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Spin-orbital-momentum locking under odd-parity magnetic quadrupole ordering
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Odd-parity magnetic and magnetic toroidal multipoles in the absence of both spatial-inversion and time-
reversal symmetries are sources of multiferroic and nonreciprocal optical phenomena. We investigate electronic
states caused by an emergent odd-parity magnetic quadrupole (MQ) as a representative example of magnetic
odd-parity multipoles. It is shown that spontaneous ordering of the MQ leads to an antisymmetric spin-orbital
polarization in momentum space, which corresponds to a spin-orbital-momentum locking at each wave vector.
By a symmetry argument, we show that the orbital or sublattice degree of freedom is indispensable to give rise
to the spin-orbital-momentum locking. We demonstrate how the electronic band structures are modulated by
the MQ ordering in the three-orbital system, in which the MQ is activated by the spin-dependent hybridization
between the orbitals with different spatial parities. The spin-orbital-momentum locking is related to the micro-
scopic origin of cross-correlated phenomena, e.g., the magnetic-field-induced symmetric and antisymmetric spin
polarization in the band structure, the current-induced distortion, and the magnetoelectric effect. We also discuss
similar spin-orbital-momentum locking in an antiferromagnet where the MQ degree of freedom is activated
through the antiferromagnetic spin structure in a sublattice system.
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I. INTRODUCTION

The interplay among internal degrees of freedom in
electrons, such as charge, spin, and orbital, gives rise to un-
conventional physical phenomena in the strongly correlated
electron system. The concept of the atomic-scale multipole
can describe not only electronic order parameters but also
resultant physical phenomena in a unified way [1–6]. There
are four types of multipoles according to space- and time-
inversion properties: electric, magnetic, electric toroidal, and
magnetic toroidal multipoles [7–9]. Moreover, such atomic-
scale multipoles have been generalized so as to describe
anisotropic charge and spin distributions over multiple sites,
which are denoted as a cluster multipole [10–15] and a bond
multipole [16,17]. The generalization of the concept of the
multipole is referred to as an augmented multipole, which
opens a new direction of cross-correlated (multiferroic) phys-
ical phenomena in antiferromagnets, such as the anomalous
Hall and Nernst effects in Mn3Sn [11,18–22], current-induced
magnetization in UNi4B [23–26] and Ce3TiBi5 [27,28], and
nonreciprocal magnon excitations in α-Cu2V2O7 [29–33].

The active multipole moments in real space are related
to the electronic band structures in momentum space
[4,17,34–36]. In other words, the band deformations and
spin splittings at each wave vector are ascribed to the active
multipole moments. For example, a lowering of the symmetry
in the band structure caused by spontaneous electronic
orderings, such as the Pomeranchuk instability [37–39] and
the electronic nematic state [40–42], corresponds to the
appearance of a particular type of active electric quadrupole.
Another example is an antisymmetric band-bottom shift

without both spatial-inversion and time-reversal symmetries,
which is accounted for by the emergent magnetic toroidal
dipole moment [24,43–47].

The correspondence between the multipole and the band
deformation is classified according to the space- and time-
inversion symmetries [4]; the even-rank (odd-rank) electric
(magnetic toroidal) multipole leads to symmetric (anti-
symmetric) band deformation, and the odd-rank magnetic
(electric) multipole and even-rank magnetic toroidal (electric
toroidal) multipole induce symmetric (antisymmetric) spin
splittings with respect to the wave vector. A systematic clas-
sification of the band structure based on multipoles can lead
to a further intriguing situation, such as symmetric and an-
tisymmetric spin splittings even without spin-orbit coupling
[17,35,36,48–54].

In this paper, we focus on the role of the magnetic
quadrupole (MQ) in the electronic structures in momentum
space. The MQ is characterized as a rank-2 axial tensor with
time reversal odd among the magnetic multipoles. As this is
a higher-rank multipole of the magnetic dipole, it is defined
as the spatial distributions of the magnetic moments, such
as the spin and orbital angular momenta. A typical example
to exhibit the MQ is the antiferromagnetic ordering without
the spatial-inversion symmetry, which has been discussed
in the context of multiferroic materials in magnetic insu-
lators [55–59], such as Cr2O3 [60–64], Ba(TiO)Cu4(PO4)4

[65–67], Co4Nb2O9 [68–72], and KOsO4 [73–75]. Mean-
while, such ordering has recently been discussed in mag-
netic metals [76–79], such as BaMn2As2 [80,81], as it
could exhibit intriguing current-induced magnetization and
distortion.
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In generalization of the studies on the MQ from insu-
lators to metals, there is a natural question as to how the
MQ affects the electronic band structure microscopically
and induces related physical phenomena. There is a miss-
ing link between the electronic band modulations and the
odd-parity magnetic multipoles because the latter cannot be
constructed by a simple product between the wave vectors
and spin degrees of freedom [4]. To answer this naive ques-
tion, we investigate the characteristic feature of the electronic
band structure by the formation of the MQ ordering based
on the simplest multiorbital model. We show that there is
a nontrivial spin-orbital entanglement once the MQ order-
ing occurs; the electric quadrupole polarization defined by
the product of spin and orbital angular momenta appears
with a dependence on the wave vector in an antisymmet-
ric way. By analogy with the spin-momentum locking in
noncentrosymmetric metals [82], we refer to the effective
spin-orbital entanglement as “spin-orbital-momentum lock-
ing.” The spin-orbital-momentum locking becomes the origin
of the antisymmetric spin polarization under the magnetic
field. Moreover, we find that the spin-orbital-momentum lock-
ing provides a deep understanding of conductive phenomena
in magnetic metals, such as the current-induced distortion.
We also show that a similar spin-orbital-momentum locking
is realized in the antiferromagnetic ordering by taking into
account the sublattice degree of freedom instead of the orbital
one.

The rest of this paper is organized as follows. In Sec. II,
after introducing the expressions of the MQ in real space,
we present them in momentum space, which indicates an
origin of the spin-orbital-momentum locking. We discuss
the realization of such spin-orbital-momentum locking by
considering the multiorbital and sublattice systems with the
active MQ degree of freedom in Sec. III. We relate the spin-
orbital-momentum locking to physical phenomena, such as
the current-induced distortion and magnetoelectric effect, un-
der the MQ ordering from the analysis of the linear response
theory. Section IV is devoted to a summary.

II. MAGNETIC QUADRUPOLE

In this section, we show the expressions of the MQ in real
and momentum spaces on the basis of multipole expansion
and group theory. After briefly reviewing the expressions in
real space in Sec. II A, we describe the band modulations
under the MQ in Sec. II B. It is shown that the active MQ
gives rise to the spin-orbital-momentum locking at each wave
vector.

A. Expressions in real space

We start by reviewing the MQ in real space, whose ex-
pression is obtained in the second order of the multipole
expansion for the vector potential [8,83,84]. The MQ is char-
acterized by the rank-2 axial tensor with five components
{Mu, Mv, Myz, Mzx, Mxy} with u = 3z2 − r2 and v = x2 − y2,
which has the odd parities for both space- and time-inversion
operations. The expressions are given by

Mu = 2zmz − xmx − ymy, (1)

TABLE I. The correspondence between the multipoles and the
momentum in terms of the space-time-inversion symmetries. “Even”
(“odd”) in parentheses represents the even-rank (odd-rank) multi-
poles. The first four rows of the table show the correspondence in
the single-orbital system, while the last two rows show the corre-
spondence in the multiorbital system where μ, ν = x, y, z.

Momentum P T Multipoles

k2n +1 +1 electric (even)
k2n+1 −1 −1 magnetic toroidal (odd)
k2nm +1 −1 magnetic (odd) or magnetic toroidal (even)
k2n+1m −1 +1 electric (odd) or electric toroidal (even)

k2nlμσν +1 +1 electric (even) or electric toroidal (odd)
k2n+1lμσν −1 −1 magnetic (even) or magnetic toroidal (odd)

Mv =
√

3(xmx − ymy), (2)

Myz =
√

3(zmy + ymz ), (3)

Mzx =
√

3(xmz + zmx ), (4)

Mxy =
√

3(ymx + xmy), (5)

where r = (x, y, z) is the position vector and m =
(mx, my, mz ) is the magnetic moment consisting of the
dimensionless orbital- and spin-angular-momentum operators
l and σ/2, as m = 2l/3 + σ [8]. One can confirm that
the sign of the MQs in Eqs. (1)–(5) is reversed by the
spatial-inversion or time-reversal operations, P and T , as P
(T ) reverses the sign of r (m). Meanwhile, the expressions
in Eqs. (1)–(5) are invariant under the PT operation.
Although such space-time-inversion properties are common
to the magnetic toroidal dipole proportional to r × m,
they are distinguished from the rotational property: The MQ is
the rank-2 axial tensor, and the magnetic toroidal dipole is the
rank-1 polar tensor. The real-space spin configurations of each
MQ component projected onto a sphere are schematically
shown in Fig. 1.

B. Spin-orbital-momentum locking

In contrast to the real-space expressions of the MQ in
Sec. II A, it is nontrivial to deduce their momentum-space ex-
pressions owing to the opposite time-reversal parity between r
and the wave vector k. Indeed, it is impossible to construct the
counterparts of Eqs. (1)–(5) by replacing r with k. In fact, any
contractions of the time-reversal-odd polar vector k and the
time-reversal-odd axial vector m lead to the odd-rank electric
multipoles or the even-rank electric toroidal multipoles with
time-reversal-even rather than the time-reversal-odd rank-2
axial tensor, MQ. We summarize the correspondence between
the multipoles and their k dependence in terms of the space-
time-inversion symmetries in the first four rows of Table I.
Thus it is concluded that the appearance of the real-space MQ
does not affect the electronic band structure within the product
between k and m.

Such a situation is resolved by taking into account the
product of two angular momenta, l and σ. Since both l and
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FIG. 1. Schematic pictures of the spin configuration of the MQs,
{Mu, Mv, Myz, Mzx, Mxy}, in Eqs. (1)–(5) projected onto a sphere. The
arrows represent the direction of the magnetic moments.

σ are the same rank-1 axial tensors but they are indepen-
dent of each other, their contraction expresses the rank-0
and rank-2 polar tensor Qμν = (lμσν + lνσμ)/

√
2 for μ, ν =

x, y, z and rank-1 axial tensor G = l × σ with time reversal
even. By taking a further contraction between k and G or
Qμν , one can construct the rank-2 axial tensor corresponding
to the MQ in momentum space. In the case of the con-
traction between k and G, the MQ in momentum space is
expressed as

M (I)
u (k) = 2Gzkz − Gxkx − Gyky, (6)

M (I)
v (k) =

√
3(Gxkx − Gyky), (7)

M (I)
yz (k) =

√
3(Gykz + Gzky), (8)

M (I)
zx (k) =

√
3(Gzkx + Gxkz ), (9)

M (I)
xy (k) =

√
3(Gxky + Gykx ). (10)

In the case of the contraction between k and Qμν , the MQ is
expressed as

M (II)
u (k) = −3Qyzkx + 3Qzxky, (11)

M (II)
v (k) =

√
3(−Qyzkx − Qzxky + 2Qxykz ), (12)

M (II)
yz (k) =

√
3[

√
2(Qzz − Qyy)kx + Qxyky − Qzxkz], (13)

M (II)
zx (k) =

√
3[

√
2(Qxx − Qzz )ky + Qyzkz − Qxykx], (14)

M (II)
xy (k) =

√
3[

√
2(Qyy − Qxx )kz + Qzxkx − Qyzky]. (15)

As {M (I)
u (k), M (I)

v (k), M (I)
yz (k), M (I)

zx (k), M (I)
xy (k)} and {M (II)

u (k),
M (II)

v (k), M (II)
yz (k), M (II)

zx (k), M (II)
xy (k)} are the same spatial

property, their linear combination, e.g., c1M (I)
u (k) +

c2M (II)
u (k), where c1 and c2 are linear coefficients, is expected

to appear once the MQ order occurs.
The expressions in Eqs. (6)–(15) indicate an emergent

antisymmetric spin-orbital polarization with respect to k in
the band structure. The product of l and σ in G and Qμν

is a higher-rank coupling than the atomic spin-orbit cou-
pling l · σ. The k dependences of these two couplings are
qualitatively different from that of l · σ: The present cou-
pling shows an antisymmetric k dependence, whereas the
ordinary spin-orbit coupling does not. Besides, the coupling
between the different components of l and σ can emerge
in the MQ ordered state, e.g., Gx = lyσz − lzσy and Qxy =
(lxσy + lyσx )/

√
2. Since Qμν has the same symmetry property

as the quadrupole, this spin-orbital polarization is regarded as
the antisymmetric quadrupole splitting. Thus the appearance
of the MQ ordering connects between the momentum and
the spin-orbital degrees of freedom, which is the microscopic
origin of the current-induced distortion, as will be discussed
in Sec. III A 4.

The above antisymmetric spin-orbital polarization is sim-
ilar to the antisymmetric spin polarization in a nonmagnetic
noncentrosymmetric lattice system with the Rashba or Dres-
selhaus spin-orbit interaction. In the case of the nonmagnetic
systems, the antisymmetric spin splittings appear in the form
of k × σ for the polar crystal and kμσν for the chiral or
gyrotropic crystal. Owing to the momentum dependence in
the spin splitting, the spin orientation is locked at the par-
ticular direction at each wave vector k, which is called the
spin-momentum locking [82]. In a similar way, the present
antisymmetric spin-orbital polarization leads to the locking of
the component of lμσν at the particular component at each k.
Thus we refer to the antisymmetric spin-orbital polarization in
the MQ ordered state as the spin-orbital-momentum locking.
It is noted that this spin-orbital momentum locking does not
accompany the individual spin and orbital polarizations owing
to the PT symmetry. This situation can be regarded as the
hidden spin polarization in the band structure, which is similar
to that discussed in the staggered Rashba systems without
local inversion symmetry at each lattice site [85–90], such
as the zigzag [45,46,91,92], honeycomb [10,93–96], diamond
[75,97,98], and layered systems [24,99–101]. In contrast to
the staggered Rashba systems, the present spin-orbital polar-
ization with hidden spin and orbital polarizations is activated
by the spontaneous MQ ordering irrespective of the specific
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lattice structure. It is noted that the hidden polarizations can
be lifted easily by applying an external magnetic field.

Let us remark on the relevance to other multipole order-
ings. The antisymmetric spin-orbital-momentum locking can
also appear in the odd-parity magnetic and magnetic toroidal
multipoles, such as the magnetic toroidal dipole. For instance,
the contraction of k and G includes the rank-1 polar tensor
corresponding to the magnetic toroidal dipole, k × G. There,
however, is a clear difference in the band structure between the
MQ and the magnetic toroidal dipole after tracing out the spin-
orbital degree of freedom: The former shows the symmetric
band structure, while the latter exhibits the antisymmetric one
with respect to k.

III. ACTIVE MAGNETIC QUADRUPOLE SYSTEM

In this section, we demonstrate that the MQ ordering
gives rise to the spin-orbital-momentum locking by analyzing
specific lattice models. We consider two intuitive systems
including the MQ degree of freedom: One is the multiorbital
system, where the MQ is activated by the spin-dependent
hybridization between orbitals with different spatial parity in
Sec. III A. The other is the sublattice system, where the MQ
is activated by the antiferromagnetic ordering in Sec. III B.

A. Multiorbital system

In this section, we consider the MQ ordering in the
multiorbital system. By constructing the multiorbital model
consisting of the s, px, and py orbitals, where the MQ degree
of freedom is described by the spin-dependent s-p hybridiza-
tion in Sec. III A 1, we discuss the electronic band structure
under the MQ ordering in Sec. III A 2. We show that the MQ
ordering gives rise to a variety of the spin-orbital-momentum
locking depending on the type of MQ as introduced in
Sec. II B. The spontaneous MQ ordering induces the effec-
tive spin-orbit interaction similar to the atomic relativistic
spin-orbit coupling. In Sec. III A 3, we show the effect of the
magnetic field on the band structure in the MQ ordering. The
symmetric and antisymmetric spin splittings in addition to the
Zeeman splitting are induced by the magnetic field owing to
the PT symmetry breaking. We discuss the relation between
the spin-orbital momentum locking and physical responses
by exemplifying two cross-correlated phenomena: current-
induced distortion in Sec. III A 4 and the magnetoelectric
effect in Sec. III A 5.

1. Model

We construct a minimal multiorbital model to describe the
MQ degree of freedom. We consider a three-orbital model
consisting of the s, px, and py orbitals on a two-dimensional
square lattice under the point group D4h. We take the lattice
constant as unity. The following results are straightforwardly
generalized to a three-dimensional system. The wave func-
tions of the s, px, and py orbitals are represented by φs, φx,
and φy, respectively. Then, the tight-binding Hamiltonian for
the basis {φsσ , φxσ , φyσ } is given by

H =
∑

k,α,β,σ

c†
kασ

Hαβ
σ ckβσ , (16)

where c†
kασ

(ckασ ) is the creation (annihilation) operator
of electrons at wave vector k, orbital α = s, x, y, and spin
σ . The 3 × 3 Hamiltonian matrix spanned by the basis
{φsσ , φxσ , φyσ } is given by

Hσ =
⎛
⎝2ts(cx + cy) −2itspsx −2itspsy

2itspsx 2(tσ cx + tπcy) 2txysxsy − iσλ

2itspsy 2txysxsy + iσλ 2(tσ cy + tπcx )

⎞
⎠,

(17)

where cη = cos kη and sη = sin kη for η = x, y. There are
five hopping parameters in the Hamiltonian in Eq. (17),
{ts, tσ , tπ , tsp, txy} from the symmetry of the system: the
nearest-neighbor hoppings between the s orbitals ts, p orbitals
tσ and tπ , and s-p orbitals tsp and the next-nearest-neighbor
hopping between the p orbitals txy. λ is the constant for the
atomic spin-orbit coupling where the factor 1/2 from the
spin operator σ/2 is rescaled. We do not consider the atomic
energy difference between s and p orbitals and the other
hoppings for simplicity.

The spinful 6 × 6 Hamiltonian matrix spanned by
{φs↑, φx↑, φy↑, φs↓, φx↓, φy↓} has 36 independent electronic
degrees of freedom. In spinless space, there are nine elec-
tronic degrees of freedom, whose irreducible representations
are 2A+

1g ⊕ A−
2g ⊕ B+

1g ⊕ B+
2g ⊕ E±

u where the superscript ±
denotes the time-reversal parity. Among them, the irreducible
representations E+

u and E−
u correspond to the odd-parity

dipoles: the electric dipoles, Q(h)
x and Q(h)

y , and magnetic
toroidal dipoles, T (h)

x and T (h)
y , respectively. Physically, they

are expressed as the real and imaginary hybridizations be-
tween s and p orbitals, whose matrices are represented by

Q(h)
x =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, Q(h)

y =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, (18)

T (h)
x =

⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠, T (h)

y =
⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠, (19)

where the superscript (h) represents the hybrid multipoles that
are active in the hybridized orbitals [8]. See also Fig. 2(a). It is
noted that there is no MQ degree of freedom in spinless space.

The MQ degree of freedom with (P, T ) = (−1,−1) ap-
pears by considering the electronic degrees of freedom in
spinful space, which is constructed from the product of
the electric dipole with (P, T ) = (−1, 1) and spin operator
with (P, T ) = (1,−1) [8,9]. Indeed, the product of the ir-
reducible representation of the electric dipole E+

u and spin
A−

2g ⊕ E−
g gives six odd-parity multipoles with time rever-

sal odd; E+
u ⊗ (A−

2g ⊕ E−
g ) = A−

1u ⊕ A−
2u ⊕ B−

1u ⊕ B−
2u ⊕ E−

u .
Among them, five out of six multipole degrees of freedom are
expressed as MQs, whose expressions are given by

A−
1u: M (h)

u = −Q(h)
x σx − Q(h)

y σy, (20)

B−
1u: M (h)

v = Q(h)
x σx − Q(h)

y σy, (21)

E−
u : M (h)

yz = Q(h)
y σz, (22)

M (h)
zx = Q(h)

x σz, (23)

B−
2u: M (h)

xy = Q(h)
x σy + Q(h)

y σx. (24)
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(a) (b)

yyx

z

(h)

(h)

(h)

(h)

(h)

(h)

(h)

(h)

(h)

(h)

FIG. 2. (a) Multiorbital model consisting of s, px , and py or-
bitals, whose wave functions are denoted as φs, φx , and φy. The
electric dipole degrees of freedom, Q(h)

x and Q(h)
y , are defined by

the off-diagonal elements between φs and φx (open squares) and
φs and φy (solid squares). (b) The wave functions of the MQ
{M (h)

u , M (h)
v , M (h)

yz , M (h)
zx , M (h)

xy } and magnetic toroidal dipole T (h)
z or-

derings in Eqs. (20)–(25). For visibility, we use arrows for the angle
distribution of the xy spin moments for M (h)

u , M (h)
v , M (h)

xy , and T (h)
z ,

while a color map is used for the z spin moments for M (h)
yz and M (h)

zx .
The shapes represent the angle distributions of the electric charge
density.

One can find that the expressions in Eqs. (20)–(24) correspond
to those in Eqs. (1)–(5) in Sec. II A by replacing (x, y, z) and
(mx, my, mz ) with (Q(h)

x , Q(h)
y , 0) and (σx, σy, σz ), respectively.

It is noted that M (h)
yz and M (h)

zx belong to the same irreducible
representation as the in-plane magnetic toroidal dipoles, Tx

and Ty, respectively, which will be discussed in detail in
Sec. III A 2.

The remaining multipole degree of freedom corresponds to
the magnetic toroidal dipole degree of freedom T (h)

z , which
belongs to the irreducible representation A−

2u. The expres-
sion of T (h)

z is given by the antisymmetric product between
{Q(h)

x , Q(h)
y } and {σx, σy} as [8,102]

A−
2u: T (h)

z = Q(h)
x σy − Q(h)

y σx. (25)

The above six multipoles satisfy the orthogonal relation
Tr[XY ] = 0, where X,Y = M (h)

u , M (h)
v , M (h)

yz , M (h)
zx , M (h)

xy , T (h)
z

and X �= Y . In the following, we consider the situation where
one of the six multipoles is ordered by the electron correlation.
The amplitude of the mean field is given by h. We show
schematic pictures of the wave functions with nonzero M (h)

u ,
M (h)

v , M (h)
yz , M (h)

zx , M (h)
xy , and T (h)

z in Fig. 2(b). The shapes rep-
resent the electric charge density, while the arrows for M (h)

u ,
M (h)

v , M (h)
xy , and T (h)

z [colors for M (h)
yz and M (h)

zx ] represent the
angle distributions of the xy(z) spin moments, which corre-
spond well with the schematic spin polarization in Fig. 1.

2. Band structure

We investigate the change in the electronic band structure
in the presence of the MQ orderings in the multiorbital model
in Eq. (16). As the system is two dimensional (kz = 0) and
the Hamiltonian has only the z component of the angular
momentum (lx = ly = 0), the spin-orbital-momentum locking
in Eqs. (6)–(15) reduces to

Mu(k) = −lzσykx + lzσxky, (26)

Mv (k) = −lzσykx − lzσxky, (27)

Myz(k) = lzσzkx, (28)

Mzx(k) = −lzσzky, (29)

Mxy(k) = lzσxkx − lzσyky, (30)

except for the numerical coefficient. Thus the spin-orbital-
momentum locking with respect to the components of lzσx,
lzσy, and lzσz is expected once the MQ order occurs.

Figures 3(a)–3(c) show the isoenergy surfaces in the band
structure at the chemical potential μ = 1 for the M (h)

u , M (h)
v ,

and M (h)
xy ordered states, respectively. The model parameters

are taken as tσ = 0.8, tπ = 0.5, txy = 0.3, ts = 1, tsp = 0.6,
and h = 0.3. We neglect the effect of the atomic relativistic
spin-orbit coupling λ = 0 unless otherwise stated. The spin-
orbital polarizations lzσx, lzσy, and lzσz are calculated at each k
and are shown in the left, middle, and right columns in Fig. 3,
respectively. Each band is doubly degenerate owing to the PT
symmetry.

The results clearly indicate the emergence of the spin-
orbital-momentum locking expected from the symmetry
argument in Eqs. (26)–(30) in each ordered state. The an-
tisymmetric spin-orbital polarizations of lzσx and lzσy occur
along the ky and kx directions, respectively, in the case of the
M (h)

u ordered state in Fig. 3(a). Similarly, the antisymmetric
spin-orbital polarizations in Eqs. (27) and (30) are found in
the M (h)

v and M (h)
xy ordered states, as shown in Figs. 3(b) and

3(c), respectively.
The important hopping parameters for the spin-orbital-

momentum locking are easily extracted by evaluating
the following quantity at each wave vector k: Oμ(k) =
Tr[e−βHk lzσμ] for μ = x, y, z and H = ∑

k Hk, where β is
the inverse temperature. In the high-temperature expansion of
Oμ(k), the necessary hopping parameters for the spin-orbital-
momentum locking are systematically obtained [17,36]. For
the M (h)

u ordered state, the lowest-order contributions of Ox(k)
and Oy(k) are given by −htsp sin ky and htsp sin kx, respec-
tively, which indicates that the antisymmetric spin-orbital
polarization is induced by the effective coupling between the
order parameter h and the s-p hopping tsp.

Notably, there is a symmetric spin-orbital polarization in
terms of the lzσz component even without the atomic spin-
orbit coupling, as shown in Figs. 3(a)–3(c). This is because
the order parameters in Eqs. (20), (21), and (24) are described
by two spin components, σx and σy. In this case, the term
proportional to lzσz appears as the even-order product of
the mean-field term in the expansion of Oz(k). Indeed, the
lowest-order contribution of Oz(k) is proportional to h2. The
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FIG. 3. The isoenergy surfaces at μ = 1, tσ = 0.8, tπ = 0.5, txy = 0.3, ts = 1, tsp = 0.6, and λ = 0 in the (a) M (h)
u , (b) M (h)

v , (c) M (h)
xy , and

(d) T (h)
z states with the molecular field h = 0.3. The color map shows the spin-orbital polarization of the lzσx (left), lzσy (middle), and lzσz

(right) components at each wave vector.

opposite sign of lzσz between the M (h)
u and the other two

ordered states is due to the opposite vorticity of the vector
Q(k) = (〈lzσx(k)〉, 〈lzσy(k)〉, 〈lzσz(k)〉) in k space: The direc-
tion of (Qx,Qy) shows a (counter)clockwise rotation for the

M (h)
v and M (h)

xy (M (h)
u ) ordered states for the counterclockwise

path on the circular Fermi surfaces, as schematically shown in
Fig. 4. As the almost uniform distribution of lzσz in k space
resembles the atomic spin-orbit coupling, this is regarded as
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FIG. 4. The schematic spin-orbital-momentum locking on the
circular Fermi surfaces for the M (h)

u , M (h)
v , and M (h)

xy ordered states.
The arrows represent the direction of (Qx,Qy ).

the emergent spin-orbit coupling arising from the MQ order-
ing. Thus the magnitude of the atomic spin-orbit coupling can
be controlled by the magnitude of the MQ order parameter.

Similar to the MQ ordering, the magnetic toroidal dipole
ordering T (h)

z in Eq. (25) also shows the antisymmetric spin-
orbital polarization, as shown in Fig. 3(d). The functional form
of the antisymmetric spin-orbital polarization is represented
by lzσxkx + lzσyky, which is obtained by replacing σx with
−σx in the expression of Mxy(k) in Eq. (30). Although the
asymmetric bottom shift along the kz direction is expected
with the onset of T (h)

z , it does not appear in the present two-
dimensional system.

The remaining MQs, M (h)
yz and M (h)

zx , also show the spin-
orbital-momentum locking. The antisymmetric spin-orbital
polarization of lzσz appears with respect to the kx (ky) direc-
tion in the M (h)

yz (M (h)
zx ) ordered state, as shown in Fig. 5(a)

[Fig. 5(b)]. In contrast to the result in Fig. 3, there is no sym-
metric polarization of lzσz owing to the one spin component
in Eqs. (22) and (23).

(a)
0.6

-0.6

0.6

-0.6

(c)

(b)

(d)

(h) (h)

(h) (h)

FIG. 5. Same as Fig. 3, but in the (a) and (c) M (h)
yz and (b) and

(d) M (h)
zx states. The same model parameters as in Fig. 3 are used in

(a) and (b), and the effect of the spin-orbit coupling λ is added as
λ = 0.5 in (c) and (d). The solid black curves in (c) and (d) represent
the isoenergy surfaces in (a) and (b), respectively.

It is noteworthy that M (h)
yz and M (h)

zx belong to the same
irreducible representations of T (h)

x and T (h)
y under the point

group D4h. Nevertheless, there is no antisymmetric band bot-
tom shift along the kx and ky directions in Figs. 5(a) and
5(b). The antisymmetric band deformation appears only when
introducing the atomic spin-orbit coupling λ in Eq. (17), as
shown in Figs. 5(c) and 5(d). Indeed, the effective coupling
between λ and htsp appears in the expansion of Tr[e−βHk ]:
−htspλ sin kx for the M (h)

yz state and htspλ sin ky for the M (h)
zx

state. This result indicates that the magnetic toroidal dipoles,
T (h)

x and T (h)
y , are secondarily induced in the presence of the

spin-orbit coupling in the MQ state.

3. Spin splittings under a magnetic field

Although the MQ ordered state exhibits the antisymmetric
spin-orbital polarization, it does not show any spin splittings
owing to the presence of the PT symmetry. The degeneracy
is lifted by the PT -breaking field, which results in additional
momentum-dependent spin splittings in the band structure.
Hereafter, we demonstrate that various symmetric and anti-
symmetric spin splittings are induced by an external magnetic
field by focusing on the M (h)

xy ordered state. We introduce the

Zeeman coupling to spin, −H · ∑
iασσ ′ c†

iασ σσσ ′ciασ ′ , where
we neglect the Zeeman coupling to orbital angular momentum
without loss of generality.

Figures 6(a), 6(b), and 6(c) show the isoenergy surfaces in
the presence of the magnetic field along the x, y, and z direc-
tions, respectively, with the magnitude of |H| ≡ H = 0.1. The
three panels in each figure correspond to the spin polarization
of σx, σy, and σz. The other parameters are the same as those
in the previous section.

When the magnetic field is turned on along the x direction,
the spin polarization emerges owing to the PT symmetry
breaking, as shown in Fig. 6(a), although the k dependence
of the spin polarization is different for the different spin
components. The x spin component parallel to the magnetic
field shows the ordinary Zeeman splitting, whereas the y and
z spin components perpendicular to the magnetic field give
rise to the symmetric and antisymmetric spin splittings, whose
functional forms are given by kxkyσy and kxσz in the limit of
k → 0, respectively.

Reflecting the different forms of spin splittings, the neces-
sary model parameters are different. We extract the essential
model parameters for the spin splittings by calculating
Sμ(k) = Tr[e−βHkσμ] [17,36]. In the y spin component, the
lowest-order contribution in Sy(k) for βHk  1 is given by
h2Htxy sin kx sin ky or h2Ht2

sp sin kx sin ky, whereas that in the z
spin component Sz(k) is given by h3Htsp sin kx. From these
expressions, one can find that the s-p hopping tsp is nec-
essary for the antisymmetric spin splitting, while it is not
necessary for the symmetric spin splitting. Moreover, the do-
main formation is irrelevant (relevant) to the (anti)symmetric
spin splitting as Sy(k) [Sz(k)] is proportional to h2 (h3).
These additional k-dependent spin splittings are related to
the active multipoles: Symmetric spin splitting such as kxkyσy

corresponds to the magnetic toroidal quadrupole with the zx
component, and antisymmetric spin splitting such as kxσz

corresponds to the electric dipole along the y direction [4]. In
particular, the latter electric dipole induced by the magnetic
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FIG. 6. The isoenergy surfaces in the M (h)
xy state in the external magnetic field along the (a) x, (b) y, and (c) z directions with |H| = 0.1 The

color map shows the spin polarization of the x (left), y (middle), and z (right) components at each wave vector. The other parameters are the
same as in Fig. 3.

field implies the magnetoelectric effect in metals, which is
relevant to the discussion in Sec. III A 5.

Similar band modulations also occur under the magnetic
field along the y and z directions, as shown in Figs. 6(b) and
6(c), respectively. For H ‖ ŷ, the symmetric (antisymmetric)
spin splitting in the form of kxky (ky) is found in the x(z)
spin component in addition to the Zeeman splitting in the
y spin component. This indicates that the yz component of
the magnetic toroidal quadrupole and the x component of the
electric dipole are activated by the magnetic field along the y
direction.

For H ‖ ẑ, the antisymmetric spin splitting occurs in both
σx and σy components in Fig. 6(c), whose functional form is
represented by kxσx − kyσy. Indeed, by calculating Sx and Sy,
we obtain the coupling form as h3Htsp(sin kxσx − sin kyσy).
It is noteworthy that this type of antisymmetric spin splitting

indicates the active axial electric toroidal quadrupole rather
than the polar electric dipole. The appearance of the electric
toroidal quadrupole is related to the optical rotation.

4. Current-induced distortion

Next, we discuss physical phenomena related by the spin-
orbital-momentum locking under the MQ ordering. We here
consider the piezoelectric effect where the symmetric distor-
tion εζ is induced by the electric field Eν , i.e., εζ = ∑

ν �ζνEν

for ζ = u, v, yz, zx, xy. The current-induced distortion tensor
�ζν is calculated by the linear response theory as [10,80,103]

�ζν =
∑

k

∑
pq

pq(k)Qpq
ζkv

qp
νk , (31)
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where

pq(k) = eh̄

iV

f [εp(k)] − f [εq(k)]

[εp(k) − εq(k)][εp(k) − εq(k) + ih̄δ]
, (32)

with the eigenenergy εp(k) and the Fermi distribution function
f [εp(k)]. e is the electron charge, h̄ = h/2π is the Plank
constant divided by 2π , V is the system volume, and δ is the
broadening factor. Qpq

ζk = 〈pk|Q̃ζ |qk〉 and v
pq
νk = 〈pk|vνk|qk〉

are the matrix elements of the electric quadrupole and ve-
locity v̂μk = ∂Ĥ/(h̄∂kμ), respectively. We regard lμσν as the
electric quadrupole degree of freedom Q̃ζ from the symmetry
viewpoint. We take e = h̄ = 1, δ = 0.01, and the temperature
T = 1/β = 0.01 in the following calculations.

The current-induced distortion tensor �ζν becomes
nonzero in the absence of the spatial-inversion symmetry in
the system. �ζν consists of two parts: One is the intraband
Fermi surface contribution p = q, and the other is the inter-
band Fermi sea contribution p �= q, where their time-reversal

parities are opposite to each other. Reflecting the different
time-reversal properties, the relevant multipoles are different
in each contribution. The odd-parity magnetic and magnetic
toroidal multipoles contribute to the intraband process, while
the odd-parity electric and electric toroidal multipoles con-
tribute to the interband process. In the present model in
Eq. (17), the intraorbital contribution plays an important role
in �ζν , as the odd-parity electric and electric toroidal multi-
poles are not activated in the MQ ordered state owing to the
PT symmetry.

The 15 independent matrix elements of �ζν are charac-
terized by the active rank-1–3 odd-parity multipoles with
time reversal odd: the magnetic toroidal dipole {Tx, Ty, Tz},
MQ {Mu, Mv, Myz, Mzx, Mxy}, and magnetic toroidal octupole
{Txyz, T α

x , T α
y , T α

z , T β
x , T β

y , T β
z }. By using the multipole nota-

tion, the matrix form of �ζν is represented by [4]

� =

⎛
⎜⎜⎜⎜⎝

Tx + Myz − T α
x − T β

x Ty − Mzx − T α
y + T β

y −2Tz + 2T α
z

−3Tx + Myz + 3T α
x − T β

x 3Ty + Mzx − 3T α
y − T β

y −2Mxy + 2T β
z

−3Mu − Mv + Txyz −3Tz − Mxy − 2T α
z − 2T β

z −3Ty + Mzx − 2T α
y + 2T β

y

−3Tz + Mxy − 2T α
z + 2T β

z 3Mu − Mv + Txyz −3Tx − Myz − 2T α
x − 2T β

x
−3Ty − Mzx − 2T α

y − 2T β
y −3Tx + Myz − 2T α

x + 2T β
x 2Mv + Txyz

⎞
⎟⎟⎟⎟⎠, (33)

where the rows (columns) of the matrix represent the compo-
nents of {Ex, Ey, Ez} ({εu, εv, εyz, εzx, εxy}).

Once the MQ ordering occurs, nonzero �ζμ is obtained
according to the types of the orderings. It is noted that the
magnetic toroidal dipole and/or octupole belonging to the
same irreducible representation of the MQ can be addition-
ally activated, which also contributes to nonzero �ζμ. For
example, in the case of Mxy ordering, the magnetic toroidal
octupole T β

z is simultaneously activated, which indicates two
independent matrix elements in �ζμ, �zxx = −�yzy and �vz.
The relation between the MQ ordering and nonzero � in
each irreducible representation is listed in Table II. In the
following, we discuss the behavior of � by focusing on the
M (h)

xy ordered state in the model in Eq. (16).
Figure 7 shows the μ dependence of �zxx(= −�yzy) (solid

red lines) in the M (h)
xy ordered state. The results for different

h are plotted in Fig. 7(a) at h = 0.5, Fig. 7(b) at h = 2, and
Fig. 7(c) at h = 5. The hopping parameters are tσ = 0.8, tπ =

TABLE II. The irreducible representation (irrep.) of the magnetic
and magnetic toroidal multipoles from rank 0 to rank 3 under the
point group D4h. The nonzero matrix elements of the current-induced
distortion tensor � and the magnetoelectric tensor α are also shown.

Irrep. Multipoles �ημ αμν

A−
1u M0, Mu �yzx = −�zxy αxx = αyy, αzz

A−
2u Tz, T α

z �zxx = �yzy, �uz αxy = −αyx

B−
1u Mv , Txyz �yzx = �zxy, �xyz αxx = −αyy

B−
2u Mxy, T β

z �zxx = −�yzy, �vz αxy = αyx

E−
u Myz, Tx , T α

x , T β
x �ux , �vx , �xyy, �zxz αyz, αzy

Mzx , Ty, T α
y , T β

y �uy, �vy, �xyx , �yzz αzx , αxz

0.5, txy = 0.3, ts = 1, tsp = 0.6, and λ = 0, which are the same
as those in Sec. III A 2. It is noted that �vz = 0 because of the
two-dimensional system.

�zxx takes a finite value for nonzero h, as shown in
Figs. 7(a)–7(c). However, it vanishes in the insulating region
without the Fermi surfaces, e.g., 2.7 < |μ| < 3.7 for h = 5
in Fig. 7(c), since the intraband process at the Fermi surface
is important in the presence of the MQ, as mentioned above.
The overall behavior of �zxx against μ is similar: �zxx shows a
positive value for the small Fermi surface (small electron-hole
filling), while it becomes negative for the large Fermi surface
(close to half filling). For larger h = 2 and 5, �zxx is charac-
terized by two broad maxima and one broad minimum, whose
positions become closer to the eigenvalues of the mean-field
Hamiltonian, i.e., ±√

2h, 0, for larger h. Meanwhile, there
are four maxima and three minima for h = 0.5 in Fig. 7(a).
These behaviors are understood by decomposing �zxx into the
contribution for the pth band, �

(p)
zxx (p = 0–5), i.e., �zxx =∑

p �
(p)
zxx. When the bands are well separated by ±√

2h for
large h = 5 in Fig. 7(c), two maxima arise from the lower
(p = 0, 1) and higher (p = 4, 5) bands, and one minimum
arises from the middle band (p = 2, 3). With a decrease in
h, the separated bands become closer to each other, and then
they are overlapped at the band edge, as shown in Fig. 7(b).
With a further decrease in h, the sum of the different band
contributions results in complicated behavior, as shown in
Fig. 7(a).

To examine the behavior of �zxx in the MQ ordered state
in detail, we compare it with the order parameter 〈M (h)

xy 〉,
plotted as a function of μ at h = 5 in Fig. 7(d). |〈M (h)

xy 〉|
increases while |μ| decreases and appears almost constant for
|μ| < 3.7. This result indicates that the behaviors of 〈M (h)

xy 〉 do
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FIG. 7. (a)–(c) μ dependence of the coefficient of the current-
distortion correlation, �zxx , in the M (h)

xy state at temperature T = 0.01
and with damping factor δ = 0.01 for (a) h = 0.5, (b) 2, and (c) 5.
�(p)

zxx represents the intraband contribution from the pth band. The
other parameters are the same as in Fig. 3. (d) μ dependences of the
order parameter 〈M (h)

xy 〉, its contribution near the Fermi level 〈M (h)
xy 〉EF ,

the spin-orbital polarization near the Fermi level 〈sin kxlzσx〉EF , and
the density of states (DOS). Arbitrary units are used for 〈M (h)

xy 〉EF and
〈sin kxlzσx〉EF .

not have a simple correlation such as �zxx ∝ 〈M (h)
xy 〉 except in

the region of low or high electron density. Besides, we also
compare �zxx with the μ derivative of 〈M (h)

xy 〉, 〈M (h)
xy 〉EF , since

�zxx is characterized by the intraband process at the Fermi

(a)
0.15

-0.15

0.15

-0.15

0.2

-0.2

0.25

-0.25

(c)

(b)

(d)

FIG. 8. The lzσx polarization of the isoenergy surfaces in the Mxy

state for (a) μ = −9, (b) μ = −7.1, (c) μ = −2, and (d) μ = 0. The
other parameters are tσ = 0.8, tπ = 0.5, txy = 0.3, ts = 1, tsp = 0.6,
and h = 5.

surface. As shown in Fig. 7(d), 〈M (h)
xy 〉EF is enhanced at the

inflection points with |μ| � 7.1, but it vanishes in the region
for |μ| < 3.7. Thus �zxx do not have a simple correlation with
〈M (h)

xy 〉EF either.
On the other hand, we find that �zxx has a strong corre-

lation with the antisymmetric spin-orbital polarization at the
Fermi surface −〈sin kxlzσx〉EF when the Fermi surface has
the simple form, as shown in Fig. 7(d); there are two broad
maxima at |μ| � 7.1 and a broad minimum at μ = 0. This
result indicates that the quantity of −〈sin kxlzσx〉EF , which is
related to the spin-orbital-momentum locking, becomes the
appropriate measure of the current-induced distortion. In other
words, a large response is expected when the degree of the
spin-orbital-momentum locking becomes large. There are two
possibilities to reach a large value of �zxx: One is the large
value of Oμ(k) at the Fermi surface, and the other is the large
density of states (DOS) denoted as the dotted lines in Fig. 7(d).
For the former Oμ(k), a larger s-p hopping is preferable as
discussed in Sec. III A 2. Meanwhile, for the latter, a large
enhancement of the density of states, such as the van Hove
singularity or flat band, is required. Indeed, �zxx shows an
increase by approaching μ � 0,±√

2h, where the small cir-
cular Fermi surface close to the band edge in Figs. 8(a) and
8(c) gradually changes to the large square-shaped one at the
van Hove singularity arising from the square-lattice geometry
in Figs. 8(b) and 8(d).

5. Magnetoelectric effect

Next, we consider another cross-correlated response in the
MQ ordered state. We investigate the magnetoelectric effect
where the magnetization Mμ is induced by the electric field
Eν , i.e., Mμ = ∑

ν αμνEν for μ, ν = x, y, z. The tensor αμν is
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calculated by the linear response theory as

αμν =
∑

k

∑
pq

pq(k)M pq
μkv

qp
νk , (34)

where M pq
μk = 〈pk|σμ|qk〉 is the matrix element of the spin.

We here take into account only the spin component in M pq
μk for

simplicity.
Similar to the current-induced distortion tensor �ζν in

the previous section, the magnetoelectric tensor αμν becomes
nonzero in the absence of the spatial-inversion symmetry.
Since the time-reversal property between �ζν and αμν is
opposite, the odd-parity magnetic and magnetic toroidal mul-
tipoles with time reversal odd contribute to the interband
process p �= q. By using the active rank-0–2 odd-parity mul-
tipoles, the magnetic monopole M0, the magnetic toroidal
dipole {Tx, Ty, Tz}, and the MQ {Mu, Mv, Myz, Mzx, Mxy}, the
matrix form of αμν is represented by

α =
⎛
⎝M0 − Mu + Mv Mxy + Tz Mzx − Ty

Mxy − Tz M0 − Mu − Mv Myz + Tx

Mzx + Ty Myz − Tx M0 + 2Mu

⎞
⎠,

(35)

where the rows (columns) of the matrix represent the com-
ponents of {Ex, Ey, Ez} ({Mx, My, Mz}). The nonzero matrix
elements under the MQ ordering are shown in Table II. In the
following, we focus on the behavior of αμν in the M (h)

xy ordered
state with αxy = αyx.

Figure 9 shows the μ dependence of αyx (= αxy) denoted
by the red solid lines in the M (h)

xy ordered state for h = 0.5
[Fig. 9(a)], h = 2 [Fig. 9(b)], and h = 5 [Fig. 9(c)]. The other
parameters are common in Sec. III A 2. The result shows that
αyx is induced by nonzero h as �zxx. In contrast to �zxx, αyx

takes a finite value in the insulating region for 2.7 < |μ| < 3.7
and h = 5 in addition to the metallic region, since the inter-
band process dominates in αyx. As compared with the results
in Figs. 9(a)–9(c), αyx tends to be smaller for larger h, which
is reasonable in terms of the interband process: The larger
energy difference in the denominator in Eq. (34) for larger
h suppresses αyx. Although nonzero αyx exists in the presence
of the antisymmetric spin-orbital polarization under the MQ
ordering, its behavior is mainly determined by the details of
the electronic band structure, as discussed below.

As each band is doubly degenerate owing to the PT
symmetry, the total of six bands are separated into three
two-degenerate bands under the MQ ordering. Then, αyx is
decomposed into three parts according to the different in-
terband processes, αyx = α(LM)

yx + α(MU)
yx + α(LU)

yx , where the
superscripts L, M, and U represent the lower two bands p =
0, 1, middle two bands p = 2, 3, and upper two bands p =
4, 5, respectively. In other words, α(LM)

yx includes the contribu-
tion of the interband process between the lower two bands and
middle two bands, for instance. For small h = 0.5, the contri-
bution of α(MU)

yx (α(LM)
yx ) is dominant for the negative (positive)

peak at μ � −2.33 (2.32), while α(LU)
yx is less important. The

large enhancement at μ � −2.33 and 2.32 is attributed to
the small band gap in the electronic band structure for small
h, as shown in Fig. 10(a). The band structure in Fig. 10(a)
indicates that the dominant contribution comes from near the
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FIG. 9. μ dependence of the coefficient of the current-
magnetization correlation, αyx , in the M (h)

xy state at temperature T =
0.01 and with damping factor δ = 0.01 for (a) h = 0.5, (b) 2, and
(c) 5. α(LM)

yx , α(MU)
yx , and α(LU)

yx represent the interband contribution for
the specific bands. L, M, and U represent the lower two bands (p =
0, 1), middle two bands (p = 2, 3), and upper two bands (p = 4, 5),
respectively. For example, α(LM)

yx stands for the interband process
between the lower two bands and middle two bands. The other
parameters are the same as in Fig. 3.

k = (π, π ) [k = (0, 0)] point at μ � −2.33 (2.32), which
is originally fourfold degenerate at h = 0. When the three
bands are separated by increasing h, the contribution of α(LM)

yx

(α(MU)
yx ) becomes important for low (high) electron density, as

shown in Figs. 9(b) and 9(c). For large h, all the k points below
the Fermi level contribute to α(LM)

yx irrespective of Q(k), since
the energy difference between the lower and middle bands
at each k takes similar values, as shown in Fig. 10(b). The
broad peaks at μ � −7.16 and 7.17 for h = 5 are attributed to
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FIG. 10. The band structure at (a) h = 0.5 and (b) 5. The dashed
curves show the band dispersions, and the color map shows the spin-
orbital polarization of the lzσx component at each wave vector. The
horizontal dotted lines show the energy where |αyx| is maximized.

the van Hove singularity, as shown in Fig. 8(b). Meanwhile,
αyx is negligibly small close to the half filling owing to the
cancellation of the contributions of α(LM)

yx and α(MU)
yx , as shown

in Fig. 9(c).

B. Sublattice system

Next, we investigate another situation with the active MQ
degree of freedom in the sublattice system. We consider a
four-sublattice model in the tetragonal system in Sec. III B 1.
In Sec. III B 2, we show that a similar spin-orbital-momentum
locking occurs in the MQ ordering even without the atomic
orbital degree of freedom.

1. Model

In this section, we consider another electronic degree of
freedom to activate the MQ. In particular, we focus on the
sublattice degree of freedom instead of the orbital one, where
the MQ is activated with the antiferromagnetic ordering. We
examine the four-sublattice system in the tetragonal lattice
structure, as shown in Fig. 11(a), where the point group is
D4h as in Sec. III A. Also in this sublattice case, the extension
to a three-dimensional system is straightforward. The lattice

A

B

C

D

(a) (b)

(c)

(c) (c)

(c)(c)

(c)

ab

FIG. 11. (a) Sublattice model consisting of four sublattices
A–D in the tetragonal lattice structure with the lattice con-
stant a + b. (b) The spin patterns of the odd-parity cluster MQs
{M (c)

u , M (c)
v , M (c)

yz , M (c)
zx , M (c)

xy } and magnetic toroidal dipole T (c)
z in

Eqs. (40)–(45). The arrows represent the direction of magnetic
moments.

constant is taken as a = b = 1/2 for notational simplicity, and
the difference between a and b is expressed as the different
hopping amplitudes, ta and tb. When there is no orbital degree
of freedom at each sublattice, the tight-binding Hamiltonian
is given by

H =
∑

k,γ ,γ ′,σ

c†
kγ σ

Hγ γ ′
σ ckγ ′σ , (36)

where c†
kγ σ

(ckγ σ ) is the creation (annihilation) operator of
electrons at wave vector k, sublattice γ = A–D, and spin σ .
The 4 × 4 Hamiltonian matrix spanned by the four-sublattice
basis {φAσ , φBσ , φCσ , φDσ } is given by

Hσ =

⎛
⎜⎜⎝

0 0 f ∗
x f ∗

y
0 0 fy fx

fx f ∗
y 0 0

fy f ∗
x 0 0

⎞
⎟⎟⎠, (37)

where fη = taeikη/2 + tbe−ikη/2 for η = x, y.
The Hamiltonian in Eq. (36) has 64 independent electronic

degrees of freedom. Similar to the discussion in Sec. III A,
one can construct the MQ degree of freedom by the product
of the odd-parity electronic degree of freedom in spinless
space and spin σ . The spinless odd-parity electronic degree of
freedom is expressed as the spatial distribution of the on-site
potential with the same magnitude but different sign, which
corresponds to the odd-parity electric dipoles, Q(c)

x and Q(c)
y .

The matrix forms of Q(c)
x and Q(c)

y are given by

Q(c)
x =

⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠, (38)

Q(c)
y =

⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠, (39)

where the superscript (c) means the cluster multipole that
is defined in the sublattice cluster [10–12]. We here do not
explicitly consider the other electric dipole degree of freedom,
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e.g., the bond degree of freedom, and we here focus on the
antiferromagnetic ordering, which is represented by the con-
traction of {Q(c)

x , Q(c)
y } and σ. By taking a linear combination

of them, we obtain the expressions for five MQs as

A−
1u: M (c)

u = −Q(c)
x σx − Q(c)

y σy, (40)

B−
1u: M (c)

v = Q(c)
x σx − Q(c)

y σy, (41)

E−
u : M (c)

yz = Q(c)
y σz, (42)

M (c)
zx = Q(c)

x σz, (43)

B−
2u: M (c)

xy = Q(c)
x σy + Q(c)

y σx (44)

and the magnetic toroidal dipole as

A−
2u: T (c)

z = Q(c)
x σy − Q(c)

y σx. (45)

The corresponding spin patterns are shown in Fig. 11(b),
where M (c)

u , M (c)
v , M (c)

xy , and T (c)
z exhibit the noncollinear mag-

netic textures, while M (c)
yz and M (c)

zx are the collinear magnetic
textures. It is noted that M (c)

yz and M (c)
zx are also regarded as the

magnetic toroidal dipole ordering T (c)
x and T (c)

y , respectively,
which belong to the same irreducible representation under the
point group D4h.

2. Band structure

Since there is no orbital degree of freedom in the system,
orbital angular momentum l is inactive as the electronic de-
gree of freedom in the Hamiltonian. Nevertheless, a similar
pseudo-orbital angular momentum is defined as the degree of
freedom over the sublattices. Since the electron hoppings on
the closed loop in the square plaquette as A → C → B →
D give rise to the magnetic flux to the electrons in the out-
of-plane direction, the matrix of the pseudo-orbital angular
momentum is defined as

l (c)
z =

⎛
⎜⎝

0 0 −i i
0 0 i −i
i −i 0 0

−i i 0 0

⎞
⎟⎠. (46)

By using l (c)
z instead of lz in Eqs. (26)–(30), one can obtain

similar physics to that in Sec. III A.
We show a similar spin-orbital-momentum locking in the

model in Eq. (36) under the MQ ordering. We here focus on
the Mxy ordered state in Fig. 11(b) with the molecular field
h as an example. Figure 12 shows the isoenergy surfaces at
μ = −0.5, ta = 1, tb = 0.5, and h = 0.3 in the Mxy ordered
state. Similar to the result in Fig. 3(c), the band structure
exhibits the antisymmetric spin-orbital polarization of l (c)

z σx

and l (c)
z σy, which corresponds to the spin-orbital-momentum

locking. The component of l (c)
z σx is asymmetric with respect

to the kx direction, while that of l (c)
z σy is asymmetric with

respect to the ky direction. The necessary hopping parame-
ters are also obtained by evaluating Oμ(k) = Tr[e−βHk l (c)

z σμ].
The lowest-order contributions are given by

−h(ta − tb)

(
sin

kx

2
l (c)
z σx + sin

ky

2
l (c)
z σy

)
, (47)

which indicates that the relation ta �= tb is necessary for the
spin-orbital-momentum locking besides h �= 0. Also in this

-0.2

 0.2

-0.2

 0.2

FIG. 12. The isoenergy surfaces at μ = −0.5, ta = 1, tb = 0.5,
and h = 0.3 in the Mxy state. The color map shows the spin-orbital
polarization of l (c)

z σx (left) and l (c)
z σy (right) at each wave vector.

case, the effective spin-orbit coupling in the form of l (c)
z σz

emerges even without the effect of the atomic relativistic
spin-orbit coupling in the tight-binding model (not shown).
The contribution is represented by h2(ta + tb)(cos kx/2 +
cos ky/2).

Once the spin-orbital-momentum locking occurs by the
MQ ordering, similar physics to that discussed in Sec. III A
is expected, such as the antisymmetric spin polarization by
the magnetic field and linear responses. We briefly discuss the
electronic band structure in the presence of the magnetic field.
Although similar symmetric and antisymmetric spin splittings
to those shown in Fig. 6 are expected because of the same
symmetry, the necessary model parameters are different from
those of the multiorbital case. When the magnetic field is
applied along the x direction, the kxkyσy-type symmetric and
kxσz-type antisymmetric spin splittings are expected, but they
do not show up within the model Hamiltonian in Eq. (36).
Such spin splittings under the magnetic field appear when the
additional diagonal hopping between A and B (and C and D)
and/or the effective spin-dependent hopping from the atomic
relativistic spin-orbit coupling exist. Considering such terms
within the plaquette, we obtain the former Hamiltonian matrix
as

Hdiag
σ =

⎛
⎜⎜⎝

0 f ∗
xy 0 0

fxy 0 0 0
0 0 0 f ′∗

xy
0 0 f ′

xy 0

⎞
⎟⎟⎠, (48)

where fxy = t ′
aei(kx+ky )/2 and f ′

xy = t ′
aei(−kx+ky )/2, and the latter

Hamiltonian matrix as

HSOC
σ = λ

⎛
⎜⎜⎝

0 0 −ie−ikx/2 ie−iky/2

0 0 ieiky/2 −ieikx/2

ieikx/2 −ie−iky/2 0 0
−ieiky/2 ie−ikx/2 0 0

⎞
⎟⎟⎠.

(49)

By evaluating Oμ(k), we obtain the necessary effec-
tive coupling for the symmetric spin splitting kxkyσy as
h2Hxt2

b t ′
a sin kx sin ky and the antisymmetric spin splitting kxσz

as the superposition of hHxλtb sin kx and h3Hxtat ′
atb sin kx.

Thus t ′
a is necessary for both the symmetric and antisymmetric

spin splittings, while λ is the antisymmetric spin splitting. In a
similar way, the antisymmetric spin splitting kxσx − kyσy in a
magnetic field along the z axis is caused by introducing t ′

a and
λ, e.g., the coupling −hHzλtb sin kxσx and h3Hztat ′

atb sin kxσx.

045117-13



SATORU HAYAMI AND HIROAKI KUSUNOSE PHYSICAL REVIEW B 104, 045117 (2021)

IV. SUMMARY

To summarize, we have investigated the electronic states
and related physical phenomena induced by the MQ or-
derings. We found that the MQ ordered state exhibits a
peculiar spin-orbital entanglement in momentum space; the
spin-orbital polarization is antisymmetrically locked at the
particular component at each wave vector, which is dubbed
the spin-orbital-momentum locking. The present spin-orbital-
momentum locking is driven by the onset of the MQ orderings
in contrast to the spin-momentum locking that exists in the
nonmagnetic noncentrosymmetric lattice systems. We show
two typical examples for the MQ orderings by consider-
ing the multiorbital and sublattice systems. We demonstrate
that the spin-orbital-momentum locking occurs under the
MQ orderings, which causes various cross-correlated physical
phenomena, such as the magnetic-field-induced symmetric
and antisymmetric spin polarization in the band structure,
the current-induced distortion, and the magnetoelectric ef-
fect. We discuss the relevant model parameters in each
phenomenon. As the spin-orbital-momentum locking is ex-
pected to be found in odd-parity magnetic materials not only

in the MQ phase but also in other magnetic and magnetic
toroidal multipole phases, our study will stimulate a fur-
ther exploration of functional spintronics materials, which
have recently been extensively studied. BaMn2As2 [104–107]
(UNi4B [23,26,108,109] and Ce3TiBi5 [27,28]) is then a can-
didate material to exhibit the spin-orbital-momentum locking
under the MQ (magnetic toroidal dipole) ordering.
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