � =
1.5t . Panel (a) gives the magnetic order parameter, i.e., staggered
in-plane spin magnetization, and panel (b) gives the specific heat for
SOC λ = 0, 0.6t , 0.8t , and t .

results for � = 0 than to those for � = 5t , as a second hump
at T > TN is clearly seen.

The entropy is shown in Fig. 6, where no CF is compared
with intermediate and large CFs at various values of SOC. For
T → 0, the entropy approaches 0 in all cases, as expected,
and overall is similar in the magnetically ordered state for all
scenarios. Above the Néel temperature TN , the orbitally polar-
ized system at large � = 5t is clearly different from absent
or intermediate CFs. As can be seen in Fig. 6(c), the entropy
above TN is nearly constant for � = 5t and its value S1 =
log(dim H)/(NsitesNorbitals ) = log(495)/6 is consistent with an
effective spin-one system. For � = 0 and � = 1.5t shown in
Figs. 6(a) and 6(b), in contrast, the entropy continues to grow
above TN , indicating that more degrees of freedom become
effectively available.

While the transition from spin-one to excitonic antiferro-
magnetism is a gradual crossover, it was estimated to occur at
λ ≈ 0.7t in the ground state [20]. The J weights qualitatively
agree, with Fig. 7(e) for λ = 0 being similar to the spin-one
scenario of Figs. 4(c) and 4(d), while Figs. 7(g) and 7(h)
for λ = 0.8t and λ = 1 resemble more the excitonic case of
Fig. 3. Figure 7(f) for λ = 0.6t lies somewhere in between,
again in line with the previous estimate.

The second hump in the specific heat for λ = 0 can be
understood by noting that the orbital densities in Fig. 7(a) do
not remain constant above TN . Since the CF is now just strong
enough to fill the xy orbital at T = 0, finite temperature can
induce xy holes and these orbital fluctuations are reflected in
the specific heat. The weights found in states J = 0, 1, and 2,
in contrast, do not change above TN when there is no SOC [see
Fig. 7(e)].

FIG. 6. Entropy depending on temperature for various values of
λ and CFs (a) � = 0, (b) � = 1.5t , and (c) � = 5t .

FIG. 7. Spin-orbital on-site wave function for � = 1.5t . Panels
(a)–(d) show the orbital-resolved densities for λ = 0, 0.6t , 0.8t , and
t , and panels (e)–(h) show the weights in J states according to
Eq. (17).

In the opposite limit λ = t , the orbital densities are nearly
constant, a small difference between xz and yz below TN being
due to magnetic symmetry breaking. Weights in J = 0 and
J = 1 states depend here strongly on temperature at T > TN

[see Fig. 7(h)]. While low T � TN strongly suppressed any
weight in J = 2 states for � = 0 (see Fig. 3), it is here nearly
constant, because it is connected to the clear orbital polariza-
tion nxy > nxz/yz [20].

Finally, Fig. 8 corroborates that the specific-heat hump
at higher temperatures arises from on-site effects. We have
here based the VCA on the exact solution of a single site, so
that correlations beyond on-site are explicitly excluded and
do not include magnetic ordering. As a consequence, there
are no magnetic intersite correlations that could induce triplet
contributions and the ground state is given by the on-site
singlet for � = 0 [see Fig. 8(c)]. This is in agreement with
earlier ground-state work [20] where magnetic solutions were
also shown to have higher J = 1 content than nonmagnetic
ones. (However, the earlier work addressed a cluster and thus
still contained some intersite magnetic superexchange, so that
some J = 1 character persisted). While the single-site cluster
does thus not capture the magnetic low-temperature transition
well, the higher-temperature features are in quite good agree-
ment with the corresponding data obtained with the 2 × 1 site
cluster.

B. Signatures of SOC in one-particle spectra

Figure 9 shows the VCA one-particle spectral density for
� = 0 and temperatures T = 0, T � TN , and T � TN . At
all temperatures, the occupied states are split into three sub-

FIG. 8. (a) Entropy, (b) specific heat, and (c) weights in J states
obtained with VCA based on the exact solution of a single site. � =
0; λ = 0.8t .
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FIG. 9. Orbital-resolved one-particle spectral density for � = 0,
λ = 0.8t , and temperatures (a–c) T = 0, (d–f) T = 0.14t ≈ TN , and
(g–i) T = 0.35t . The orbital character is xy in panels (a), (d), and (g);
yz in panels (b), (e), and (h); and xz in panels (c), (f), and (i).

bands at energies ω � 5t , ω ≈ 10t , and ω � 15t (with the last
having lower weight), which can be related to Hund’s-rule
coupling [26]. Below TN , some signatures of the doubling of
the unit cell are visible in the form of shadow bands around
(0,0) and (π, π ). Apart from this feature, the predominant
effect of temperature is making the spectra less coherent.
Overall, temperature effects on spectra are rather subtle.

Temperature-driven orbital reconstruction reveals itself
slightly more when CF and SOC compete (see the one-
particle spectra shown in Fig. 10 for � = 1.5t and λ = t).
The ground-state spectrum in Figs. 10(a)–10(c) shows again
a slight shadow band due to the doubling of the unit cell, and
both the empty band (of predominantly xz and yz character)
and the highest occupied band (of predominantly xy character)
have a two-dimensional dispersion, similar to Figs. 9(a)–9(c).
In the spectra taken around TN [see Fig. 10(d)–10(f)], the
shadow band has vanished. The occupied xz and yz states
have become more coherent than in the ground state. This
rather unconventional behavior may be related to the ladder-
like features that were recently found in a strong-coupling
t-J-like model without SOC, where they arise in the AFM
state due to the anisotropic hoppings of these orbitals [34]:
when magnetic order is lost, the ladder features become
weaker and the underlying dispersion is seen more easily. It
is rather one-dimensional, as expected for xz and yz orbitals
without SOC. Such a weaker impact of SOC at higher binding
energies is somewhat reminiscent of the correlation-induced
energy dependence of SOC previously reported for metallic
Sr2RuO4 [35].

In the unoccupied xz and yz states, on the other hand, inco-
herent features have gained weight in addition to the coherent
band dominating the T = 0 spectrum. They do not follow the

FIG. 10. Orbital-resolved one-particle spectral density for � =
1.5t , λ = t , and temperatures (a–c) T = 0, (d–f) T = 0.16t ≈ TN ,
and (g–i) T = 0.35t . The orbital character is xy in panels (a), (d),
and (g); yz in panels (b), (e), and (h); and xz in panels (c), (f), and (i).

two-dimensional dispersion of the coherent band, but are more
one dimensional. At high temperature T = 0.35t , finally, the
unoccupied bands show mostly the one-dimensional disper-
sion characteristic of xz and yz orbitals in the absence of SOC
[see Figs. 10(h)–10(i)]. In the presence of a CF, SOC thus
only couples the three orbitals into a 2D dispersion at lower
temperatures and lower excitation energies, while spectra at
higher temperatures and energies look similar to the case
without SOC.

IV. DISCUSSION AND CONCLUSIONS

We have shown that temperature strongly affects the
spin-orbital on-site state in the PM Mott-insulating state of
spin-orbit coupled t4

2g systems. We have investigated parame-
ter sets supporting excitonic AFM order at low temperatures,
with and without a crystal field. As long as the CF is not strong
enough to completely quench the orbital degree of freedom,
we consistently find a second broad hump in the specific heat,
in addition to the peak at TN . In the same temperature range,
on-site total angular momentum changes substantially.

In one-particle spectra, low-energy excitations stemming
from xz and yz orbitals are two-dimensional in the ground
state, but become more one-dimensional at higher temper-
atures. This can also be interpreted as SOC being most
effective at low temperatures. Overall, signatures of SOC
and of the temperature-driven spin-orbital rearrangement are
rather subtle in one-particle spectra. Even at low temperatures,
where SOC is essential to reproduce the dispersion of mag-
netic excitations [13,16], one-particle spectra have thus been
reasonably well described already without taking SOC into
account [26,34].
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FIG. 11. (a) Entropy and (b) specific heat for SOC λ = 0.8t at
various CFs �.

However, we argue that x-ray diffraction and absorption
experiments performed on Ca2RuO4 show signatures of the
spin-orbital rearrangement found here. Parameters for this
compound correspond roughly to those of Figs. 5(c), 5(d), and
10, i.e., � ≈ 1.5t and λ ≈ 0.8t–1t [20]. At temperatures of
≈260 K, i.e., between the metal-insulator transition (which
goes together with a structural phase transition) and the Néel
transition, signatures of another phase transition were reported
early on and interpreted in terms of orbital order [14,15].

Since this additional transition does not break any spatial
symmetries, one can rule out orbital stripe [36] or checker-
board [37] patterns theoretically predicted for absent (or
weak) SOC. More recent work established that the transition
cannot be related to a change in orbital densities, leaving only
the phase in a complex orbital superposition as a possibil-
ity [38]. This would fit with our findings of an SOC-driven
spin-orbital rearrangement. When SOC prefers the J = 0 state
at low temperatures, this implies for each spin projection a
specific phase relation between the orbitals. In contrast, no

FIG. 12. Panels (a) and (b) show the orbital-resolved densities
for � = 1.5t and 5t , and panels (c) and (d) show the weights in J
states according to Eq. (17). Both are at λ = 0.8t .

definite phases are expected at higher temperatures where
SOC is less active.

We have thus identified the enigmatic orbital-order transi-
tion in Ca2RuO4 as a transition to a spin-orbit coupled on-site
wave function. This implies, e.g., that a spin up (down) prefers
the complex |lz = ±1〉 orbital over the opposite state. This is
somewhat reminiscent of a ferro-orbital order proposed early
on for Ca2RuO4 [15], where the orbital wave function is a
complex (rather than a real) superposition of t2g orbitals. More
generally, complex-orbital order has been suggested to play a
role in doped manganites [39] and the Vervey transition of
magnetite [40]. Spontaneous complex-orbital order is, how-
ever, rare, because lattice distortions like the Jahn-Teller effect
favor real orbitals. The present work not only reconciles this
picture with the observation of (nearly) constant density on
xy orbitals in Ca2RuO4, but moreover shows the transition to
arise naturally in a three-orbital model with SOC.
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APPENDIX: SINGLE-SITE VCA

To address the effect of different cluster sizes, we provide
here additional observables for VCA based on a single site
at moderate SOC λ = 0.8t and different CFs. Due to the
smaller system size, full diagonalization is employed and all
eigenvectors are used for the trace. Since a single site cannot

FIG. 13. Orbital-resolved one-particle spectral density for � =
1.5t , λ = 0.8t , and temperatures (a–c) T = 0, (d–f) T = 0.16t , and
(g–i) T = 0.35t . Orbital character is xy in panels (a), (d), and (g); yz
in panels (b), (e), and (h); and xz in panels (c), (f), and (i).
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support an AFM state, there is no ordering field and only
physical and cluster chemical potentials are optimized.

Figure 11 shows the entropy and the specific heat. In
agreement with the 2 × 1 site cluster, the entropy for � = 5t
approaches a constant value consistent with an effective spin-
one system. In the specific heat, a broad hump at elevated
temperature exists only for moderate CF, but not for large CF.
Compared to the 2 × 1 site cluster, the first peak in the specific
heat is shifted to smaller temperature and less pronounced,
presumably because AFM ordering is suppressed.

Similar to the results for the larger cluster shown in
Fig. 7, orbital densities at intermediate CF � = 1.5t show
pronounced orbital polarization that is only slightly, and non-
monotonously, affected by increasing temperatures. Orbital
polarization is complete for large CF [Fig. 12(b)] and absent

for � = 0 (not shown), both in agreement with the larger clus-
ter. Weights in total-angular-momentum states are shown in
Figs. 12(c) and 12(d) and again qualitatively agree with results
from the larger cluster, especially concerning the sequence
of states and the temperatures where they cross. Increasing
temperature increases the occupation of the J = 1 state mostly
at the expense of the J = 0 state.

Figure 13 shows the spectral function based on a single
site for intermediate CF � = 1.5t . Compared to the results
obtained from a 2 × 1 site cluster (see Fig. 10), the shadow
bands are no longer present, because only the paramagnetic
phase is considered. The transition from a two-dimensional
dispersion at low temperature to a one-dimensional dispersion
at higher temperature, however, remains. This can best be seen
in the unoccupied states with dominant yz and xz weight.
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