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The emerging and screening of local magnetic moments in solids have been investigated for more than 60
years. Local vacancies as in graphene or in heavy fermions can induce decoupled bound states that lead to the
formation of local moments. In this paper, we address the puzzling question how these local moments can be
screened and what determines the additionally emerging low-temperature scale. We review the initial problem for
half-filled conduction bands from two complementary perspectives: By a single-particle supercell analysis in the
uncorrelated limit and by the Lieb-Mathis theorem for systems with a large Coulomb interaction U . Applying
Wilson’s numerical renormalization group approach to a recently developed mapping of the problem onto an
effective low-energy description of a Kondo hole with up to Nf = 7 correlated impurities as background, we
proof that the stable local moments are subject to screening by three different mechanisms. Firstly the local
moments are delocalized by a finite U beyond the single-particle bound state. We find a Kosterlitz-Thouless
type transition governed by an exponentially suppressed low-energy scale of a counterintuitive Kondo form with
Jeff ∝ U n for small U , where n > 1 depends on the precise model. Secondly, we show that away from half-filling
the local moment phase becomes unstable and is replaced by two types of singlet phases that are adiabatically
connected. At a critical value for the band center, the physics is governed by an exponentially suppressed Kondo
scale approaching the strong coupling phase that is replaced by a singlet formation via antiferromagnetic RKKY
interaction for large deviation from the critical values. Thirdly, we show that the local magnetic moment can be
screened by a Kondo hole orbital at finite energy, even though the orbital occupation is negligible: An additional
low-energy scale emerges below which the localized moment is quenched. Similarities to the experimental
findings in Ce1−xLaxPd3 are pointed out.
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I. INTRODUCTION

A dilute concentration of magnetic impurities in a metal
gives rise to the Kondo effect [1]. The narrow resonance in
the impurity spectral function, right at the Fermi energy, as
well as the minimum in the temperature-dependent electrical
resistivity are a manifestation of strong (incoherent) magnetic
scattering of the conduction electrons at these local moments
[2,3]. If such local moments are regularly placed in each
unit cell, as a consequence of translational symmetry, the
scattering needs to become coherent at low temperature and
a hybridization gap opens [4,5]. Depending on the electron
filling of the hybridized bands, the material is either insulating
or becomes a metal with heavy quasiparticles.

The replacement of single magnetic atoms by their non-
magnetic counterparts in a charge neutral substitution is
called creation of Kondo hole which gradually destroys the
coherence of the heavy fermion (HF) ground state and, con-
sequently, results in new properties of the highly correlated
material. In recent decades, the physics of Kondo holes
has been of great interest for several experiments on heavy
fermions [6–13]. Kondo holes in the metallic phase of the
periodic Anderson model (PAM) in general leads to a con-
tinuous crossover from the coherent heavy Fermi liquid (FL)
to the single-impurity behavior [5,14]. In contrast to this, the

influence of a very low concentration of single Kondo holes
on the ground state in the insulating phase induce bound states
[15–17] leading to exotic transport properties [12].

Additionally, optical lattices loaded with ultracold gases
[18,19] can serve as an alternative approach for analyzing
prototypical two orbital models via quantum simulation. In
the last years, it has been suggested, that such models can be
realized using fermionic alkaline-Earth atoms [20–24] such
as strontium [25] and ytterbium [26], where the long-living
excited states 3P0 or 3P2 can be coupled to the 1S0 ground
state [27,28]. Just recently Riegger et al. [27] realized such
a two orbital quantum gas of 173Yb in a optical lattice, and
demonstrated that the 1S0 and 3P0 states take the role of
delocalized and localized fermions respectively. Moreover, in
case of 171Yb, Ono et al. [28] found an antiferromagnetic
(AF) spin-exchange interaction between the 1S0 and 3P0 states,
whereas the 1S0 states do not interact with each other [29].
Consequently, such an two orbital quantum gas is ideally
suited for simulating all kinds of multi-impurity and lattice
Kondo models where the effect of Kondo holes can be studied
over a wide range in the parameter space.

The effect of the Kondo holes on Kondo insulators has been
studied perturbatively and with various numerical techniques,
such as the density matrix renormalization group approach
(DMRG) in 1d, and a combination of dynamical mean field
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theory (DMFT) and self-consistent mean field theory [30–42],
where the basic properties of the clean system are described
by the PAM or the Kondo lattice. Sollie and Schlottmann
[30,31] employed the DMFT solution for the PAM [43] and
investigated the change of the single particle properties in the
vicinity of the hole site via second order perturbation theory in
the Coulomb repulsion U . By examining the local f -electron
density of states in the insulating phase of the PAM they
found mid-gap states and demonstrated that these states have
magnetic properties which result in a Curie susceptibility and
a Schottky anomaly in the specific heat [32,33]. They further
showed that these bound states are solely localized on the
nearest neighbors of the hole site in the presence of particle
hole symmetry.

Clare C. Yu [34] studied the physics of a missing local mo-
ment in the strongly interacting case of the one-dimensional
Kondo insulator via DMRG, which includes spatial fluctua-
tions in contrary to the DMFT. She confirmed the emergence
of a stable magnetic bound state, however, in contrast to the
weakly interacting DMFT solution, she found that the induced
spin-density extends over the adjacent sites and falls off ex-
ponentially with some localization length that increases with
decreasing strength of the Kondo coupling JK . In addition, the
bound state was found to have pure f character in the weak
coupling limit but gradually localizes at the c orbital of the
hole site when increasing JK .

However, there are still some open questions: What is the
fate of the Kondo effect of the unscreened local moments
which contribute to the spin-density and the Curie suscep-
tibility? Can the spin-density induced by a Kondo hole act
as a magnetic impurity in a metal? For example, CePd3 is
a heavy-fermion metal that is considered to be close to a
Kondo insulator but still maintains Fermi liquid properties at
low temperatures. However, when Ce ions are substituted by
nonmagnetic La ions in Ce1−xLaxPd3, the resistivity below
50 K increases with decreasing temperature as with a mag-
netic impurity in a metal [6,7] which has been attributed to
a secondary Kondo effect even though the previous theories
[30,31,34] predict localized bound states which do not interact
with the itinerant states.

In this paper, we (i) review the effect of Kondo holes
in lattice and impurity models from two complementary
perspectives using a supercell analysis in the uncorrelated
limit and the Lieb-Mattis theorem in the strongly interact-
ing regime with well defined local moments at particle hole
(PH) symmetry. Further we (ii) demonstrate that the emer-
gence of decoupled localized states in a Kondo insulator due
to Kondo hole substitution can be understood from a local
perspective and does not rely on the periodicity and transla-
tional invariance of the lattice model. Using a combination
of the numerical renormalization group (NRG) approach and
a wide-band approximation [44], we (iii) study the effect of
Kondo holes in finite impurity clusters as a function of the
local hole orbital energy and the band center of the conduction
electrons and show that breaking PH symmetry can lead to
Kondo screening of the hole induced magnetic bound states
on low-energy scales.

The onset of magnetic scattering with the remaining
quasiparticles of the Fermi liquid potentially explains the log-
arithmic increase of the resistivity in Ce1−xLaxPd3.

The paper is organized as follows. In Sec. II, we intro-
duce the Hamiltonian of the multi-impurity Anderson model
(MIAM) which includes the PAM and the single-impurity
Anderson model (SIAM) as two limiting cases. In Sec. II B,
we use a supercell analysis for the noninteracting limit to
study the effect of Kondo holes in lattice and impurity mod-
els, which is compared with the Lieb-Mattis theorem for the
subset of PH symmetric models on a bipartite lattice in the
strongly interacting limit in Sec. II C. For both limits, we
predict the existence of hole induced decoupled bound states.
The combination of the two comprehensive perspectives in
Sec. II D allows us to differentiate between conventional MI-
AMs and three different types of unconventional MIAMs
when Kondo holes are introduced. Further in Sec. II E, we pro-
vide a real-space interpretation of the decoupling in lattice and
impurity models in terms of local pseudo gap physics from
a local impurity point of view. In order to solve the MIAM
in the strongly interacting limit we use the NRG in combi-
nation with a wide-band approximation which is reviewed in
Sec. II F. In Sec. III, we analyze the potential screening of
the Kondo hole induced magnetic bound states. We study the
interaction between magnetic bound states originating from
two different holes as a function of the distance between the
hole sites in Sec. IV. We apply the results of our NRG analysis
and propose a microscopic mechanism that can explain the
unusual transport properties of Ce1−xLaxPd3 in Sec. V, before
we close with a short summary and discussion in Sec. VI.

II. MODELING OF KONDO HOLES

A. Hamiltonian

In order to include a wide range of different cases for
Kondo holes, with periodic lattices (absence of Kondo holes)
and the single impurity (all but one correlated site removed) as
the two extreme limits but keep the complexity and the num-
ber of parameters manageable, we consider an Anderson type
model, which contain two type of orbitals: The uncorrelated
conduction electrons that are accounted for in a tight-binding
model

Hhost =
∑
i, j, σ
i �= j

(−ti jc
†
i,σ c j,σ + εc

i c†
i,σ ci,σ

)
, (1)

where ti j , εc
i denote the transfer parameter and single-particle

energy and i, j denote the lattice sites of the underlying lattice
with the annihilation (creation) operator c(†)

i,σ of an electron on
the lattice site i and spin σ = ±. For a translational invariant
system, Hhost can be diagonalized in k space.

The localized f electrons on a subset of Nf lattice sites
l ∈ i are modeled by the usual local part of a Hubbard Hamil-
tonian

Hcorr =
∑
l,σ

ε
f
l f †

l,σ fl,σ + 1

2

∑
l,σ

Ul f †
l,σ fl,σ f †

l,σ̄ fl,σ̄ , (2)

where f (†)
l destroys (creates) an electron on impurity l , whose

on-site energy is labeled by ε
f
l , σ̄ = −σ , and U denotes the

on-site Coulomb repulsion.
The coupling between these correlated local orbitals and

the itinerant band are accounted for by the single-particle
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FIG. 1. Schematic of 1d PAM with f (blue) and c orbitals
(green). The solid line denotes hopping elements between the cor-
responding orbitals. (a) depicts an exemplary supercell with n = 9
sites, indicated by the dashed rectangle. In (b), Nh = 2 f orbitals
per supercell have been removed leading to Nd

h = Nh decoupled d
orbitals per supercell. The white bordered symbols indicate the f
and c orbitals that contribute to the corresponding decoupled state.
In (c), Nh = 7 f orbitals per supercell have been removed leading to
Nd

h = 1 < Nh decoupled d orbitals per supercell.

hopping term

Hhyb =
∑
l,σ

Vlc
†
l,σ fl,σ + H.c. , (3)

where Vl denotes the local hybridization of the impurity at
lattice site l with the corresponding local lattice orbital. The
strength of the coupling is typically discussed in terms of
�0,l = πV 2

l ρ(0), which describes the effective hybridization
of a single impurity with a conduction band density of states
(DOS) ρ(ε).

The total Hamiltonian is given by

H = Hhost + Hcorr + Hhyb. (4)

This formulation includes two well studied limits. If the or-
bital index l exhausts all lattice sites, we recover the PAM.
If l only accounts for a single site, the model is known as
single-impurity Anderson model that was accurately solved
using the NRG [45,46] and the Bethe ansatz [47,48] almost
40 years ago. If the number of sites Nf = #l > 1 is small and
finite, we refer to a MIAM, HMIAM, whose simplest realization
is the two-impurity Anderson model (TIAM) [49,50].

B. Supercell analysis of Kondo holes in lattice and impurity
models: Formation of localized orbitals

It is well established, that single Kondo holes in the half-
filled PAM and Kondo insulator induce stable local moments
whose spatial location and extent depends on the hybridiza-
tion strength [30–36]. Interestingly, the basic understanding
of the formation of localized orbitals can already be obtained
by investigating the exact solution of the noninteracting PAM
with U = 0.

1. General analysis

In order to study the effect of Kondo holes but still main-
tain the useful translational invariance, we artificially define a
supercell comprising n sites (n f and n c orbitals) as schemat-
ically depicted in Fig. 1(a) for the 1d PAM with n = 9, and
remove Nh of the f orbitals in each supercell. This is exempli-
fied in Fig. 1(b) for Nh = 2 and in Fig. 1(c) for Nh = 7. This

procedure allows to study two different scenarios in the limit
of n → ∞: In case of Nh � n [Fig. 1(b)], we can study the
effect of single holes in a dense lattice, whereas Nh ≈ n corre-
sponds to a periodic continued MIAM with Nf = (n − Nh) f
orbitals [Fig. 1(c)]. For the supercell analysis, however, we
keep all n f orbitals in the consideration but use the parame-
ters Vi and ε

f
i to decoupled or remove the Kondo hole orbitals.

After the Fourier formation of the periodic real-space super-
cell structure into k space, the Hamiltonian, Eq. (4), becomes
k-diagonal for U = 0,

H =
∑

	k
H	k, (5)

due to Bloch’s theorem. Let us label the n f orbitals, the n
c orbitals by α, β and suppress the spin index σ for better
readability. By defining the supercell vector operator

			k = (c	k1, . . . , c	kn, f	k1, . . . , f	kn)T (6)

H	k reads

H	k = 		†
	k M 	k 			k, (7)

with an appropriate matrix M	k . Since the single-particle dis-
persion is obtained from diagonalizing the Hermitian matrix
M	k , we analyze some of its fundamental properties for super-
cells with Kondo holes present. From Eq. (4), we obtain

H	k =
∑
αβ

T αβ

	k c†
	kα

c	kβ
+
∑

α

ε f
α f †

	kα
f	kα

+
∑

α

Vα ( f †
	kα

c	kα
+ c†

	kα
f	kα

)

=
∑

α

c†
	kα

C	kα
+
∑

α

f †
	kα

F	kα
. (8)

The transfer matrix T αβ

	k denotes the tight-binding represen-
tation of real-space hopping parameters and orbital energies
in Hhost, with T αβ

	k = [T βα

	k ]∗ and T αα
	k = εc

α . In Eq. (8), we
identified 2n new operators defined as

C	kα
=
∑

β

T αβ

	k c	kβ
+ Vα f	kα

, (9)

F	kα
= ε f

α f	kα
+ Vαc	kα

. (10)

As long as the new operators C	kα
and F	kα

are linear in-
dependent, H	k operates on a 2n-dimensional space. Now let
us introduce a number of Nh Kondo holes placed on a subset
of sites α = lh ∈ Lh, by decoupling some of the correlated
orbitals from the host, i.e.,Vlh = 0. By setting all other ε

f
β =

0, β �∈ Lh, and restricting to εc
lh

= 0, we obtain from Eq. (10)

c	kβ
= F	kβ

/Vβ for β �∈ Lh. (11)

Substituting this expression back into Eq. (9) for α = lh with
Vlh = 0 yields

C	klh
=

∑
β �∈Lh

T lhβ
	k
Vβ

F	kβ
+

∑
γ∈Lh

T lhγ
	k c	kγ

. (12)

Focusing on the case T lhmh

	k = 0 for a moment, which means
that the c orbitals at different hole sites are not directly
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coupled via the tight-binding hopping elements ti j in Eq. (1)
[as is the case in Fig. 1(b) for example], the second sum on
the right-hand side of Eq. (12) vanishes. This observation has
a profound consequence onto the single-particle spectrum of
H	k . While the Kondo hole degrees of freedom F	klh

∝ f	klh
are

eigenoperators to the eigenvalues ε
f
lh

, we just showed that the
operators C	klh

are linear dependent on the operators F	kβ
: The

rank of M	k is reduced to 2n − Nh, and Nh eigenvalues must
be always zero and 	k-independent. Nh flat bands are formed
which can be associated with Nh localized states in each
supercell. It is straight forward to prove that the annihilation
operators d	k,lh

,

d	k,lh
= ζ	k,lh

(∑
α

T lhα
	k
Vα

f	kα
− c	klh

)
, (13)

are eigenoperators of the Hamiltonian H	k , i.e.,[H	k, d	k,lh
] =

ε	kd	k,lh
to the eigenvalue εk = 0, and their normalization con-

stants ζ	k,lh
are given by

ζ	k,lh
=
⎛
⎝∑

α

∣∣T lhα
	k

∣∣2
V 2

α

+ 1

⎞
⎠

−1/2

. (14)

Note that decoupled orbitals d	k,lh
not necessarily need

to be orthogonal and eventually overlap if the spatial dis-
tance between the corresponding hole sites lh is small: The
spatial extend of the d	k,lh

orbitals is determined by most dis-

tant site α for which T lhα
	k �= 0 holds, such that several d	k,lh

orbitals in Eq. (13) might share some f	k,α
orbitals and, there-

fore, {d	k,1, d†
	k,1

} �= 0. For example, if we restrict ourselves to
nearest-neighbor hopping this happens if two hole sites are
separated by exactly one f orbital. However, one can always
define a new set of decoupled orbitals, d	k,l̃h

= ∑
lh

al̃h d	k,lh
, to

ensure orthogonality. The corresponding localized Wannier
orbitals in each unit cell s are obtained by Fourier trans-
formation of d	k,lh

back into the real space, which will be a
mixing of the fs,α operators surrounding the hole sites and the
conduction electron operators cs,lh right at the hole sites. These
f and c orbitals are indicated by the white bordered symbols
in Fig. 1(b), where different symbols (circles and squares)
denote different d orbitals. Up to here we assumed T lhmh

	k = 0.

If we allow for T lhmh

	k �= 0 [as is the case in Fig. 1(c), for ex-
ample], the second sum of the right-hand side of Eq. (12) does
not vanish in general and, consequently, the operators C	klh
are not necessarily linear dependent on the operators F	kβ

any
longer. However, rotating Eq. (12) into the eigenbase of the
matrix T lhmh

	k , lh → l̃h, we obtain one linear dependent operator

C	kl̃h
for each zero eigenvalue of T lhmh

	k and a corresponding

decoupled orbital d	k,l̃h
. In general, T lhmh

	k is block diagonal and
each block i connects a subset of nh,i � Nh c	k orbitals. For
example, if we restrict ourselves to nearest-neighbor tunnel-
ing matrix elements ti j , each subspace contains adjacent hole
sites only. Since the c orbitals at the hole sites are PH sym-
metric, we obtain one zero eigenvalue and a corresponding
decoupled orbital d	k,l̃h

for each odd dimensional subspace of

T lhmh

	k . To this end, we obtain Nd
h � Nh decoupled d	k orbitals

with eigenenergy ε	k = 0 by introducing Nh Kondo holes by
decoupling the corresponding f orbitals. Nd

h = Nh holds in
case of T lhmh

	k = 0 and the corresponding decoupled dk orbitals
are than given by Eq. (13).

2. Half-filled case

Let us now focus on the half-field case, ε
f
α = εc

α = 0,
and ignore the decoupled f orbitals. Reintroducing the spin
and filling the bands with (2n − Nh) electrons per unit cell
yields (n − [Nh + Nd

h ]/2) fully filled bands, and Nd
h half-filled

nondispersive bands where the electrons are mainly located
at the f orbitals for small couplings V/D. We can divide the
finite U interaction term in Eq. (2) into a Hartree term that is
absorbed into ε

f
l → ε̃

f
l = ε

f
l + Ul/2 and a charge fluctuation

term U (N f
l − 1)2/2 [45] responsible for the generating of an

effective magnetic moment. The zero-energy localized states
emerge as long as ε̃

f
l = 0. The finite U generates an effective

moment on the decoupled orbitals which might interact with
each other if the spatial distance between different hole sites
is not too large. So far, the dimensionality of the model as
well as the gemoetry of the underlying lattice has not entered:
Therefore the bound state formation is generic in arbitrary
spatial dimensions for any type of lattice.

3. Embedding the supercell analysis into the literature

More than thirty years ago, the existence of hole in-
duced bound states has already been proposed by Sollie
and Schlottmann [30–33] in the framework of the dynam-
ical mean field theory approach to the PAM in the Kondo
insulator limit. Using a large-N mean field decoupling to
solve a 2d Kondo lattice and by assuming additional local
potential scattering terms in the conduction electron band at
the hole sites lh, Figgins and Morr [35] found that the hole
induced bound states also occur in models with asymmet-
ric conduction bands away from half-filling. This perfectly
fits to the supercell analysis since such local potential scat-
tering terms just shift the local on site energies εc

lh
: The

decoupling of the d orbitals in Eq. (13) only requires local
PH symmetry at the hole sites, εc

lh
= 0, and is independent

from the filling of the entire conduction band, i.e.,allows for
εc
α �= 0 for α �∈ Lh. Consequently, in case of a asymmetric

conduction band, εc
i = εc �= 0, a local potential scattering u0

at the hole site lh, as introduced by Figgins and Morr in
Ref. [35], can lead to a local reduction of PH asymmetry,
εc

lh
= εc + u0 ≈ 0, and, therefore, stabilize the hole induced

bound states. Whereas the decoupling of the effective orbitals
d	k,lh

is unstable against a weak deviation from εc
lh

= 0 in the
noninteracting limit, the local moment that forms in case of
a finite interaction U is stable against small deviations from
εc

i �= 0 and ε
f
i �= −U/2, as we demonstrate later. Moreover,

the expression (13) of the dispersionless band orbitals d	k,lh
comprising different orbital contributions is already sufficient
to understand the spatial variation of the local moments in
a 1d Kondo hole problem investigated by a DMRG calcu-
lation as a function of the local Kondo interaction J—see
Fig. 3 in Ref. [34]. In the Schrieffer-Wolff limit [51] a
larger J corresponds to larger on-site hybridization V . In the
limit V/t → 0, the d	k,lh

states have mainly f character and,
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therefore, the local moment induced by a finite U is mainly
located at the f orbitals surrounding the hole sites. With
increasing V/t , the c orbitals right at the hole sites are more
and more mixed into d	k,lh

, and the local moment moves from
nearby f orbitals to the c orbitals at the hole sites. In the limit
V/t → ∞, the localized orbitals are localized at the discon-
nected c orbitals on the hole sites. Notably, the decoupling
of the orbitals d	k,lh

does not depend on some spatial isotropy
within the supercell since no restrictions concerning the hop-
ping elements ti j were made and the individual couplings Vi

are completely independent. These parameters solely enter
the composition of d	k,lh

as can be seen in Eq. (13). Due to
T iα

	k ∝ tiα only f orbitals for which tni is finite are involved and
the relative amount of these individual orbitals is controlled by
the strength of the coupling tni/Vi. If the hopping between the
c orbitals is restricted to nearest neighbors, the decoupled state
is solely localized on the nearest f -orbital neighbors of the
hole site. Whereas this result perfectly fits to the weakly in-
teracting (small U ) DMFT solution of Solli and Schlottmann
[30,31], the DMRG calculations of Clare C. Yu [34] for the
half-filled 1d Kondo lattice demonstrate, that the spin density
induced by a single Kondo hole, however, extends beyond the
nearest neighbors. As we demonstrate later on, this is a result
of the restriction to singly occupied f orbitals in the Kondo
lattice which corresponds to a large interaction U and ε f � 0.
In accordance with the DMFT solution of Schlottmann [52]
for a weakly interacting system, hole induced bound states
originating from different holes within the unit cell do not
interact with each other in the noninteracting limit. The cor-
responding dispersionless bands are degenerate due to the
lack of interaction. The aforementioned delocalization of the
induced spin density in case of large U , however, leads to
an overlap between magnetic bound states originating from
different holes which results in a finite exchange interaction
as demonstrated below.

C. Lieb-Mattis theorem applied to the strongly interacting
MIAM: Prediction of stable local moments

For the strongly interacting limit of the depleted, finite size
Kondo lattice there is a modified version of the Lieb-Mattis
theorem [53] proven by Shen [54], which states that for a
number of Nf local moments coupled by a local AF exchange
interaction to a half-filled system of conduction electrons on a
bipartite d-dimensional lattice with Nc � Nf sites, interacting
via a finite Hubbard-type interaction, the ground state has a
total Sz component of

Stot
z = 1

2 |Nc,A − Nc,B + Nf ,B − Nf ,A| (15)

(see theorem VI in Ref. [54]). In case of noninteracting con-
duction electrons, degeneracy of the ground state [apart from
the trivial (2Stot

z +1)-fold degeneracy] can only be excluded
for the dense case, Nf = Nc. However, even if there is degen-
eracy, one of the ground states is always in the sector of Stot

z
given by Eq. (15). Moreover, Titvinidze et al. [55] demon-
strated the applicability of the theorem to the 1d regularly
depleted Kondo lattice by employing the DMRG, showing
that the ground state is unique even if the conduction electrons
are noninteracting. Nevertheless, the modified Lieb-Mattis
theorem assumes a finite size system, whereas we are also

FIG. 2. [(a) and (b)] Schematic of two 1d MIAM’s on a bipartite
lattice with A and B sites. The solid line rectangle defines the small-
est finite size cluster that includes all sites with f orbitals present.
Applying Eq. (15) to these finite size cluster results in Scl0

z = 1/2,
however, the cluster are connected to the remaining continuum via
Jeff

K,A/B, as schematically depicted in (c) for the model in (a). Here
Jeff

K,A/B indicates the coupling between the cluster and nearest A/B site
of the continuum. In order to determine the sign of these couplings,

Eq. (15) is used to obtain S
cl′0
z (A/B) of an enlarged cluster that in-

cludes one additional A/B site, as indicated by the dashed rectangle

in (a) and (b). Jeff
K,A/B can be derived via Scl0

z and S
cl′0
z using Eq. (16).

interested in the MIAM with a finite number of f orbitals
coupled to an electron continuum. Consequently, we need
to slightly modify the theorem in order to apply it to multi-
impurity models. The predictions of Eq. (15) are limited to a
finite size system. They perfectly agree with the well [56,57]
established strong-coupling (SC) fixed point (FP) structure
of the SIAM or the single-impurity Kondo model (SIKM)
where two such FPs are found, one for even and one for
odd chain length [56]. Nevertheless, the term Kondo singlet
ground state has been used numerously in the literature [56]
when a local spin 1/2 is coupled antiferromagnetically to
fermionic continuum in the thermodynamic limit: The precise
state of the infinitely large conduction band sea is considered
to be irrelevant, and the Fermi sea is treated as a singlet state,
regarding the even-odd oscillations as trivial and irrelevant
point. Wilson realized that the Kondo singlet formation is
better quantified by calculating local quantities defined as
difference between the total system with and without impurity
[56,57]: A spatially extended singlet is formed which de-
couples from the remaining conduction electron band whose
precise properties do not matter for N → ∞. In order to
reveal the magnetic ground state properties of a MIAM in Wil-
son’s spirit using the Lieb-Mattis theorem, we can proceed as
follows. In a first step we define the smallest finite size cluster
CL0 in such a way that it includes all sites with f orbitals
present, as indicated by the solid line rectangle in Figs. 2(a)
and 2(b) for two exemplary 1d models. For this finite size
subsystem we can apply Eq. (15) to predict the Scl0

z component
of the finite size cluster. In case of Scl0

z = 0, as one obtains
for the SIAM and dense MIAM, we are already done and
can conclude Stot

z = Scl0
z = 0, since the remaining infinite size

lattice is treated as Slattice
z = 0.1 However, when the magnetic

1Note that we cannot make a statement about the nature of the FP:
In the TIAM, for instance, two adiabatically connected FP are found,
one originating from a RKKY interaction the other driven by the
Kondo effect [49,67].
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moment of the cluster is finite, Scl0
z �= 0, it can be quenched

via the Kondo effect by the remaining electron continuum if
the coupling Jeff

K,A/B between the finite size cluster CL0 and
the nearest A/B sites of the continuum is antiferromagnetic.
This situation is schematically depicted in Fig. 2(c) for the 1d
model in panel 2(a) and can also be generalized to arbitrary
spatial dimensions. Hence, embedding the cluster back into
the continuum model leads to a finite number of effective
exchange couplings Jeff

K,A/B between a possible multiplet of the
cluster CL0 and the remaining infinite size lattice. Since only
the AF (Jeff

K,A/B > 0) couplings are relevant in the renormaliza-
tion flow and can lead to a change of the ground state spin,
we define the parameter K as the number of AF couplings:
Jeff

K,A/B > 0. In order to determine the sign of each coupling
Jeff

K,A/B, we now enlarge the cluster CL0 → CL′
0 by including

one additional A (or B) site, as indicated by the dashed rectan-
gle in Figs. 2(a) and 2(b), for example, and use Eq. (15) again

to calculate Scl′0
z (A/B) of the enlarged cluster. At zero tem-

perature, a antiferromagnetic (ferromagnetic) Jeff
K,A/B would

decrease (increase) the original Scl0
z by 1/2 and, consequently,

the Scl′0
z (A/B) component of the enlarged cluster can be

written as

Scl′0
z (A/B) = Scl0

z − 1

2

Jeff
K,A/B∣∣Jeff
K,A/B

∣∣ . (16)

If the finite size cluster CL0 with Scl0
z �= 0 is coupled ferro-

magnetically (FM) to all nearest neighbors of the remaining
infinite lattice (K = 0), we can conclude Stot

z = Scl0
z �= 0: The

Sz component of any other finite size cluster CL that contains
an arbitrary number of sites can never be smaller than that
of CL0: Scl

z � Scl0
z �= 0. An example for such a situation is

depicted in Fig. 2(b): Applying Eq. (15) to the cluster CL0

(solid rectangle) results in Scl0
z = 1/2 and including one ad-

ditional A site (dashed rectangle) would increase the size

of the local cluster magnetic moment, Scl′0
z (A) = 1. Conse-

quently, the cluster CL0 is FM coupled to the left and right
electron continuum and the local moment (LM) FP is stable:
Stot

z = Scl0
z = 1/2. In contrast to that, in case of K > 0 con-

duction band channels that couple antiferromagnetically one
can always find a new finite size cluster CL whose Sz com-
ponent is reduced compared to that of CL0: Scl

z < Scl0
z �= 0.

For K � 2Scl0
z , the magnetic moment can be quenched com-

pletely, Scl
z � 0, whereas for K < 2Scl0

z a finite local moment
will always remain, Scl

z � (Scl0
z − K/2), and all the cluster

for which Scl
z = (Scl0

z − K/2) holds are only ferromagnetically
coupled to the remaining continuum: K = 0. An example for
such a situation is depicted in Fig. 2(a): Applying Eq. (15) to
the cluster CL0 (solid rectangle) results in Scl0

z = 1/2. How-
ever, by including one additional B site (dashed rectangle)
the size of the local cluster magnetic moment is reduced,

Scl′0
z (B) = 0, and, consequently, the cluster CL0 is AF coupled

to the right electron continuum and the LM FP is unstable:
Stot

z = Scl0
z − 1/2 = 0. To this end, using the modified Lieb-

Mattis theorem of Eq. (15) to calculate Scl0
z , and Eq. (16) to

determine the number K of AF couplings Jeff
K,A/B, the magnetic

ground state properties of a MIAM in Wilson’s spirit are

given by

Stot
z =

{
0, if Scl0

z � K/2
Scl0

z − K/2, if Scl0
z > K/2

. (17)

Note that this result is valid in arbitrary spatial dimensions.
While the cluster Scl0

z component is always given by Eq. (15),
the number of screening channels K depends on the geometric
embedding of the cluster into the lattice and, consequently, on
its spatial dimension. Due to the left/right structure in 1d the
number of screening channels can never be larger than two
in this case, K1d � 2, which provides an alternative interpre-
tation of our result in Ref. [44], where we demonstrated that
the maximum number of possible screening channels for any
MIAM in arbitrary spatial dimensions is limited to the number
of Fermi surface states.

D. Combination of the supercell analysis and the Lieb-Mattis
theorem: Conventional and unconventional MIAM

Using the supercell analysis for the PAM in Sec. II B, we
demonstrated that the removal of a number of Nh f orbitals
per unit cell (uc) can lead to Nd

h � Nh decoupled d orbitals
in the noninteracting limit and, consequently, to an impurity
induced entropy of Suc

imp = Nd
h kB ln(4) per unit cell. If we take

the MIAM as a representation of the impurity physics with
an arbitrary large real-space supercell such that Stot

imp = Suc
imp

holds, we can strictly differentiate between different types
of MIAMs by combining the predictions from the supercell
analysis and the Lieb-Mattis theorem at half-filling on bipar-
tite lattice. In order to separate our investigation from the
conventional MIAM, we define the unconventional MIAM
as a model where Nd

h localized orbitals decouple from the
rest of the system at U = 0 leading to a finite ground state
entropy of Stot

imp > 0. At finite U , usually a local moment arises
which might remain unscreened indicated by a finite ground
state entropy. Well studied examples are gaped or system with
pseudo gap density of states [58]. In graphene, for example,
carbon vacancies generated such single-particle bound states
[59–61] which are subject to Kondo screening [62,63]. In this
paper, however, we focus on conventional metallic conduction
band hosts, where such localized orbitals are induced by va-
cancies in dense systems called Kondo holes. The pseudo gap
physics only implicitly enters via the reduced rank of � as
reviewed in Sec. II F below based on the mapping presented
in Ref. [44]. In the conventional MIAM no such decoupled
localized state exist, and one or several intermediate unstable
LM FPs develop with increasing U/�0. The emerging local
moments are quenched on a low-energy scale which results
from mixture of the Kondo effect and the RKKY interaction
in general. The SIKM, SIAM and dense MIAM are typi-
cal representatives of that category where we always find a
vanishing residual entropy: Stot

imp = 0. In the unconventional
MIAM, we distinguish between a noninteracting (U = 0) and
an interacting case (U �= 0). For U = 0, we find a residual
entropy of Stot

imp = Nd
h kB ln(4): Each hole induces a decoupled

localized orbital with the single-particle energy ε = 0. In the
NRG language, we have a free orbital (FO) fixed point of these
orbitals while the rest of the system is represented by a ground
state of a Fermi sea. For the interacting problem, U > 0, we
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find the hierarchy

0 � Stot
imp � Scl0

imp � Nd
h kB ln(2). (18)

Without any coupling to the conduction band, free local mo-
ments are developing when βU > 1 which provide an upper
bound for the cluster and the impurity residual entropy. The
hybridization mediated RKKY mechanism leads to a reduc-
tion of the entropy by alignment of local moments that are
subject to potentially incomplete Kondo screening. The stable
low-temperature FP entropy Stot

imp is discontinuous at U = 0
for T → 0 defining a quantum phase transition (QPT). This
transition is either of first order due to a level crossing of
the ground state energies or of KT type [58]. An arbitrary
small Coulomb interaction U > 0 can already be sufficient to
obtain a LM FP at intermediate temperature T < U , result-
ing in strong correlation effects. We can further differentiate
between three types of unconventional MIAM.

1. Unconventional MIAM of type I

In the type I model, the ground state magnetic moment of
the local cluster couples via a FM Jeff

K to the conduction band
channels. Therefore the residual entropy remains finite, and
we have the hierarchy

0 < Stot
imp = Scl0

imp � Nd
h kB ln(2). (19)

An example for this kind of model is depicted in Fig. 2(b).
A finite local cluster magnetic moment Scl0

z � 1/2 is FM
coupled to the remaining continuum such that the LM FP is
stable. The QPT is of first order in case of a single Kondo
hole, Nd

h = Nh = 1 at U = 0: The unstable FO FP with resid-
ual entropy SFO

imp = kB ln(4) crosses over to the LM FP with
SLM

imp = kB ln(2) on the energy scale of the Coulomb interac-
tion U , which, obviously, vanishes linear at Uc = 0.

2. Unconventional MIAM of type II

In the type II model, the ground state magnetic moment
of the local cluster couples via an AF Jeff

K to the effective
conduction band channels. An example for this kind of model
is depicted in Fig. 2(a). In this case, the cluster moment is
reduced by the conduction band screening channels and the
hierarchy

0 � Stot
imp < Scl0

imp � Nd
h kB ln(2) (20)

holds. It turns out that the low-energy scales depend exponen-
tially on the effective Kondo couplings Jeff

K,A/B which vanishes
at U c = 0. Consequently, the QPT is of KT type as in SIKM
at Jc

K = 0. The interesting question arises how Jeff
K,A/B depends

on the Coulomb interaction U since Jeff
K,A/B(U = 0) = 0 must

be fulfilled. We will demonstrate that NRG calculations that
are presented in Sec. III C result in Jeff

K,A/B ∝ U n, where n > 1
depends on the model.

3. Unconventional MIAM of type III

In this class, the residual entropy of the cluster as well
as the total effective impurity always vanishes for U > 0:
Stot

imp = Scl0
imp = 0. This scenario requires an even number of

decoupled orbitals Nd
h = 2n. The hole induced local moments

FIG. 3. (a) Schematic of the depleted PAM in 1d with f orbitals
(blue) connected to the B sublattice of the c orbitals (green). The unit
cell is indicated by the dashed rectangular. (b) If a single coupling V0

dominates, the other f orbitals “feel” an effective medium indicated
by the gray area in the background including the f0 orbital.

are AF coupled such that they lock into an intracluster singlet
state. We study such a scenario in Sec. IV.

E. Real-space interpretation of the decoupling in lattice
and impurity models: Local pseudogap physics

Using the supercell analysis in Sec. II B, we demonstrated
that Kondo holes in noninteracting lattice and impurity models
quite general lead to the occurrence of decoupled states, local-
ized in the vicinity of the hole sites. Moreover, the modified
Lieb-Mattis theorem for the strongly interacting limit, which
we discussed in Sec. II C, predicts a stable LM FP for several
MIAMs and a macroscopic magnetization for certain regu-
larly depleted lattice models. While these results for the two
complementary perspectives already allowed us to distinguish
between conventional MIAMs and three types of unconven-
tional MIAMs, a detailed understanding of the microscopic
mechanism, responsible for the decoupling and spatial re-
distribution of the localized orbitals and magnetic moments,
from the local impurity point of view is still missing. In this
section, we demonstrate that the decoupling in both, lattice
and impurity models, can be understood in terms of local
pseudogap physics.

1. Periodically depleted PAM in 1d

In order to obtain a real-space interpretation of the mecha-
nism that leads to the decoupling of the states d	k,lh

in Eq. (13),
we focus on the 1d PAM with nearest-neighbor hopping be-
tween the c orbitals, ti j ∝ δi, j±1, and consider the smallest
supercell, n = 2, in which one can insert a Kondo hole without
removing all f orbitals in the Hamiltonian. This model,
known as the depleted PAM, is schematically depicted in
Fig. 3(a), where the f orbitals (blue) are coupled to the B
sublattice of the c orbitals (green) and the unit cell [dashed
rectangular in Fig. 3(a)] contains two c and one f orbital. For
this special setup, we obtain one decoupled d	k orbital and can
evaluate Eq. (13) to obtain

d	k = ζ
(	k)(2t cos(ka)

V
fB,	k + cA,	k

)
, (21)

where the index A and B labels the site of the unit cell. In
the wide-band limit, t/V → ∞, the dispersionless band has
pure f character and, consequently, the f orbitals seem to
decouple from the itinerant electrons. This surprising finding
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FIG. 4. Local conduction electron DOS of the B sublattice: (i)
DOS ρ0

1d(ω) in the absence of an impurity, (ii) ρ̃B,l (ω) in the presence
of an resonant level at R = 0 for two different sites l = 1 and 25
corresponding to �R = 2a, 50a and D/�0 = 10, V0/�0 = √

D/�0.

can be very easily explained by studying a slightly modified
version of the model, schematically depicted in Fig. 3(b), as
we have done in a previous publication [44]. If the coupling
to the impurity site at the origin dominates over all others:
V0 
 Vl , l �= 0, the fB,l orbitals at the sites l �= 0 “feel” an
effective medium [gray background in Fig. 3(b)], which in-
cludes the influence of the fB,0 orbital on the conduction band
electrons. If the fB,0 orbital is assumed to be noninteracting,
U0 = 0, the effective c density of states at the B sublattice of
site l is approximately given by [44]

ρB,l (ω) ≈ ρ̃B,l (ω) = ρ0
1d(ω)

−
[
ρ0

1d(ω) cos
{

l cos−1
[ω

D

]}]2

× π2V 4
0 ρ0

1d(0)

ω2 + [
πV 2

0 ρ0
1d(0)

]2 , (22)

where the approximation �G0
c,i j (ω − i0+) ≈

�G0
c,i j (−i0+) = 0 for the real part of the free conduction

band electron propagator has entered [44]. The comparison of
the local conduction electron DOS without impurity ρ0

1d(ω)
and the local DOS at site l with the impurity present is
shown in Fig. 4. Focusing on lattice sites for the second
impurity that are on the same bipartite sublattice as the first
impurity reveals a pseudogap formation of the spectrum: The
larger the distance the faster the DOS oscillations in energy
space, the smaller the energy intervall of the pseudogap. Since
the pseudogap always vanishes quadratically in this energy
window, ρB,l (ω) ∝ |ω|2, a local magnetic moment of a second
impurity coupled to the lattice at site l decouples in the limit
T → 0 since Vl is irrelevant in the sense of an RG treatment
[64]. This result not only enables a simple interpretation of
the decoupling in terms of local pseudogap physics but also
reveals another important property: The decoupling of some
localized orbitals due to Kondo holes does not rely on the
periodicity and translational invariance of the Hamiltonian.
For example, in the 1d model discussed above, it would be
enough to consider only one additional fB,l orbital among
the fB,0 orbital in order to obtain a decoupled state. Indeed,
the emergence of stable local moments in the 1d TIAM has
already been studied in Ref. [65].

FIG. 5. Simplest realization of a hole in a finite impurity cluster
in (a) 1d with two f orbitals and (b) 2d with four f orbitals.

2. Kondo holes in finite impurity cluster

Having demonstrated the equivalence of the local pseudo
gap formation in the regularly depleted 1d lattice and 1d
MIAM, we now extend the latter model to arbitrary dimen-
sions.

a. Local point group analysis: Decomposition of the single-
particle subspace. In this section, we generalized the strategy
applying to the two impurity problem [49,66,67] which uses
even and odd parity sectors. Parity conservation results in
decomposing the Hilbert space in irreducible representation
of the C2 point group in the two impurity problem. In order
to avoid complications by more complex lattices, we only
consider Bravais lattices for Hhost in Eq. (1) and restrict the
correlated lattice sites to the nearest neighbors of the hole site
at 	R = 0 for the moment, i.e.,

HMIAM = Hhost + Hhyb (23)

+
∑

<l,0>,σ

ε
f
l f †

l,σ fl,σ + 1

2

∑
l,σ

Ul f †
l,σ fl,σ f †

l,σ̄ fl,σ̄ ,

with the same restriction of the index l in Hhyb. For a 1d and a
2d simple cubic lattice, the setup is depicted in Figs. 5(a) and
5(b), respectively. The correlated impurity sites are invariant
under the point group P = C2 (1d) or P = C4 (2d) symmetry.
In 3D and in different geometries, we refer to the appropriated
point group P of the lattice of interest. After diagonalizing
Hhost in k space, the hybridization term Hhyb takes the form

Hhyb = V√
Nc

∑
	kσ

c†
	k,σ

∑
l,σ

e−i	k 	Rl fl,σ + H.c. , (24)

assuming an equal hybridization strength for all Vl = V to
ensure the point group symmetry.

There are Nf different f -electron annihilation operators
fl,σ that span the single-particle vector space of the f orbitals
on which an reducible representation of the point group is
operating on. By applying the projector P� of each irreducible
representation � of P,

P̂� = d�

|P|
∑
g∈P

χ� (g)Ô(g) (25)

onto the operators fl,σ , all operators f�α,σ of the irreducible
representations can be constructed

P̂� fl,σ → f�α,σ , (26)

where α labels the different degrees of freedom in a pos-
sibly multidimensional irreducible representation (irrep) �.
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Applying the mapping P̂� fl,σ creates an operator that requires
normalization such that

{ f�α,σ , f †
�′α′,σ ′ } = δ��′δαα′δσσ ′ . (27)

The number of group elements in P is given by Ng = |P],
χ� (g) denotes the character of g in the representation �, and
Ô(g) is the representation of the group element g in the vector
space spanned by the fl,σ . This leads to expansion

fl,σ =
∑
�α

Ul,�α f�α,σ (28)

with the unitary transformation U that is substituted into Hhyb

reading

Hhyb =
∑
	k�α,σ

V	k�α
c†

	k,σ

∑
l,σ

f�α,σ + H.c. , (29)

where

V	k�α
= V√

Nc

∑
l

Ul,�αe−i	k 	Rl . (30)

Since different orbital energies ε
f
l break the local point group

symmetry [68], leading to single-particle transfer matrix el-
ements between the new orbitals f�α,σ we focus on ε

f
l =

ε f = const in the following. Note that the conduction electron
dispersion in case of nearest-neighbor tight-binding descrip-
tion with a uniform single particle on site energy, εc

i = εc, is
given by

εc
	k = −t

∑
〈l,0〉

ei	k 	Rl + εc = −tγ (	k) + εc (31)

and obviously related to the hybridization matrix element
V	k,�1

of the trivial irreducible representation �1 with U =
(1/

√
Nf ):

V	k,�1
= V√

NcNf
γ (	k) = − V√

NcNf

(
εc

	k − εc

t

)
. (32)

This holds for all point groups since χ�1 (g) for all g ∈ P
and Ô(g) mapped each f orbital onto each other orbital of
the lattice. Independent of the point group, the operator f�1,σ

always has the form2

f�1,σ = 1√
Nf

∑
l

fl,σ (33)

to fulfill Eq. (27). We also assume that the total Hamiltionian
is invariant under the point group operations, i.e., ε

f
l = const.

Breaking the point group symmetry by the quantum impu-
rity Hamiltonian would generate hopping terms between the
single-particle orbitals of different irreducible representations
which we exclude in our analysis below.

2Since the trivial irrep of any point group is one-dimensional we
drop the index α in this case.

b. Pseudogap in the effective hybridization. Using the
equation of motion for Green’s functions we can calculate
the complex hybridization function ��1 (z) of the one-
dimensional irreducible representation �1, which completely
determines the influence of the bath on the single f�1,σ

orbital [57] and enters the noninteracting Green’s function
〈〈 f ′

�1,σ
, f †′

�1,σ
〉〉0(z) = [z − ��1 (z)]−1:

��1 (z) =
∑

	k

∣∣V	k,�1

∣∣2
z − εc

	k
. (34)

Inserting Eqs. (32) and (31), the imaginary part of the hy-
bridization function, ��1 (ω) = ���1 (z), reads

��1 (ω) = πV 2

Nf Nc

∑
	k

δ
(
ω − εc

	k
)∣∣∣∣ε

c
	k − εc

t

∣∣∣∣
2

(35)

and, for εc = 0, obviously exhibits a pseudogap ��1 ∝ |ω|r
with r > 1 Consequently, the coupling of the f�1,σ orbital to
the host is irrelevant for the resulting fixed point in the sense
of an RG treatment, and a single localized orbital decouples,
such that single occupancy of this orbital leads to a stable
local moment. Since the effective conduction bands of the
other irreducible representations in general do not decouple
and the f�1,σ orbital is a uniform mixing of the original fl,σ

orbitals with the amplitude N−1/2
f , each of the local moments

in real space gets only partially screened by a fraction of
(Nf − 1)/Nf . The spatial location of this decoupled orbital
depends on the relative strength of the coupling V/t , just as
in the lattice model. To understand this we need to recall,
that the pseudogap has some specific width δgap, which is
proportional to the hopping t and which defines the energy
scale at which the conduction band electrons (Wilson sites)
gradually decouple. In the wide-band limit, V/δgap → 0, the
itinerant electrons decouple from the f orbital way before
the screening sets in and the decoupled orbital has pure f
character. In the other limit, V/δgap → ∞, its vice verse. Even
if the remaining Wilson sites decouple on the energy scale of
δgap, the screening of the impurity is nearly completed and,
consequently, the decoupled orbital has mainly c character.
In case of V/t → ∞ and half-filling, we can understand the
decoupling in a purely local picture. At each impurity site,
the c and f orbitals form a binding and antibinding linear
combination which are energetically separated by V and the
binding one is doubly occupied. The hopping of a single elec-
tron located in the conduction electron orbital at the Kondo
hole to a neighboring lattice site gets suppressed, since such
a process involves high energy excitation of the order V due
to adding of electron into the antibinding orbital. Due to sup-
pression of the local hopping, the decoupled orbital localizes
in the conduction electron orbital of the Kondo hole site in
this limit. We note that this is exactly the same behavior for
large hybridization as emerged from the single-particle super
cell discussion of the decoupled orbital dk defined in Eq. (13).

F. NRG and low-energy Hamiltonian of the MIAM
in the wide-band limit

For the Kondo hole problem, we have primarily a single
charge-neutral substitution in mind. It has already been shown
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[34] that the spatial extension of the induced bound state is
very important for its physical properties. Within a DMFT
treatment [30,31] these spatial correlations and the interac-
tions of the induced local moments with the rest of the lattice
are lost. Since an exact treatment of a PAM is not possible, we
follow a different strategy: We include the spatial correlations
by investigating very large local correlated clusters which cap-
tures some of the lattice physics [44] but sacrifice the feedback
of the rest of the correlated sites onto the smaller cluster. As
long as this feedback does not alter the physics—for instance,
by additional decoupling of the remaining screening channels
as in the metal insulator transition of a Hubbard model—the
FP structure is fixed by the geometry of the cluster and the
lattice feedback would only change the absolute values of
the low-energy scales. In order to study the complex multi-
impurity models in the strongly interacting regime, we use
the NRG [45,46] in combination with a wide-band approx-
imation [44] in the following. The NRG was developed by
Wilson in 1975 [56] to accurately solve the SIAM in the
featureless wide-band limit. Since then, the NRG has been
extended to include the energy dependence of the conduction
band electrons and a tremendous amount of papers have been
devoted to quantum impurity problems in various incarnations
addressed with tailored versions of the NRG. For a detailed
review and examples see Ref. [57]. The central point of NRG
is the construction of the semi infinite Wilson chain, which
results from a tridiagonalization of the prior logarithmically
discretized conduction band continuum. For a single impurity
at site l and a local f -c hybridization, the local conduction
electron states |0σ 〉 = c†

l,σ |vac〉 are used as starting vectors for
the iterative construction of the Lanczos vectors, since these
are the only states that directly couple to the impurity. This
mapping onto a linear chain problem requires an orthonormal
basis set. Since the expansion of the local Wannier conduction
electron orbitals at different impurity sites comprise linear
combinations of energy states that are not orthogonal due to
the phase correlations of the underlying plain waves, such an
approach to construct semi infinite Wilson chain for multi-
impurity models is not straight forward [69]. Essentially, the
hybridization part of the Hamiltonian, Eq. (3), needs to be
rewritten in terms of orthonormal conduction electron states.
In order to keep the minimal Kondo hole model tractable
with a relatively large number of correlated sites surrounding
the hole, we employ a recently developed mapping [44] onto
an effective low-energy Hamiltonian which we summarize in
the following. This mapping becomes exact in the wide-band
limit and enables us to solve the model using the NRG. The
effect of the host conduction band onto the dynamics of the
correlated lattice sites is completely determined by the hy-
bridization function matrix,

�lm(z) = VlVmG0
c,lm(z), (36)

where G0
c,lm(z) is the free conduction band electron Green’s

function in real space accounting for an electron transfer from
site l to site m. The exact real-space multi-impurity Green’s
function matrix of the dimension Nf × Nf , in the absence of
the Coulomb interaction, Ul = 0, is given by the matrix

G f (z) = [z − E − �(z)]−1, (37)

where the matrix E contains the single-particle energies of
the localized f orbitals and the matrix elements of the self-
energy matrix �(z) are given in Eq. (36). In the wide-band
limit, Vi/t → 0, the energy dependence of the hybridization
function matrix can be neglected, �(ω − i0+) ≈ �(−i0+),
and we can absorb the real part into the energy matrix:
E → E ′ = E + ��(−i0+). Using the unitary transformation
U that diagonalizes the remaining imaginary part, �diag =
U��(−i0+)U∗, the approximated Green’s function reads

G f (ω − i0+) ≈ UG f̃ (ω − i0+)U∗

= U [ω − i0+ − Ẽ
′ − i�diag]−1U∗, (38)

with Ẽ
′ = UE ′U∗. Consequently, the single-particle Green’s

function matrix G f̃ (ω − i0+), in the eigenbase of ��(−i0+),
can equally be generated by an effective single-particle
Hamiltonian H̃sp which has the following form:

H̃sp = H̃cl + H̃hyb. (39)

The cluster part of the mapped Hamiltonian H̃sp,

H̃cl =
∑
m,l

Ẽ ′
lm f̃ †

l f̃m, (40)

defines the single-particle Hamiltonian of the correlated or-
bitals in the new basis that have acquired additional orbital
hopping terms due to ��lm(−i0+), mediated by the con-
duction band electrons of the host. Defining the effective
coupling constants V̄n, which result from the n eigenvalues
�

diag
n = πV̄ 2

n ρ0(0) and the conduction band DOS ρ0(0) for
εc = 0, the second part,

H̃hyb =
Nf∑

n=1

∑
	k

(
εc

	k − εc
)
c†

	k,n
c	k,n

+
Nf∑

n=1

∑
	k

(
V̄n√
Nc

c†
	k,n

f̃n + H.c.

)
, (41)

includes Nf new effective conduction band channels and the
flavor diagonal coupling to the cluster orbitals for each con-
duction band flavor n.

Note that the f̃ orbitals decouple from the effective
conduction band if the corresponding eigenvalue vanishes,
�

diag
n = 0, which implies an incomplete rank of ��(−i0+).

Such a vanishing of the coupling V̄n indicates a pseudogap in
the energy-dependent hybridization function as it appears in
Eqs. (22) and (35) in the context of the decoupled d orbital in
depleted lattice as well as impurity models. If the width δgap of
the pseudogap is larger than the coupling Vn, as is the case in
the wide-band limit, V/δgap → 0, the conduction band chan-
nel can be neglected and the decoupling in the hybridization
part of the effective Hamiltonian in Eq. (41) is fully justified.
In addition, the rank of ��(−i0+) can be used to distinguish
between two types of MIAM’s, see Fig. 1 of Ref. [44]. A
MIAM of the first kind is defined by rank[��(−i0+)] = Nf ,
whereas a MIAM of the second kind contains decoupled f̃ or-
bitals and, hence, rank[��(−i0+)] < Nf . Note that the PAM
is a representative of a MIAM of the second kind [44].
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FIG. 6. Simplest realization of a hole with finite on-site energy
εh inside an array of impurities in (a) one and (b) two dimensions.

III. SCREENING MECHANISMS IN KONDO
HOLE HAMILTONIANS

So far, using a supercell analysis and the modified Lieb-
Mattis theorem, we predicted the emerging of LM FPs at
PH symmetry, when some correlated f orbitals are removed
in a dense lattice and impurity models. In this section, we
study the possible Kondo screening mechanisms of these local
moments. In Secs. III A and III B, we focus on the Type I
Kondo hole models, where the local cluster magnetic moment
is stable at PH symmetry, Stot

z = Scl0
z �= 0, and demonstrate

that RKKY couplings can induce an effective AF Kondo
coupling when (i) the unoccupied hole orbital is considered
in the modulation or (ii) the band center εc is shifted. In
both of these cases, PH symmetry is broken such that the
Lieb-Mattis theorem is not applicable any longer. In Sec. III C,
we maintain PH symmetry but study the Kondo screening of
Type II Kondo hole models, where the local cluster magnetic
moment is AF coupled to the remaining continuum, Stot

z <

Scl0
z �= 0. The delocalization of the local moments by a finite

Coulomb interaction U > 0 leads to its coupling to another
conduction electron channel. A KT transition is found with
a critical coupling Uc = 0 and exponentially vanishing low-
energy scale with a counter intuitive Kondo coupling ∝U n,
where n > 1 depends on the precise model. The supercell
analysis is recovered only at U = 0, while the finite U results
are in accordance with the modified Lieb-Mattis theorem.

A. Type I Kondo hole model: Single hole surrounded by
nearest-neighbor correlated orbitals

In experiments, the removal of local moments
in a dense Kondo lattice is typically realized
by the substitution of magnetic atoms such as Ce or Yb
by the nonmagnetic counterparts Th or La. In the literature
[34,70,71] and in the previous sections, we modeled that
situation by removing the correlated site completely. Since
La has excitable 4 f states at some large but finite energy
that are just not occupied in equilibrium, we include these
f states by demanding that ε

f
h > �0 rather than removing

them completely. A schematic sketch of the extended model
for such a Kondo hole is depicted in Fig. 6 which is a
realistic generalization of the scenario shown in Fig. 5. The
Hamiltonian H = HMIAM + Hhole extends HMIAM in Eq. (23)
by taking an high-energy unoccupied f orbital at the hole

location explicitly into account:

Hhole =
∑

σ

⎛
⎝ε

f
h f †

h,σ
fh,σ + Vh√

Nc

∑
	k

[c†
	k,σ

fh,σ + H.c.]

⎞
⎠.

(42)

The index h labels the Kondo hole operators, Vh denotes the
coupling strength of the conduction electrons to the Kondo
hole orbital placed at R = 0 with the orbital energy ε

f
h . Since

the hole orbital is assumed to be nearly unoccupied in a
realistic description we can neglect a possible Coulomb repul-
sion Uh in Hhole for simplicity. All nearest-neighbor correlated
orbitals are set to be equal.

1. The noninteracting limit

Before addressing the fully interacting problem using the
NRG, it is helpful to understand the analytically exactly solv-
able noninteracting limit Ul = 0. The matrix �(z), defined in
Eq. (36), is block diagonal in the irreducible representations of
the local point group. Since the hole is located at the origin, its
orbital transforms according to the trivial representation �1,
such that the �1 subspace is now two-dimensional. Therefore,
using the definition of V	k,�1

in Eq. (32) and dropping the
spin index σ for better readability, the matrix ��1 (z) of this
subspace reads for each spin channel

��1 (z) =
(

�hh(z) �h+(z)
�+h(z) �++(z)

)

= 1

Nc

∑
	k

⎛
⎜⎝

V 2
h

z−εc
	k

VhV	k,�1
z−εc

	k
VhV	k,�1

z−εc
	k

V 2
	k,�1

z−εc
	k

⎞
⎟⎠, (43)

where f+ = 1/
√

Nf
∑

l fl corresponds to the even combina-
tion of the f orbitals at the neighboring sites 	Rl �= 0. The hole
Green function Ghh(z) and the f+ GF are given by

Ghh(z) = 1

z − ε
f
h − �hh(z) − �2

h+(z)

z−ε
f
+−�++(z)

, (44a)

G++(z) = 1

z − ε
f
+ − �++(z) − �2

h+(z)

z−ε
f
h −�hh (z)

. (44b)

For Vh = 0 and V �= 0, we recover the Kondo hole mod-
ulation presented in Sec. II E 2. The even (+) combination
decouples for εc = 0 from the conduction band at low
temperatures due to ��++(ω − i0+) ∝ ω2 for a featureless
conduction band without van Hove singularity at ω = 0. In
addition, the Kondo hole orbital is trivially disconnected from
the problem. In the opposite limit, Vh �= 0 and V = 0, only
the Kondo hole couples to the conduction band. With �h

0 =
��hh(−i0+) = πV 2

h ρ0 its spectral function is given by

ρV =0
fh

(
ε

f
h , ω

) = �h
0

π
([

ω − ε
f
h

]2 + [
�h

0

]2) (45)

in the wide-band limit where ��hh(−i0+) → 0. Employing
the mapping onto an effective Hamiltonian as laid out in
Sec. II F requires the diagonalization of the imaginary part
of all submatrices in each subspace separately. However, for
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εc = 0 the off-diagonal matrix elements in the �1 subspace
are purely real,

��1 (−i0+) =
(

i�h
0 th+

th+ 0

)
, (46)

and account for an effective hopping th+ between the two or-
bitals. Obviously, the rank of ��1 is one, and only the Kondo
hole directly couples to the �1 conduction band states. The
resulting effective single-particle Hamiltonian is extracted to

H̃�1 =
∑

	k

[
εc

k c†
	kc	k + Vh(c†

	k fh + f †
h c	k )]

+
∑

ν∈{h,+}
ε f
ν f †

ν fν + th+( f †
h f+ + f †

+ fh) (47)

and describes the Kondo hole that couples to the �1 con-
duction band states and the even combination f+. Note that
th+ ∝ V depends on the coupling V of the original fl orbitals.
Note that deviations from εc = 0 result in finite imaginary
off-diagonal matrix elements in Eq. (46) and a precursive
diagonalization is necessary in order to obtain an effective
description with independent conduction band states for each
orbital. Since this additional change of basis mixes the single-
particle properties of the hole and local moment f orbitals
and, consequently, makes the interpretation more difficult,
we first concentrate on εc = 0 and discuss the case εc �= 0
later on. Substituting (46) into (44a) and (44b), the spectral
functions of the two �1 orbitals are approximated to

ρ̃ fh

(
ε

f
h , ω

) = �h
0

π

({
ω − ε

f
h − t2

h+
ω − ε

f
+

}2

+ [
�h

0

]2

)−1

,

(48)

ρ̃ f+
(
ε

f
h , ω

) = �̃+
0 (ω)

π
({

ω − ε
f
+ − �ε

f
+(ω)

}2 + {
�̃+

0 (ω)
}2) , (49)

where the energy shift �ε
f
+(ω) is given by

�ε
f
+(ω) = t2

h+
ω − ε

f
h(

ω − ε
f
h

)2 + [
�h

0

]2 , (50)

and the new effective width of the f+-orbital spectrum reads

�̃+
0 (ω) = t2

h+
�h

0(
ω − ε

f
h

)2 + [
�h

0

]2 . (51)

�ε
f
+(ω) and �̃+

0 (ω) are related to the real and the imaginary
parts of the f+ GF and vanish in the usually considered limit
|ε f

h | → ∞. In this limit, a disconnected f+ orbital that carries
a free moment at finite U is recovered. For a finite ε

f
h , how-

ever, with |ε f
h | 
 �h

0 , �̃+
0 (ω) can be approximated by

�̃+
0 (ω) ≈ �h

0

t2
h+(

ε
f
h

)2 . (52)

At finite Ul , the f+ orbital carries the finite magnetic moment
located in the vicinity of the Kondo hole. We have just proven
that this moment does not decouple from the conduction
band: �̃+

0 (ω) allows for another Kondo screening mechanism
that has previously been overlooked in the discussions of

FIG. 7. Noninteracting spectral functions of the �1 subspace of
the simplified Kondo hole model in 1d. (a) depicts the spectrum
of the hole orbital (light blue solid line) obtained from Eq. (44a)
and the wide-band approximation ρV =0

fh
(ω) in Eq. (45), whereas

(b) shows the spectral function of the even (+) combination of the
outer impurities (orange solid line) obtained from Eq. (44b) in com-
parison with the wide-band approximation in Eq. (49) (black dashed
line). The inset depicts a zoom of (a) around ω = 0. Parameters are
D/�h

0 = 100, ε
f
h /�h

0 = 1, ε+ = 0, εc = 0, and Vh = 10V .

the Kondo hole physics. For any finite orbital hopping th+,
ρ fh (ω) will be gapped close to ε

f
+ as can be seen in Eq. (48).

In Fig. 7, we illustrate the properties of the noninteracting
spectral functions of the �1 subspace for the 1d Kondo hole
model that is schematically depicted in Fig. 6(a). In order to
show comparable frequency intervals, we chose ε

f
h only very

moderately above the chemical potential, i.e., ε
f
h /�h

0 = 1, and
a particle-hole symmetric correlated orbital by ε

f
+ = 0. To

simulate the parameter regime of the interacting case with
TK,h ≈ �0,h 
 TK,l , we artificially enlarge the hybridization
matrix element to the Kondo hole orbital, Vh = 10V , and set
V1 = V2 = V for the noninteracting model. Figure 7(a) depicts
the full spectral function ρ fh (ω) of the Kondo hole (light
blue solid line) obtained from Eq. (44a) and the wide-band
approximation ρV =0

fh
(ω) in Eq. (45) for V = 0 (black dashed

line). The inter-orbital coupling th+/�h
0 = 0.1

√
2 induces a

sharp anti-resonance at ω = ε
f
+ = 0 into the spectral function

of the Kondo hole. This antiresonance illustrates the feedback
of the free f+ orbital onto the Kondo hole spectral function.
Figure 7(b) depicts the corresponding ρ f+ (ω) from Eq. (44b)
(orange solid line) in comparison with the wide-band approx-
imation in Eq. (49) (black dashed line). The relevant energy
scale, that describes the hybridization of the f+ orbital and,
consequently, the height and width of the spectral function
ρ f+ (ω), is given by �̃+

0 and depends on the onsite energy ε
f
h of

the Kondo hole. If we consider a decoupling of the correlated
orbitals from the conduction band, we can identify a two
stage process. In a first step a Lorentzian resonance curve is
generated in the vicinity of the single-particle energy of the
hole whose width is governed by �h. Now we switch on a
finite hybridization V that couples indirectly the f�1 orbital
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to the conduction band via the Kondo hole orbital. ρ fh (ω)
serves as effective density of states and an anti-resonance is
generated in ρ fh (ω) as in the local conduction electron DOS
of the resonant level model [72]. This physics prevails for
correlated orbitals as demonstrated in the next sections.

2. The interacting model: U > 0

In the following, we consider the three impurity model on
a 1d tight-binding chain as depicted in Fig. 6(a). We set the
parameters to �h

0 = �l
0 = �0, Ul = −2ε

f
l = 10�0, Uh = 0,

D = 10�0 and analyze the low-energy physics with regard on
the remaining two parameters ε

f
h and εc. We solve the model

by employing the NRG using the wide-band approximation
described in Sec. II F, a NRG discretization parameter of
λ = 3 and kept Ns = 6000 NRG states after each iteration.
The low-energy scale T0 governs the crossover from the last
unstable LM FP to the singlet strong coupling FP. We define
this temperature via the midpoint between the two FP residual
entropies:

Simp(T0) = 1/2kB ln(2). (53)

T0 corresponds to the Kondo temperature in the SIAM or
Kondo model which depends exponentially on the dimen-
sionless coupling constant g, TK ∝ exp(−1/g), where g = Jρ

factorizes in a product of the local Kondo coupling J and
the density of states ρ of a featureless conduction band. In
the previous section, we predict a Kondo screening of the
hole induced local moment mediated by the Kondo hole
orbital. Since the effective density of states seen by the mo-
mentum carrying orbital is proportional to (ε f

h )−2 according
to Eq. (52), we logarithmically plotted the normalized low-
energy scale T0(ε f

h )/T0(0) as a function of the on-site energy
of the hole orbital, (ε f

h /�0)2, for three different fillings of the
conduction band, adjusted by εc/D = 0, 0.1, and 0.2 to test
its exponential form. We added a fit of the εc = 0 data points
(light blue dots) to a function of the form

f
(
ε

f
h

) ∝ exp
[ − αhole

(
ε

f
h /�0

)2]
(54)

as thin black line to Fig. 8(a). While for ε
f
h /�0 � 1, the full

energy dependency of the effective ρ influences the abso-
lute value of T0 and deviation to the simplified fit function
is visible, we clearly see that the data agree perfectly with
the fit function for ε

f
h /�0 
 1. Within this effective Kondo

model, the prefactor αhole/�0 is a measure of its inverse ef-
fective Kondo coupling 1/J . The U dependency of the ratio
αhole/αSIAM is shown in Fig. 9, where αSIAM is the value that
we would expect for αhole if Eq. (54) corresponds to TK of a
SIAM with Coulomb interaction U and �0 replaced by �̃+

0 in
Eq. (52),

αSIAM = πU�0

8t2
h+

= U

�0

π

16
. (55)

Since αhole/αSIAM < 1 for small U/�0, the low-energy scale
T0 falls off more slowly as one would expect from a SIAM
with the coupling strength given by U/�̃+

0 in this limit,
whereas for large U/�0 � 20 it is vice verse. In order to
understand this deviation from the SIAM TK , we recall that
the decoupled orbital carrying the local moment is a even

FIG. 8. (a) Normalized low-energy scale T0(ε f
h )/T0(0) logarith-

mically plotted as a function of the squared hole orbital on-site
energy (ε f

h /�0)2 for three different fillings of the conduction band:
εc/D = 0 (light blue line points), 0.1 (black line points), and 0.2 (red
line points with triangles). The thin black line corresponds to a fit of
the εc/D = 0 curve to a function of the form exp[−αhole(ε f

h /�0)2],
which results in αhole = 1.4282, and the single triangle on the right-
hand side of the y axis indicates the value of T0(ε f

h = ∞)/T0(0) for
εc/D = 0.2. (b) expectation value of the hole occupation number
〈nh,σ 〉 for εc/D = 0.2 on the same interval for (ε f

h /�0)2 as in (a).

mixture of the original local moments in real space. Due
to the rotation into the parity eigenstate basis, the Coulomb
interaction matrix is rotated as well coupling charge and spin
in different parity subspaces. The delocalized Coulomb inter-
action in the parity orbital space yields a modification of the
prefactor αhole but does not change the screening mechanism.
For small U/�0 → 0, the Kondo temperature in the odd sub-
space defines the largest energy scale, such that the influence
of the nonlocal Coulomb matrix elements on the screening
in the even subspace can be assumed to be small. Moreover,
the local Coulomb interaction in the parity eigenstate basis is

FIG. 9. U dependency of the ratio αhole/αSIAM. For each value of
U , αhole results from a fit of the T0(ε f

h ) NRG data to the function in
Eq. (54) and αSIAM is given by Eq. (55).
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given by U ′ = U/2 and, consequently, αhole should be reduced
by a factor of 0.5 compared to αSIAM. This is in qualitative
agreement with our result of αhole/αSIAM ≈ 0.6 < 1. In the
opposite limit of strong Coulomb interaction U/�0 
 1, the
FM RKKY interaction JFM

RKKY dominates over the Kondo ef-
fect: JRKKY/TK 
 1. Hence, at intermediate temperature the
local moments couple to a triplet state and the system flows to
an unstable LM fixed point with Simp = kB ln(3). This triplet
state is than screened in a two stage process by the odd
and even electron continuum. If we assume these even and
odd conduction band channels to be identical and consider
the limit JRKKY/TK → ∞, the model can be mapped onto a
k = 2-channel spin S = k/2 Kondo problem with an reduced
Kondo coupling J ′

K = JK/k [73,74], where JK denotes the
original Kondo coupling of the individual spin S = 1/2 lo-
cal moments. Consequently, this implys αhole/αSIAM = 2 > 1
which, again, is in qualitative agreement with our result of
αhole/αSIAM ≈ 1.55 > 1 for U/�0 = 60. Note that JK of the
even and odd channel are quite different such that the large
spin S = 1 is screened in a two stage process and, there-
fore, the ratio of αhole/αSIAM = 2 that are reported in the
Refs. [73,74] is only a rough estimate. Now we extend the
investigation to the more general situation which includes
deviations from a symmetric conduction band, εc �= 0. Then,
the imaginary part of ��1 (−i0+) in Eq. (43) is given by

��1 = �[��1 (−i0+)] = �0

(
1

√
2εc/D√

2εc/D 2(εc/D)2

)
. (56)

Consequently, the hybridization matrix becomes nondiagonal
in case of εc �= 0 and a precursive diagonalization of ��1 is
necessary in order to obtain a independent bath description
as discussed in Sec. II F. Since the rank(��1 ) = 1 in the even
subspace is not affected by introducing a finite εc, still only
one of the two orbitals in the new basis couples to a conduc-
tion band channel. Nevertheless, the two stage screening of the
local moments prevails: The orbital which is coupled to the
conduction band forms a local Fermi liquid and the remain-
ing hopping matrix element, stemming from �[��1 (−i0+)]
replaces the hybridization term in the second effective SIAM.
In contrast to the εc = 0 case, however, the decoupled orbital
developing a local moment at intermediate temperature is a
mixture of the hole orbital and the even combination of the
interacting impurities. In this case, ε

f
h does influence both,

the effective ρ as well as the effective Kondo coupling, such
that the scaling g ∝ (ε f

h )−2 is modified. The dependence of
the low-energy scale T0 on the hole orbital on-site energy ε

f
h

becomes more complex for εc �= 0 as seen by the black and
red line points in Fig. 8(a). With increasing ε

f
h the low-energy

scale T0 still decreases, however, for large values of the on-site
hole orbital energy, T0(ε f

h ) saturates and approaches a constant
value for ε

f
h → ∞. In this limit, we can completely neglect

the hole orbital such that the problem is reduced to those
of a two impurity model, where the hybridization �e of the
even combination of the two orbitals with the even parity
states of the conduction band is given by �e = 2�0(εc/D)2.
Hence, small values of εc/D result in an exponentially small
low-energy scale T0 at which the local moment in the even
subspace gets screened by conduction band electrons. For

εc/D = 0.2, we added the value of T0(ε f
h → ∞)/T0(0) as sin-

gle red triangle on the right-hand side of the y axis of Fig. 8(a)
to illustrate its asymptotic value after removing the Kondo
hole orbital. The hole orbital occupation 〈nh,σ 〉 is shown in
Fig. 8(b) for εc/D = 0.2. Even if the hole orbital is nearly
unoccupied for ε

f
h /�0 = 10, its influence on the low-energy

scale T0 is immense since T0(ε f
h /�0 = 10)/T0(ε f

h → ∞) is of
the order of 106. This demonstrates that the screening of the
local moment in the even subspace is still driven by the RKKY
coupling to the hole orbital for ε

f
h /�0 = 10. In general, one

can not neglect the hole orbital solely for the reason that it
is nearly unoccupied. Recently, we demonstrated [44] that
the screening in MIAMs of the second kind is a collective
effect where the f orbitals also contribute via the dynamically
generated f -orbital hopping. From this point of view it is not
surprising that the influence of hole orbitals in such models
can be quite stronger than one would expect from the slightly
misleading Doniach picture [75], where each local moment
in a lattice can be screened independently. Pruschke et al.
[76] showed that in a Kondo insulator the effective medium of
the DMFT comprises a pseudogap conduction band coupling
function as well as a coupling to a noninteracting localized
f orbital. This demonstrates that the singlet formation in the
PAM is dominated by the effective f - f orbital interactions
and less by the conduction band reflecting the exhaustion
of conduction electron screening channels. The qualitative
difference to an onsite Kondo effect becomes apparent in the
local correlation function which opens up a hybridization gap.
The 1d three impurity problem is the simplest model to under-
stand and study the effect of RKKY-driven Kondo screening,
where the density of states of an appropriate f -orbital degree
of freedom serves as effective electron continuum to screen
the local moment of some other f orbital. In 1d, the rank of
the hybridization matrix of a MIAM is given by rank[�] � 2.3

Therefore the effective model consists of maximum two con-
duction band channels in the wide-band limit and 1d, such that
a MIAM with Nf � 3 is always a MIAM of the second kind
(more f orbitals than screening channels). If we introduce
a hole orbital and continuously shift the on-site energy ε

f
h

to infinity, we end up with a model where the number of f
orbitals is reduced by one, Ñ f = Nf − 1. Consequently, in
case of Nf = 3, we start with a MIAM of the second kind
(Nf > rank[�]) but end up with a MIAM of the first kind
(Ñ f = rank[�]) in 1d. Since the local moment fixed point can
only be stable in a MIAM of the second kind, this is the reason
why the low-energy scale T0(ε f

h ) in Fig. 8(a) does not vanish
in general (except for εc = 0 and ε

f
h = ∞ where rank[�] =

1 < Ñ f ). There are always enough conduction band screening
channels to completely compensate the local moments of the
f orbitals. However, even if the mechanism investigated in
this section is still relevant, the phase diagram of a more
general Kondo hole model in which the correlated orbitals are
not only placed at the nearest neighbors of the hole site might
be slightly different due to the class change of the MIAM.

3We have shown in Ref. [44] that the rank[�] is limited by the
number of Fermi wave vectors hence by 2 in 1d.
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FIG. 10. Schematic sketch of the model comprising an array of
Nf = 7 f orbitals on a 1d tight-binding chain (green). In the center
of the f -orbital array, we replace the correlated impurity (blue) by a
noninteracting hole orbital (red).

For this reason, we extend the simplest Kondo hole model
by adding additional correlated orbitals in the next section
to ensure Ñ f > rank[�] for the full parameter range to make
connection with the full lattice model.

B. Type I Kondo hole model: single hole surrounded
by three nearest-neighbor correlated orbitals

In the wide-band limit, we can solve any MIAM in 1d
using a two channel NRG due to rank[�] � 2: We are only
restricted by the dimension of the impurity Hilbert space that
grows exponentially with the number of f orbitals Nf . Making
use of the parity, total Sz component and total particle number
as conserved quantum numbers to divide the Hamiltonian in
block-diagonal subspaces, we are able to handle up to Nf =
7 f orbitals in such a way that we do not need to truncate
before the first Wilson site of each channel has been added.
A schematic sketch of the model discussed in this section is
depicted in Fig. 10 where the hole position is indicated by the
red dot. For the first 10 iterations, we kept Ns = 15 000 states
after each iteration and reduce to Ns = 10 000 for the remain-
ing ones. Further we set the NRG discretization to λ = 4 and
the bandwidth of the conduction electrons to D/�0 = 10.

1. Infinite on-site energy of the hole orbital

We first concentrate on the case of ε
f
h /�0 → ∞ where we

can completely neglect the hole orbital. In Fig. 11(a), we plot-
ted the entropy phase diagram as a function of the conduction
band center εc for three different values U = −2ε

f
l = 1�0

(black), 5�0 (green), and 10�0 (light blue). In each case,
we can differentiate between two phases. A local moment
(LM) phase emerges around εc = 0, which turns into a sin-
glet (S) phase once a critical value |εc| > εc

c (U ) is exceeded:
The larger the Coulomb interaction U , the larger the critical
value εc

c (U ). Our numerical results, however, show that the
critical value approaches an upper bound εc

c/D < α ≈ 0.22.
These results are in agreement with the analysis of the non-
interacting supercell calculations in Sec. II B: The supercell
operator d	k defined in Eq. (13) only decouples for εc = 0
such that εc

c must vanish for U → 0. Right at |εc| = εc
c , we

found a quantum critical point (QCP) of Kosterlitz-Thouless
(KT) type. For |εc| = εc

c + δ and small δ, the system flows
to an unstable local moment fixed point at intermediate tem-
perature, which crosses over to a strong coupling fixed point
on an exponentially suppressed low-energy scale T0. Apply-
ing a Schrieffer-Wolff transformation [51] at the intermediate
local moment fixed point would result in an effective single-
impurity Kondo model which flows to the strong coupling
fixed point on the scale of TK. The effective Kondo cou-

FIG. 11. NRG calculations for the model depicted in Fig. 10 with
the hole f orbital (red) removed: ε

f
h = ∞. (a) entropy phase dia-

gram as a function of εc/D for three different strengths of Coulomb
interaction U = −2ε

f
l = 1 (black), 5 (green), and 10 (light blue).

The local moment (LM) and strong coupling (SC) fixed point are
separated by a QCP of KT type. (b) Site-dependent local magnetic
moment of the individual f orbitals at temperature T/�0 = 10−8 for
εc = 0, the same values for U = −2ε

f
l as in (a) and the hole orbital

placed at site zero. The sign of the magnetic moment indicates the
local polarization of the Sz,i component.

pling vanishes right at εc = εc
c such that TK is exponentially

suppressed, typically for a KT type QCP. For large δ, the an-
tiferromagnetic RKKY interactions between the Ñ f = 6 local
moments dominate such that they lock into a inter impurity
singlet state (IIS) that decouples from the conduction band
electrons. Consequently, the intermediate LM FP disappears
and the RG directly crosses over from the high temperature
unstable FP that contains Ñ f = 6 independent spin-1/2 mo-
ments to the IIS FP with singlet ground state. However, the
SC and the ISS FP are adiabatically connected such that there
is no additional QCP between a Kondo screened singlet and a
RKKY-driven singlet, just as in the extensively studied TIAM
[49,50,66,67,77,78].

The interesting question arises how the local moment is
distribution in real space around the Kondo hole in the stable
LM fixed point regime around εc = 0. We know from Eq. (13)
in Sec. II B and the weakly interacting DMFT solution of Solli
and Schlottmann [30,31] that the magnetic moment should be
located solely on the correlated orbitals nearest to the hole site
in the limit of small U → 0, the wide-band limit V/D → 0
and PH symmetry. In contrast to that the DMRG calculations
of Clare C. Yu [34] demonstrate for the half-filled 1d Kondo
lattice, that the spin density induced by a single Kondo hole
extends beyond the nearest neighbors—see Fig. 3 in Ref. [34].
In order to show that the 1d MIAM with Ñ f = 6 interacting f
orbitals is already sufficient to bridge between complementary
limits and interpolate between the weakly interacting DMFT
solution and the strongly interacting Kondo limit using the
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wide-band approach we plotted the site-dependent magnetic
moment of the f orbitals, μ2

fi

〈Sz,i〉
|〈Sz,i〉| , for three different interac-

tion strengths U/�0 in Fig. 11(b). We define this quantity via
the local susceptibility,

μ2
fi

〈Sz,i〉
|〈Sz,i〉| = T χ fi . (57)

The local susceptibility was calculated by applying a very
small local magnetic field Hz/�0 = 10−10 to the f orbitals and
expressing

χ fi =
〈
n f

i,↑
〉 − 〈

n f
i,↓
〉

2Hz
, (58)

where n f
i,σ = f †

i,σ fi,σ . Note that we are restricted to tem-
peratures T 
 Hz to remain in the linear response regime.
Whereas for U/�0 = 1 the f orbitals next to the hole site
almost exclusively contribute to the spin density, an increasing
strength of interaction U leads to an increasing delocaliza-
tion of the induced spin density. The oscillatory behavior
in the site-dependent polarization of the individual magnetic
moments is caused by the Friedel oscillations of the RKKY
interaction and agrees perfectly with DMRG calculations
[34]. Alternatively we can start from the decoupled orbital d	k
defined in Eq. (13) in the context of the supercell discussion.
Inserting the 1d nearest-neighbor tight-binding parameters,
we perform the Fourier transformation to obtain the decoupled
real-space orbital in each supercell s, which emerges when a
single hole at site lh is considered:

ds,lh = 1√
2(t/V )2 + 1

( t

V
fs,lh−1 + t

V
fs,lh+1 − cs,lh

)
. (59)

In the wide-band limit, V/t → 0, this yields

ds,lh = 1√
2

( fs,lh−1 + fs,lh+1). (60)

Note that this orbital is independent of the supercell size in
particular for large supercells where the single Kondo holes
are so far apart that they can be considered as independent
impurities. We take the model depicted in Fig. 10 as a rep-
resentation of the impuirty physics with a large real-space
supercell and add to Nf = 6 sites a finite U . Within this
model, we calculate the effective magnetic moment of the d
orbital, μ2

d = T |χd |, in the same way as above. In Fig. 12,
we compare μ2

d with the total magnetic moment contributions
from all f orbitals, μ2

f ,tot = T |∑i χ fi |, as a function of U/�0.
In compliance with the supercell prediction for U = 0, the
total magnetic moment is located on the d orbital for small
interaction strengths, however, increasing U/�0 leads to a de-
creasing μ2

d , whereas the total magnetic moment stays nearly
constant. This implies that the local magnetic moment is trans-
ferred out of the decoupled d orbital to the other correlated f
sites. The small increase of μ2

f ,tot originates from the finite
temperature T/�0 = 10−8. Due to the small magnetic field
Hz/�0 = 10−10 we are restricted to temperatures T 
 Hz.
The spatial spreading of the magnetic moment upon increas-
ing of U can lead to an overlap between magnetic moments
originating from neighboring Kondo holes and, therefore, to
interaction between these different bound states. We study this

FIG. 12. NRG calculations for the model depicted in Fig. 10 for
εc = 0 and the hole f orbital (red) removed: ε

f
h = ∞. Local mag-

netic moment as a function of the Coulomb interaction U = −2ε
f
l at

temperature T/�0 = 10−8. Comparison between the magnetic mo-
ment μ2

d of the d orbital defined in Eq. (60) and the sum of the local
magnetic moment of the individual f orbitals, μ2

f ,tot.

effect in Sec. IV. Note that only the f orbitals contribute to the
total magnetic moment in the wide-band limit employed here.
Consequently, μ2

f ,tot is identical to Wilson’s definition [45,56]
of μ2 that is calculated by the difference of the total 〈[Stot

z ]2〉 of
the system with and without the impurities present. Neverthe-
less, for finite V/D some of the noninteracting c orbitals will
also contribute to the magnetic moment of the ground state.
This can be seen in Eq. (59) and has been shown for the 1d
Kondo lattice by Clare C. Yu [34]. Due to the mapping onto
an effective low-energy Hamiltonian required to solve the 1d
MIAM via NRG, however, we can only access the wide-band
limit—see Sec. II F and the extensive discussion in Ref. [44].

2. Finite on-site energy of the hole orbital

For the rest of this section, we now explicitly include the
hole orbital with finite ε

f
h /�0 in our NRG calculations and set

the Coulomb interaction to U = −2ε
f
l = 10�0 for all other

six correlated orbitals depicted in Fig. 10. We plotted the
low-energy scale T0 as a function of the hole orbital on-site
energy ε

f
h on the interval [0,9] for three different conduc-

tion band centers: εc/D = 0.1 (red line points), εc/D = 0.15
(light blue line points) and εc/D = 0.18 (black line points) in
Fig. 13(a). Since εc/D < εc

c/D ≈ 0.195 is always below the
critical value, the LM fixed point is stable for ε

f
h → ∞. The

low-energy scale T0 at which the LM fixed point crosses over
to the singlet fixed point vanishes exponentially at a critical
ε

f
h,c(εc) (not shown for εc/�0 = 0.18 since here ε

f
h,c/�0 > 9):

The larger εc the larger the critical ε
f
h,c, at which the LM

FP becomes the stable FP and ε
f
h,c → ∞ for εc = lim

δ→0
εc

c − δ.

Figure 13(b) depicts the 1d phase diagram at a fixed temper-
ature T/�0 = 10−15 as a function of εc (x axis) and ε

f
h (y

axis). The black line points separate a local moment (LM)
phase from a singlet (SC) phase, and the dashed vertical lines
indicate the phase boundary at |ε f

h | = ∞. The point symmetry
of the phase diagram with regard to ε

f
h = εc = 0 reflects the

fact that the parameters of the correlated f orbitals are chosen
to be PH symmetric. Although all SC phases are adiabatically
connected we partitioned the SC phase area into two regions:
whereas the SC I phase refers to the singlet phase for which
|εc| < εc

c holds, the SC II phase indicates a singlet phase with
|εc| > εc

c . Since a Kondo hole is introduced by charge neutral
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FIG. 13. NRG calculations for the 1d MIAM with Nf = 7 f
orbitals as depicted in Fig. 10 and U = −2ε

f
l = 10�0. (a) Low-

energy scale T0 as a function of the hole orbital on-site energy ε
f
h

for three different fillings of the conduction band, εc/D = 0.1 (red
line points), 0.15 (light blue line points) and 0.18 (black line points).
(b) T/�0 = 10−15 phase diagram as a function of εc (x axis) and ε

f
h

(y axis). The black line points separate a local moment (LM) phase
from a singlet (SC) phase and the dashed vertical lines indicate the
phase boundary at |ε f

h | = ∞. The phase SC I (II) denotes points in
the phase space that change to the LM phase (stay in the SC phase)
for |ε f

h | → ∞.

substitution, the band center of the host remains essentially
unaltered and one would move vertically in the phase diagram.
The two regions of the SC phase can be distinguished by the
difference in the screening of the hole induced local moment
when artificially removing the hole orbital, i.e., |ε f

h | → ∞.
Independent of the hole orbital filling, the hole orbital is
responsible for the screening of the induced local magnetic
moment in the SC I phase via virtual excitation. Eliminating
this orbital would immediately stabilizes the LM moment. In
the region SC II, however, T0 becomes very weakly dependent
on ε

f
h outside of the phase boundary, and asymptotically the

local moment is always screened after eliminating the hole
orbital.

C. Type II Kondo hole model: Interaction
induced Kondo coupling

In this section, we study two type II Kondo hole models
which are schematically depicted in Fig. 14. For both models
in Figs. 14(a) and 14(b), the modified Lieb-Mattis theorem for
U > 0 in Eq. (15) predicts a finite magnetic moment of the
finite size cluster CL0 (solid black rectangle) at PH symmetry,
Scl0

z = 1/2, that is AF coupled (Jeff
K > 0) to at least one of the

remaining electron continuum such that the ground state of
the full models is a singlet, Stot

z = Scl0
z − 1/2 = 0. However,

even after successfully predicting the sign of Jeff
K,A/B using

Eq. (16), its order of magnitude and, therefore, the corre-

FIG. 14. Schematic of two type II Kondo hole models in 1d.
The model in (a) comprises an even number of Nf = 4 f orbitals,
whereas the model in (b) comprises Nf = 5 f orbitals. For U > 0
both finite size cluster (black solid rectangle), CL0, carry a local
magnetic moment with Scl0

z = 1/2, according to Eq. (15). Applying
Eq. (16), CL0 of the model in (a) is AF coupled to both sides,
CL0 of the model in (b) is FM coupled to the left and AF to the
right continuum. However, in both cases, the local cluster magnetic
moment gets screened on a low-energy scale by electron continuum.

sponding Kondo temperature, remains unknown. Since the
supercell analysis in Sec. II B predicts a complete decoupling
of the momentum carrying orbital, Jeff

K,A/B(U = 0) = 0 must
hold, setting a lower bound to the noninteracting limit, U →
0. Consequently, Jeff

K,A/B seems to increase with increasing
Coulomb interaction U . Note that Jeff

K,A/B(U = 0) = 0 does not
contradict the modified Lieb-Mattis theorem since this is only
applicable in the strongly interacting Kondo limit U/�0 
 0
where well defined local moments exist.

To quantify the dependence of the effective coupling Jeff
K,A/B

on the strength of interaction U , we solved both models in
Fig. 14 in the wide-band limit using the NRG. We enforced
PH symmetry by setting εc = 0, U = −2ε f and calculated
the low-energy scale T0 defined in Eq. (53). Figure 15 de-
picts the results of T0 for the Nf = 5 model (light blue line
points) and the Nf = 4 model (black line points) as a func-
tion of U/�0. As expected from the supercell analysis, T0

vanishes for both models in the limit U → 0, which corre-
sponds to lim

U→0
Jeff

K,A/B(U ) → 0. T0 decreases exponentially for

the Nf = 5 model in the strongly interacting limit, U/�0 
 1,
but stays nearly constant for the Nf = 4 model, as can be
seen in the inset of Fig. 15(a) where we plotted the same
data but on a larger scale for T0. The different behavior of
T0 for U/�0 
 1 reflects the fact, that both models have a
different fixed point structure. In this limit the RKKY inter-
action defines the largest energy scale and, consequently, the
Nf = 4 f orbitals form a ground state singlet (there are equal
Nf ,A and Nf ,B sites) which decouples from the rest of the
system. Since JRKKY ∝ 1/U in the wide-band limit [44,50],
this energy scale depends only weakly on U . In contrast to that
the Nf = 5 cluster ground state is a Kramers Sz = 1/2 mul-
tiplet screened by conduction electrons on the exponentially
suppressed Kondo temperature TK ∝ exp(−αU/�0). Assum-
ing that a Kondo effect with a yet to determine value for Jeff

K
governs the low-energy scale T0 in the weak coupling limit, we
plotted the data from Fig. 15(a) on a double logarithmic scale
in Fig. 15(b) and added a fit (orange and black solid lines) to
the functional form:

T0 ∝ exp[−(β�0/U )2] for Nf = 4, (61)

T0 ∝ exp[−(γ�0/U )3] for Nf = 5. (62)

The fit demonstrates a perfect agreement between the NRG
results and Eqs. (61) and (62) which have the typical form of
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FIG. 15. Low-energy scale T0 as a function of the Coulomb inter-
action U/�0 for the two models which are schematically depicted in
Fig. 2(a) (black line points) and (b) (light blue line points). The inset
in (a) depicts the same data as the main plot but on a larger scale for
T0. In (b), the same data are plotted on a double logarithmic scale
and we added a fit to a function of the form T0 ∝ exp[−(βU/�0)2]
(orange line) for the model comprising Nf = 4 f orbitals and T0 ∝
exp[−(γU/�0 )3] (black line) for the model comprising Nf = 5 f
orbitals. The parameters of the model are chosen to be PH symmetric,
i.e., εc = 0 and U = −2ε

f
l .

a Kondo scale: In this regime the Kondo screening dominates
over the RKKY interaction. Comparing this result with the
textbook expression for the Kondo temperature of the SIKM,
TK ∝ exp(−1/JKρ0), we can extract the effective Kondo cou-
plings:

Jeff
K ∝ (U/�0)2 for Nf = 4, (63)

Jeff
K ∝ (U/�0)3 for Nf = 5. (64)

Applying a Schrieffer-Wolff transformation [51] to the SIAM
in the strongly interacting limit, U/�0 
 1, results in a
Kondo coupling JSIAM

K ∝ �0/U and, therefore, our results in
Eqs. (63) and (64) are very counter intuitive: In depleted
multi-impurity models vanishingly small strengths of inter-
actions can lead to strong correlation effects not accessible
to perturbative approaches. The supercell analysis predicts
a single orbital disconnected from a free electron gas rep-
resenting an effective electron continuum. In the wide-band
limit, V/D → 0, this is equivalent to the appearance of a
completely decoupled f̃ orbital in the eigenbase of ��(−i0+)
as discussed in Sec II F. Whereas a weak interaction U/�0

is a small perturbation to a free electron gas or a resonant
level model resulting in an effective Fermi liquid, the electrons
in the disconnected bound f̃ orbital are strongly correlated

FIG. 16. Low-energy scales for the Nf = 4 model depicted in
Fig. 14(a). (a) depicts the RKKY interaction J̃RKKY

i j (U ), calculated
for the decoupled finite size cluster in Eq. (40), plotted against the
dimensionless parameter x = UB(UA − U ′

A)/�2
0 . The different line

points indicate different combinations for the intraorbital Coulomb
interactions UB and UA for the f orbitals on the B and A sites and the
interorbital Coulomb interaction U ′

A between the f orbitals on the A
sites. The solid line is fit to a function of the form f (x) ∝ x for small
x. (b) Low-energy scale T0 for the same parameters as used in (a) but
with the hybridization in Eq. (41) turned on. The black line shows the
fit of one of the curves to a function of the form f (x) ∝ exp(−α/x).

for βU > 1 enforcing single occupancy and a local magnetic
moment. Finding a singlet phase by the NRG for U > 0 sug-
gests an U induced effective RKKY coupling JRKKY(U )	S	Sd

between the electron spin in the bound state, 	Sd , and spin 	S
in the orbital that couples to the conduction band. Then, this
cluster RKKY interaction can be identified with the effective
Kondo coupling JRKKY(U ) ∝ Jeff

K (U ). We quantify this hy-
pothesis in the Nf = 4 model depicted in Fig. 14(a) by solving
the decoupled cluster using exact diagonalization first, i.e.,
setting ��(−i0+) = 0 and include the effect of ��(−i0+)
in a second step by the NRG. While for U = 0 the decoupled
d orbitals result in a finite degeneracy of the cluster ground
state, we find a unique cluster singlet ground state for U > 0.
Since the cluster energy spectrum is discrete, and JRKKY(U )
is the smallest energy scale for U/�0 � 1, we determine this
scale via the cluster crossover energy scale T cluster

0 using the
definition in Eq. (53) and setting JRKKY(U ) = T cluster

0 which
is correct up to an universal but unknown prefactor of O(1).
To remain as general as possible but still maintain parity
symmetry we differentiate between the Coulomb interaction
UA and UB for f orbitals placed on A and B sites, respectively.
We also include an additional interorbital Coulomb interaction
U ′

A between the f orbitals on the A sites neighboring to the
hole site whose purpose comes apparent below.

JRKKY(U ) extracted from the entropy crossover scale
T cluster

0 of the decoupled finite size cluster is depicted in
Fig. 16(a) as a function of the dimensionless parameter x =
UB(UA − U ′

A)/�2
0 for three different cases. We fixed two
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parameters or linear combinations and altered one of them. We
find universality for JRKKY(U ) = f (x) and a linear relation
JRKKY(U ) ∝ x for small values of x. This proves that the
cluster singlet formation is driven by a complex interaction
patterns that involve all Coulomb interactions. Analyzing the
single-particle cluster orbitals indicates that there is no direct
Coulomb interaction between the decoupled local moment
and the spin that couples to one of the effective conduction
bands. The interaction must be mediated by a higher order
perturbation process by orbitals with different symmetry: All
four orbitals contribute and the resulting effective spin-spin
coupling in the low-energy subspace of the cluster which
is very weak as demonstrated in Fig. 16(a). Therefore it is
not surprising to find Jeff

K ∝ U 3 for Nf = 5. In Fig. 16(b),
the corresponding low-energy scale T0 of the full MIAM is
plotted, i.e., with the hybridization in Eq. (41) turned on.
The fit of one of the curves in Fig. 16(b) to a function of
the form f (x) = exp(−α/x) (black line) demonstrates that the
effective Kondo coupling corresponds to JRKKY(U ) of the
decoupled finite size cluster in Fig. 16(a). Now the purpose
of the additional interaction U ′

A becomes apparent: It con-
trols a KT type quantum phase transition induced by a sign
change of x. The sign of the effective Kondo coupling is
determined by the sign of UA − U ′

A: For UA < U ′
A, the cou-

pling becomes ferromagnetic such that the LM FP is stable,
as proven by the NRG. This case can be easily understood
in real space. For UA < U ′

A, the singly occupancy of the f
orbitals neighboring the hole site gets suppressed, resulting
in a singlet state ∝(|0, 2〉 + |2, 0〉) where each of the orbitals
is either empty or doubly occupied, which decouples from
the remaining system. Removing these f orbitals results in
an effective two impurity problem for which the Lieb-Mattis
theorem in Eq. (15) predicts a stable LM FP: Stot

z = 1/2. A
similar analysis of the cluster eigenspectrum can be performed
for the Nf = 5 cluster, leading to Jeff

K ∝ U 3. This agrees with
the fitting function to T0(U ) for this cluster size as depicted in
Fig. 15(b). The low-temperature properties of Type II Kondo
hole models are very similar to the two stage Kondo effect
in T-shaped double quantum dot systems (DQDs) [79–82],
where only one of two quantum dots is directly coupled to
a conducting lead. If the Kondo temperature of the quantum
dot that couples to the lead is larger than the coupling to
the second dot, the latter is Kondo screened by the heavy
quasiparticles of the prior formed Fermi liquid, corresponding
to the small U/�0 limit in the type II Kondo hole models.
The structure of the stable FP at zero temperature corresponds
to that of a free electron gas since each screening process
removes one electron from the respective continuum resulting
in a Fermi liquid where an even number of electrons have
been removed. Hence, the FP does not change in the opposite
limit of large inter dot coupling in the DQDs and large U/�0

(large RKKY interaction) in the type II Kondo hole model
respectively, where a inter impurity singlet is formed that
decouples from the continuum.

IV. HOLE-HOLE INTERACTIONS: TYPE I
AND TYPE III KONDO HOLE MODELS

Local moments coupled to an environment comprising
delocalized electrons typically interact with each other via

FIG. 17. Schematic of two 1d MIAMs with two Kondo holes
placed inside the impurity array. (a) if the holes are separated by
an odd number of lattice spacings, �Rh = (2n + 1)a, the ground
state for U > 0 is always a singlet, which indicates AF interactions
between the hole induced magnetic moments. (b) If the holes are
separated by an even number of lattice spacings, �Rh = (2n)a, the
ground state for U > 0 is a triplet if the couplings Jeff

K,A/B are FM,
which demonstrates FM interactions between the hole induced mag-
netic moments.

the indirect RKKY interaction, which is mediated by these
delocalized electrons. Since electrons of all energy scales
contribute to the RKKY interaction, the environment not nec-
essarily needs to be metallic, even if the leading contributions
in case of an metallic environment stems from Fermi surface
electrons.

In case of local moments induced by Kondo holes, this
RKKY mechanism may break down since the moment carry-
ing orbitals can decouple from the environment, as shown by
the supercell analysis in Sec. II B. On the other hand, the on-
site Coulomb interaction as well as a single-particle hopping
between the f orbitals lead to a spreading of the hole induced
magnetic moment as illustrated in Fig. 11(b). The magnetic
moments originating from different Kondo holes may overlap
and, consequently, interact directly with each other. For the
weakly interacting limit and PH symmetry, Schlottmann has
shown [52], using a nearest-neighbor tight-binding dispersion
for the conduction band electrons, that two Kondo holes do
only interact if they are placed on adjacent sites. This rigorous
result can already be understood within our noninteracting su-
percell analysis. According to the argumentation in Sec. II B,
introducing a second hole per supercell leads to another flat
band and a corresponding decoupled orbital d	k,2, unless the
second hole is placed on a site that contributes to d	k,1. How-
ever, in case of a nearest-neighbor tight-binding description,
this does only happen if the two holes are placed on neighbor-
ing sites.

On the other hand, the question concerning interactions be-
tween different Kondo holes in the strongly interacting limit,
U/�0 
 1, is closely related to the modified Lieb-Mattis the-
orem. In case of PH symmetry, two hole orbitals which are
placed on different sites of a bipartite sublattice, as shown in
Fig. 17(a), always lead to a singlet ground state for U > 0
(Stot

z = Scl0
z = 0), whereas the supercell analysis predicts two

decoupled orbitals d1 and d2 per unit cell in the noninteract-
ing limit. If the holes are placed on the same sublattice, the
local cluster ground state is given by a triplet with Scl0

z = 1
for U > 0, which is stable in case of FM couplings Jeff

K,A/B

(Stot
z = Scl0

z = 1). An example for such an situation is depicted
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FIG. 18. Zero-temperature spin correlation 〈	Sd1
	Sd2 〉 of the d or-

bitals defined in Eq. (60) as a function of the distance �Rh between
the hole sites for three different strengths of Coulomb interactions,
U/�0 = 2 (black line points), 5 (light blue line points), and 10 (red
line points). The parameters of the model are chosen to be PH
symmetric, i.e., εc = 0 and U = −2ε

f
l .

in Fig. 17(b). Consequently, we expect that an effective AF ex-
change interaction Kex

hh < 0 between holes is generated by the
RG in the low-energy regime when the holes are separated by
an odd number of lattice spacings, �Rh = (2n + 1)a, whereas
holes separated by an even number, �Rh = (2n)a, should be
FM coupled, Kex

hh > 0 in a 1d lattice. In Sec. III B 1, we have
demonstrated that the magnetic moment, which is induced
by a single hole in a finite size impurity array, is located
on the d orbital defined in Eq. (60) in the limit U/�0 → 0,
which corresponds to the Fourier back transformation of the
supercell d	k,lh

orbital in Eq. (13) with one hole per unit cell.
Inserting another hole in the finite size impurity array, the
same procedure results in two decoupled di orbitals in this
case, each given by Eq. (60) in the wide-band limit. To verify
the predictions made by the modified Lieb-Mattis theorem,
we calculated the zero temperature spin correlation 〈	Sd1

	Sd2〉
as a function of the distance �Rh and plotted the results
in Fig. 18 for three different Coulomb interaction strengths
U/�0 = 2 (black line points), 5 (light blue line points), and
10 (red line points). In order to ensure that Stot

z = Scl0
z is

always fulfilled, such that the influence of couplings Jeff
K,A/B

can assumed to be small, we always placed the holes at the
left and right end of the finite size impurity array and change
the distance �Rh by varying the total number Nf of f orbitals,
as shown in Fig. 17(a) for Nf = 6 and Fig. 17(a) Nf = 7. The
components m of the spin operators 	Sdi are defined as usual,
Sm

di
= 1

2

∑
α,β d†

i,ασ m
α,βdi,β , where σ m is the mth Pauli matrix.

For all three values of U/�0, the spin correlation oscillates
between FM (>0) for even �Rh and AF (<0) correlations
for odd �Rh and, consequently, matches the predictions made
by the Lieb-Mattis theorem. The FM correlations are nearly
U independent and, except for �Rh = 2a, from the distance
between the hole sites. For �Rh = 2a, both d orbitals share
the same f orbital located between the hole sites such that they
are not orthogonal in this case, {d†

1 , d2} �= 0 causing the large
correlation 〈	Sd1

	Sd2〉 = 0.35. We orthogonalization of the two
linear independent orbital using the parity, d̃± = 1/N±(d1 ±
d2), where N+ = √

3 and N− = 1 ensure normalization, we
obtain 〈	Sd̃1

	Sd̃2
〉 = 0.25 (not shown). For all other distances,

{d†
1 , d2} = 0 holds and the correlation reaches the maximal

value of 〈	Sd1
	Sd2〉 = 0.25 for free FM aligned local moments.

In contrast to this, the AF correlations slightly decrease with
increasing U/�0 and increasing distance �Rh. There are two
effects which contribute to this reduction of 〈	Sd1

	Sd2〉 for odd
�Rh. (i) The Coulomb interaction U leads to a deformation of
the effective d orbital that carries the local moment induced
by a single hole, as discussed in the context of Fig. 12. Conse-
quently, the operators 	Sdi are not the exact spin operators of the
hole induced magnetic moment for U > 0. (ii) Since we are
studying holes in a finite size impurity array we need to take
into account the couplings Jeff

K,A/B between the individual hole
induced magnetic moments and the continuum. For odd �Rh,
the magnetic moment induced by the left hole is coupled AF
to the continuum on the right site of the finite size cluster and
vice verse. Therefore the Kondo effect can reduce the size of
the corresponding magnetic moment and 〈	Sd1

	Sd2〉 respectively.
However, this effect plays only a minor role. The effective
Kondo coupling and the direct exchange interaction are both
generated by an finite overlap of the magnetic bound states
which falls of exponentially [34] with increasing distance
from the hole site. Since the distance between the holes is
smaller than the distance between the left (right) hole and
the right (left) continuums, the direct exchange interaction is
much larger than the effective Kondo coupling, Kex

hh 
 Jeff
K,A/B.

Note that, due to the Lieb-Mattis theorem, the correlation
between the hole induced magnetic moments does not decay
in the full lattice problem at zero temperature and oscillates
for �Rh > 2a between 0.25 and −0.75. Any finite exchange
interaction Kex

hh �= 0 leads to a maximal correlation since the
free local moments are infinite susceptible at zero tempera-
ture. This is equivalent to the two impurity Kondo model with
FM Kondo couplings, where the Kondo effect is absent such
that the RKKY interaction defines the only energy scale at
T = 0—see Fig. 5 of Ref. [83]. However, a finite temperature
T introduces a natural cutoff energy scale such that the ratio
of Kex

hh/T determines the strength of the spin correlation. Since
the physical mechanism that induces the exchange interaction
Kex

hh is different from the conventional RKKY mechanism, we
still need to analyze the dependence of Kex

hh on the model
parameters, especially with regard to the Coulomb interaction
U . In order to calculate the absolute value of the energy
scale Kex

hh via the impurity induced entropy Simp in analogy
to the low-energy scale T0 in Eq. (53), we need to differenti-
ate between FM and AF couplings. Assuming the exchange
interaction to be larger than the effective couplings Jeff

K,A/B but
smaller than all other energy scales of the System, the last
unstable intermediate fixed point contains two independent
local moments and, consequently, Simp = kB ln(4). Reducing
the temperature further, the sign of Kex

hh determines the ground
state multiplet, whereas AF interactions Kex

hh lead to a singlet
ground state with Simp = kB ln(0), FM interactions cause a
triplet ground state with Simp = kB ln(3). Therefore we define
the low-energy scale of the exchange interaction Kex

hh by

Simp
(
T AF

0

) = 1
2 kB[ln(4) + ln(0)], (65)

where T AF
0 corresponds to Kex

hh > 0 and

Simp
(
T FM

0

) = 1
2 kB[ln(4) + ln(3)], (66)
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FIG. 19. Low-energy scales for the models depicted in Fig. 17
but with �Rh = 3a (light blue line points) and �Rh = 4a (black line
points). In case of �Rh = 3a, the ground state is a singlet such that
the low-energy scale is given by T AF

0 defined in Eq. (65), whereas it is
given by T FM

0 defined in Eq. (66) for a triplet ground state for �Rh =
4a. The inset shows the data for �Rh = 3a on a logarithmic scale for
T AF

0 together with the fit function f (x) = axb for a = 0.0025 and b =
1.6169. The parameters of the model are chosen to be PH symmetric,
i.e., εc = 0 and U = −2ε

f
l .

where T FM
0 corresponds to Kex

hh < 0. The results for T AF
0

and T FM
0 versus U , calculated for �Rh = 3a and 4a, re-

spectively, are depicted in Fig. 19 (light blue line points for
T AF

0 , �Rh = 3a and black line points for T FM
0 , �Rh = 4a).

The overall curves of T AF
0 and T FM

0 matches those of T0 for
the Nf = 4 and Nf = 3 model in Fig. 15(a). For small U/�0,
the low-energy scales T AF

0 and T FM
0 increase with increasing

Coulomb interaction. However, in the strongly interacting
limit, U/�0 
 1, T AF

0 corresponds to the AF RKKY scale
∝1/U since the model consists of an even number of Nf = 4
orbitals, whereas T FM

0 can be linked to the exponentially sup-
pressed Kondo temperature due to an odd number of Nf = 5
orbitals in the model. These different mechanisms are also
encoded in the different NRG FP spectra for the two cases (not
depicted here.) In the weakly interacting limit, U/�0 → 0, the
exchange interaction Kex

hh vanishes as expected from the super-
cell analysis in Sec. II B. The inset shows the T AF

0 data on a
logarithmic scale and a corresponding fit to a power law func-
tion of the form f (x) = axb, with a = 0.0025 and b = 1.6169.
In contrast to the conventional RKKY interaction which falls
of as 1/U in the wide-band limit, Kex

hh increases strongly with
increasing Coulomb interaction. Note that we can not resolve
the small energy scale for U/�0 < 1.8 and �Rh > 3. Hence
we can not quantify the dependence of Kex

hh on the distance
�Rh, however, |Kex

hh (�Rh = 3)| > |Kex
hh (�Rh = 4)| is fulfilled

for all U . As the wave function of the magnetic bound states
falls of exponentially [34] and Kex

hh is proportional to the over-
lap of different magnetic bound states, we expect Kex

hh to fall
of exponentially with increasing distance �Rh.

V. VIEWPOINT ONTO THE KONDO HOLE PHYSICS
PUZZLE IN Ce1−xLaxPd3

Stable magnetic bound states induced by charge neutral
substitution of single Ce by La are expected to exist in

systems whose parent compound shows Kondo insulating
behavior [30]. However, in experiments [11–13,15–17] with
a finite hole concentration x these local bound states have
not been observed so far since long-range interactions be-
tween the bound states, which are already present at the
lowest experimentally accessible x (for example, x = 0.006
in (Ce1−xLax )3Bi4Pt3 [11]), lead to the formation of a very
narrow Kondo hole band in the hybridization gap.

The long-range nature of the interaction between the hole
induced bound states in Kondo insulators is in qualitative
agreement with our results for Kondo holes in finite impurity
arrays. As discussed in the context of Fig. 11(b), the hole
induced magnetic moment is increasingly delocalized with
increasing Coulomb interaction U and spreads over several
lattice spacings in the strongly interacting limit U/�0 
 1.

In contrary, the insertion of Kondo holes in heavy-fermion
materials, such as Ce1−xLaxCu6 [14] are mainly discussed as
examples for a smooth crossover from a lattice material to
single-impurity physics [5,14,70].

Pristine CePd3 is a heavy-fermion metal that is considered
to be close to a Kondo insulator but still maintains Fermi
liquid properties at low temperatures. Therefore the electronic
degrees of freedom relevant for the low-energy physics should
violate PH symmetry and the filling of the conduction bands
must deviate from half-filling, however, the model parameters
are at the brink of becoming a Kondo insulator. Substituting a
small amount of nonmagnetic La for the Ce in Ce1−xLaxPd3

leads to a logarithmic increase of the resistivity [6,7] with
decreasing temperature after the material is cooled far below
the lattice coherence temperature of CePd3 typical for a sys-
tem with magnetic impurities in a metal. Early on a negative
magnetoresistance was taken as another indication that the
second resistively increase is connected to secondary Kondo
effect [7] but the microscopic origin of the local moment
formation remain a puzzle.

Connecting our investigation of Kondo hole physics with
experiments, the main message is that Kondo hole insertion
generate stable local moments near the PH symmetric point
(which corresponds to Kondo insulators in the PAM) that can
be screened by two mechanisms which require PH asymme-
try: (i) hybridizing the localized single-particle state with the
itinerant electrons due an asymmetric conduction band and (ii)
indirect coupling via the unfilled La 4 f orbitals. We showed in
Fig. 13 that taking into account a finite orbital energy ε

f
h < ∞

of the unoccupied La 4 f orbitals and a band center εc away
from a half-filled band yields a Kondo screening of the Kondo
hole induced local moment.

The question of whether exotic physical properties are
observable in material is directed linked to the question of
separating the energy or temperature scales of a two-step
screening mechanism. First a formation of a correlated HF
or Kondo insulator phase is required and then, at much lower
temperatures, the screening of the Kondo hole induced local
moments can occur.

In real materials, the PH symmetry in the conduction bands
is broken even for half-filling. Furthermore, La substitution
changes the band structure of the conduction band slightly as
shown by LDA calculations [17] due to the Lanthanide con-
traction. Instead of introducing a complicated tight-binding

045115-21



FABIAN EICKHOFF AND FRITHJOF B. ANDERS PHYSICAL REVIEW B 104, 045115 (2021)

band structure adequate for only one material, we use the
value for the band center εc as a control parameter for the
degree of PH symmetry breaking.

Although a finite size MIAM does not include the
full lattice physics, we have demonstrated [44] that major
self-screening mechanism of magnetic moment is correctly
captured already in a MIAM of second type. Pruschke et al.
[76] showed already with the DMFT for the PAM that the
singlet formation in the Kondo insulators is not due to the
Kondo effect since the conduction band as well as continuum
of effective media shows a pseudogap DOS but caused by the
effective f - f orbital hybridization that is explicitly included
in the matrix ��(0) in our mapping.

Since we believe that the Kondo hole physics in the dilute
limit is locally driven and independent of the details of the
conduction band other than PH symmetry breaking, we used
a 1d MIAM representation in order to ensure that the number
of screening channels are less than the number of correlated
orbitals in the vicinity of the Kondo hole to mimic the physics
of a larger system. For our NRG calculation, we use the
MIAM with Nf = 7 f orbitals shown in in Fig. 10.

We need to define the appropriate low-energy scales of
the MIAM to make connection with the experiment. Within
a DMFT(NRG) it has been shown that the lattice coher-
ence temperature is identical to the Kondo temperature of
the effective site up to some universal number depending on
the definition [84]. Using that knowledge, we extracted the
crossover scale to the low-energy singlet fixed point in the
homogenous model where all Nf = 7 f orbitals are identical
with U = −2ε f = 10�0 as measure for the lattice coherence
temperature T corr in our approach and neglect the DMFT
lattice correction.

To connect the low-temperature scale of the fully cor-
related array of Nf = 7 correlated orbitals with those of
the Nf = 6 Kondo hole MIAM, we plotted the temperature-
dependent impurity entropy Simp for the model with hole (light
blue line points) and without hole (black line points) for three
different values εc/D = 0.15, 0.181, and 0.25 in Fig. 20(a). In
the full MIAM the Nf spin-1/2 local moments are quenched
on a single low-temperature crossover scale T corr as expected
from a Kondo lattice problem. This crossover scale is nearly
independent of the band center εc for the full MIAM. In the
Kondo hole case we, however, observe three different regimes.
For large εc, all Nf − 1 local moments are screened on the
same energy scale T1 that qualitatively agrees with that of the
full MIAM. For εc ≈ 0.18, only Nf − 2 local moments are
screened at on a similar scale than the full problem, and a
unstable LM S = 1/2 FP emerges whose local moment started
to disappear on a secondary crossover scale T0. This LM FP is
stable for εc = 0.15.

To distinguish between the potential two energy scales in
the present of of the Kondo hole, we define an additional low-
energy scale T1,

Simp(T1) = 1/2kB[ln(2) + ln(3)], (67)

which governs the crossover to the unstable S = 1/2 LM
FP—see also Fig. 20(a). ln(3) has no physical meaning and
could be replaced by any other reasonable value, since T1

only defines a crossover scale. Per definition, the relation

FIG. 20. NRG calculations for the 1d model depicted in Fig. 10
with Nf = 7 f orbitals. The properties with index ‘hole’ were cal-
culated for an uncorrelated hole orbital (red in Fig. 10), Uh = 0
and ε

f
h /�0 = 25, in the center of an otherwise strongly correlated

impurity array, Ul = −2ε
f
l = 10�0, whereas all properties indicated

by the index “corr” correspond to the homogenous model where all
Nf = 7 f orbitals are identical with U = −2ε f = 10�0. (a) Impurity
induced entropy Simp as a function of the dimensionless temperature
T/�0 for the model with a hole orbital (light blue line points) and
without hole orbital (black line points) for three different values
εc/D = 0.15, 0.181, and 0.25, indicated by different types of points.
(b) Ratio T hole/T corr for the low-energy scales T0 (light blue line
points), defined in Eq. (53), and T̃1 = κT1 (black line points), defined
in Eq. (67), plotted against the band center εc/D.

T0(εc) < T1(εc) always holds. In the large εc regime, where
there is only one crossover scale T0(εc) ∝ T1(εc) holds while
for intermediate εc the temperatures T0 and T1 refer to phys-
ically different scales. Therefore we introduce the scaling
factor κ = T0(εc/D = 0.25)/T1(εc/D = 0.25) = 0.462 that
compensates the mismatch between T1 and T0 at εc/D = 0.25
where both refer to the same energy scale, and introduce
the rescaled T̃1(εc) = κT1(εc) such that T̃1(εc/D = 0.25) =
T0(εc/D = 0.25). For the Nf = 7 full MIAM, T̃1(εc) = T0(εc)
always holds since there is only one crossover scale as illus-
trated in Fig. 20(a), and we set T corr (εc) = T0(εc).

In Fig. 20(b), we plotted the ratio T hole/T corr for the
low-energy scales T0 (light blue line points) and T̃1 (black
line points), plotted as a function of the band center εc/D.
We used an Nf = 7 MIAM with a single uncorrelated hole
(red in Fig. 10), Uh = 0 and ε

f
h /�0 = 25, in the center

of an otherwise strongly correlated impurity array, Ul =
−2ε

f
l = 10�0. In contrary to the Kondo hole literature, we

included an uncorrelated and unoccupied 4 f orbital at an
energy of ε

f
h ≈ 2U in the calculation. We note that the ratio

T̃ hole
1 /T corr remains almost independent of the band center εc

and the ratio remains of O(1). The scale T̃1 takes the role
of the lattice coherence scale in the system with and without
the Kondo hole. The change is not really significant and in the
experiments on Ce0.97La0.03Pd3 the reduction of T corr in the
presence of Kondo holes has been interpreted as signature for
the lanthanide contraction [5,7,12,13].
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We can identify three different regimes. (I) For εc/D � 0.2
we have T0 ≈ T̃1 and T hole ≈ T corr, indicating that there is
only one relevant low-energy scale which is nearly identical
for the model with and without a Kondo hole in its center.
We believe that this regime is relevant for Kondo hole substi-
tution in Ce1−xLaxCu6 where we start from a heavy-fermion
compound that is significantly away from half-filling.

(II) T hole
0 /T corr is zero for εc/D � 0.179, and a stable LM

FP is found as exacted to occur in Kondo insulators in the
dilute limit. Free local moments are present for T → 0 and
the finite entropy is probably removed by magnetic polaron
formation [13]. It has been suggested that disorder and the
spatially extended bound states apparently start to overlap in
Kondo insulators already at relative low concentrations lead-
ing to a very narrow band formation in the Kondo insulator
gap [13,16,31–33].

(III) In between these two regimes at around εc/D ≈
0.179 + |δ| and small δ, there is a clear hierarchy, 0 < T0 <

T̃1, indicating that there is an intermediate unstable LM FP
that crosses over to the SC phase on a energy scale clearly
below the coherence temperature T1. We believe that this in-
termediate regime is relevant for the exotic behavior in doped
heavy-fermion materials, which are at the brink of being a
Kondo insulator such as CePd3. In this regime, the lowest
energy scale, T hole

0 , corresponds to the onset of magnetic scat-
tering associated with an increase in the electrical resistivity
due to a Kondo effect of the hole induced magnetic moment.

VI. SUMMARY AND DISCUSSION

In this paper, we reviewed the effect of Kondo holes in
lattice and in impurity models from two complementary
perspectives using (i) a supercell analysis in the uncorrelated
limit and (ii) the Lieb-Mattis theorem in the strongly
interacting regime with well defined local moments.

Without any restrictions concerning the spatial dimension
and the geometry of the underlying lattice, the supercell analy-
sis predicts the existence of localized decoupled orbitals when
Kondo holes are introduced in the PAM or MIAM, without
presupposing PH symmetry, i.e.,a half-filled conduction band.
Additionally, for the subset of bipartite lattice structures and
PH symmetric models, the Lieb-Mattis theorem makes some
rigorous statements about these Kondo hole Hamiltonians,
predicting local cluster magnetic moments which can be either
stable or subject to further screening processes.

In consequence of these generic statements which are in
accordance with the established theory about Kondo holes
[30–35], we expect the occurrence of hole induced bound
states to be a generic feature for a wide class of HF materials.
Indeed, Hamidian et al. [8] observed these bound states inside
the hybridization gap in Th-doped URu2Si2 by comparing the
differential conductance far away from a Th atom with that
right at a Th atom site. We demonstrated that these bound
states are the consequence of a pseudogap formation which
can be understood from a local point of view. Using the
NRG in combination with a recently developed wide-band
approximation for multi-impurity models [44], we solved the

MIAM with up to Nf = 7 f orbitals in the strongly inter-
acting regime. Inserting Kondo holes in such dense impurity
arrays our NRG results are in perfect agreement with all
exact statements available, ranging from the noninteracting
limit (supercell analysis) to the strongly interacting regime
(Lieb-Mattis theorem). We identified three different classes at
PH symmetry. The effective Kondo coupling Jeff

K between the
hole induced bound state and the environment can be (i) FM,
leading to a stable LM FP or (ii) AF, resulting in a low-energy
scale at which the intermediate LM FP becomes unstable. Re-
markably, this low-energy scale is of a counterintuitive Kondo
form due to Jeff

K ∝ U n, where n > 1 depends on the number
Nf of correlated f orbitals in the model. Alternatively, in case
of several Kondo holes, the hole induced bound states can (iii)
interact directly with each other which may lead to magnetic
order in lattice models such that the ordered magnetic moment
per unit cell is significantly reduced compared to the number
of local moments per unit cell.

Going beyond the PH symmetric limit where the Lieb-
Mattis theorem is applicable, by including the nearly unoccu-
pied hole orbital or shifting the band center of the conduction
electrons, we further demonstrated that the LM FP can be
destabilized. In this case, the local moment phase is replaced
by two types of singlet phases that are adiabatically con-
nected. At a KT type QCP the physics is governed by an
exponentially suppressed Kondo scale approaching the strong
coupling phase that can be replaced by a singlet formation via
antiferromagnetic RKKY interaction for large deviation from
the critical values.

In heavy fermions that are close to a Kondo insulator such
as CePd3 we believe that our analysis can be applied for
low concentrations of Kondo holes. Breaking particle-hole
symmetry in the conduction band as well as including the
unoccupied 4 f orbitals of La for virtual excitation leads to
a coupling of the Kondo hole induced local moment such
that the localized free spin S = 1/2 is screened. This provides
the microscopic mechanism for an Kondo effect as reported
in Ce1−xLaxPd3. Deviations of single-ion Kondo behavior is
expected when the Kondo-lattice coherent temperature is not
well separated from the single-impurity Kondo temperature of
the residual local moments, as well as when the concentration
is high enough that Kondo hole induced local moments start
to interact with each other.

As mentioned already in the introduction recent progress
in realizing local spin-exchange type interactions by loading
two fermionic ultracold atoms in different atomic states into
an optical lattice [27,28] will open the opportunity for sim-
ulating multi-impurity physics in such systems. Ono et al.
estimated the Kondo temperature in their realization of a
Kondo lattice model [28] of the order of 10 nK which is of the
order of the experimentally realizable effective temperatures.
Therefore Kondo hole physics and the spatial distribution of
the localized magnetic moment become accessible in such
systems, although it might be out of reach to clearly identify
the emerging additional exponentially suppressed low-energy
scale governing the screening of the Kondo hole induced local
moment.
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